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Abstract
In this study, a new method for determining the material parameters of cyclic plasticity is presented. The method can be 
applied to evaluate the model parameters from any loading histories measured experimentally. The experimental data require 
basic processing only to be utilized. The method can be applied to calibrate the parameters of different elastoplastic models 
such as the Chaboche–Rousselier (Ch–R) constitutive equation or other model formulations which use different rules of 
isotropic hardening. The developed method was utilized to evaluate the material parameters of copper for a selected group 
of constitutive models. It is shown that among the considered model formulations a very good description of the mechanical 
properties of copper is achieved for the Ch–R model with two Voce terms used for simulating the isotropic hardening and two 
backstress variables utilized for capturing the kinematic hardening behavior. Furthermore, it is demonstrated that a model 
calibrated using the cyclic tension/compression data is able to properly capture the material response in torsion. Similarly, 
when the constitutive parameters are determined using the cyclic torsion data the model is able to properly reproduce the 
material behavior in tension/compression. It is concluded that for the considered type of constitutive equations the material 
parameters can be identified from a single mechanical test. The proposed methodology was validated using the relations 
derived analytically

Keywords Elastoplasticity · Cyclic plasticity · Chaboche · Material parameters

1 Introduction

Despite the continuous development of new functional mate-
rials, such as polymers and composites, e.g., [1, 2], metals 
are still widely used in different branches of industry. A case 
where metallic structural elements are subjected to cyclic 
loadings is common. Thus, a proper description of mate-
rial response which takes into account such behaviors as the 
Bauschinger effect, for instance, is indispensable.

Over the years, many constitutive equations were devel-
oped with the purpose of describing mechanical properties 
of metals in both the elastic and the elastoplastic ranges 
of strains. The constitutive models which are based on the 
notions of yield condition and flow rule are the most com-
monly used. Usually, the Huber–von Mises–Hencky (HMH) 

yield criterion or its modifications are utilized to simulate 
the material’s plastic flow and the hardening behavior [3]. 
A constitutive equation which assumes isotropic hardening 
of the material under loading is one of the simplest model 
formulations. The yield stress is defined as a function of the 
effective plastic strain. Usually, a piece-wise linear relation 
between the yield stress and the effective plastic strain is 
defined. However, sometimes nonlinear relations are used 
such as the one proposed by Voce [4]. Another classical 
model of the flow plasticity theory utilizes the so-called kin-
ematic hardening behavior. In the simplest case the harden-
ing rule developed by Prager [5] is employed for that pur-
pose. This model formulation allows to take into account the 
Bauschinger effect.

In most cases, the simple classical models of the flow 
theory of plasticity fail to properly capture material response 
when it is subjected to more complex and cyclic loadings. 
Thus, there is a need for more sophisticated constitutive 
models which are able to correctly describe the material 
behavior in these conditions. Armstrong and Frederick [6] 
developed a more advanced kinematic hardening rule which 
describes the evolution of the so-called backstress variable. 
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This model formulation was subsequently generalized by 
Chaboche and Rousselier [7, 8] whose model utilizes the 
Armstrong–Frederick (A–F) equation to capture the kin-
ematic hardening phenomenon and the Voce’s rule to take 
into account the isotropic hardening (or softening) effect. 
Multiple backstress variables and Voce exponential terms 
can be utilized to properly describe the aforementioned 
phenomena. A modification of the Chaboche–Rousselier 
(Ch–R) model was used by Yoshida et al. [9]. Moreover, a 
generalization of the Ch–R model was proposed by Chabo-
che to include the viscous effects [10].

The determination of constitutive model’s material 
parameters presents itself a very important problem. The 
parameters need to be properly evaluated for a specific mate-
rial under study, so that, the model will be able to produce 
correct results of the analytical and numerical engineering 
calculations.

Several analytical or quasi-analytical methods exist which 
allow to estimate the values of the Ch–R model parameters 
based on the experimental results of the loading–unload-
ing processes. On the other hand, a number of parameter 
identification algorithms were proposed which are based 
on the least-squares method. Some of the proposed param-
eter determination techniques utilize both the analytically 
derived relationships and the least squares method, e.g., 
[11–13]. Zimniak and Wiewiórska [14] developed a param-
eter determination method for the Ch–R model in which a 
plot of the backstress variable as a function of the effective 
plastic strain is generated from the cyclic tension/compres-
sion data. Subsequently, the experimental measurements of 
the backstress are fitted using an analytically derived rela-
tion. In the following step, the remaining parameters respon-
sible for the isotropic hardening are determined by approxi-
mating the curve of the yield stress vs. plastic strain. Wójcik 
and Skrzat [15, 16] developed a material parameter evalua-
tion algorithm which utilizes some analytical formulas for 
calculating the theoretical stress values that are further used 
within the least squares optimization process. In this concept 
the fuzzy logic methods are applied in order to improve the 
curve-fitting quality.

A common approach in the determination of Ch–R model 
parameters is performing a finite element (FE) simulation 
in order to calculate the theoretical stress values which are 
further used in the least-squares method. This approach is 
usually coupled with usage of a genetic algorithm for the 
optimization of material parameter values [17–19].

In this work, a new method is proposed for the determina-
tion of elastoplastic parameters of the Chaboche–Rousselier 
constitutive model. The searched parameters are evaluated 
by minimizing the total square error. The main novel idea of 
the presented approach is calculating the theoretical stress 
values numerically using the radial return mapping algo-
rithm. The presented method has the following advantages:

• It reduces the amount of experimental data processing 
which is necessary for determination of material param-
eter values.

• The parameters are determined fast in a single identifica-
tion stage.

• The method can be used for evaluating the material 
parameters from any experimentally registered loading 
histories.

• It can be applied to the modifications of Ch–R model that 
use different isotropic hardening rules.

Correctness of the conducted numerical calculations has 
been validated by comparing the obtained results to the 
predictions of the derived analytical equations describing 
tension/compression and torsion processes.

A number of cyclic tension/compression and torsion/
reverse torsion tests were conducted on copper specimens. 
The experimental measurements were used to identify the 
material parameters of copper by taking advantage of the 
newly developed method. It is concluded that very good 
results are obtained when the mechanical properties of cop-
per are simulated with a model employing two Voce terms to 
capture the isotropic hardening and two backstress variables 
to describe the kinematic hardening behavior.

Furthermore, it is shown that a model calibrated using 
the cyclic tension/compression data is able to accurately 
describe the material response in torsion. Similarly, the 
material parameters identified using the cyclic torsion data 
allow to correctly predict the material behavior in tension/
compression. Thus, it is concluded that for the considered 
group of constitutive equations the material parameters can 
be evaluated based on a single mechanical test (tension/com-
pression or torsion).

2  Basic notions

The total stress tensor � is a sum of the volumetric stress p 
and the stress deviator � , i.e.,

where the elastic volume change �e = tr (�e) with tr (∙) being 
the trace operator, �e is the elastic strain deviator, whereas K 
and � are the bulk and shear moduli, respectively.

In the classical theory of plasticity the total strain tensor 
� is taken to be the sum of the elastic strain and the plastic 
strain, e.g., [3], i.e.,

An additional relationship which determines the evolution of 
the plastic strain is required. The Huber–von Mises–Hencky 
(HMH) yield condition is utilized in the following form:

(1)� = p� + �, p = K�e, � = 2��e,

(2)� = �
e + �

p.
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where � is the backstress variable which governs the kin-
ematic hardening behavior, k is the initial yield stress, R is 
a function specifying the isotropic hardening, whereas ēp is 
the effective plastic strain that is given as

For F < 0 the plastic strain increment equals zero, i.e., 
d�p = � . In the case of F = 0 and 𝜕F∕𝜕� ⋅ �̇ > 0 the plastic 
strain increment is given by the associated flow rule:

whe re  d�  i s  t he  p l a s t i c  mu l t i p l i e r  wh i l e 
J2(� − �) =

√
3

2
(� − �) ⋅ (� − �) . After performing some 

manipulations on Eq. (5) it can be shown that d𝜆 = dēp , thus

where �̄ is the normalized effective stress. In the case of 
Chaboche–Rousselier (Ch–R) model the function R is 
assumed as a sum of terms in the form proposed by Voce 
[4, 7, 8]:

where Qi is the saturated value of Ri , whereas bi governs the 
rate at which the saturation of Ri is reached ( i = 1, 2,… ,N).

The total backstress tensor � can be viewed as a resid-
ual stress on the material’s microstructural level. It is 
assumed as a sum of components �(i) ( i = 1, 2,… ,M ), i.e.,

which evolve according to separate equations of the form 
proposed by Armstrong and Frederick [6]:

where Ci and �i are the material parameters responsible for 
strain hardening and dynamic recovery, respectively. The 
ratio Ci∕�i is equal to the saturated, steady-state value of 
the axial component of �(i) in the case of uniaxial tension. 
Below the algorithm used for the integration of the constitu-
tive model is discussed.

(3)F(�,�, ēp) =

√
3

2
(� − �) ⋅ (� − �) − k − R(ēp) = 0,

(4)ēp = ∫
ēp

0

dēp, dēp =

√
2

3
d�p ⋅ d�p.

(5)d�p = d�
�F

��
=

3

2
d�

� − �

J2(� − �)
,

(6)d�p =
3

2
dēp�̄, �̄ =

� − �

J2(� − �)
,

(7)R =

N∑
i=1

Ri,Ri = Qi

(
1 − e−biē

p)
,

(8)� =

M∑
i=1

�(i),

(9)d�(i) =
2

3
Cid�

p − 𝛾idē
p�(i), (i = 1, 2,… ,M),

3  Model discretization

The radial return mapping algorithm is used to integrate the 
considered elastoplastic constitutive equation, cf [20, 21]. At 
every analysis step the so-called predictor stress is calculated. 
For the increment no. n + 1

If the condition J2(�
pr

n+1
− �n) < k + R(ē

p

n+1
) is satisfied, then 

the stress deviator in the increment n + 1 is taken as equal to 
the predictor stress, i.e., �n+1 = �

pr

n+1
 . If the aforementioned 

condition is not satisfied, the plastic flow occurs and the 
effective plastic strain increment Δēp needs to be determined 
by solving the following nonlinear algebraic equation:

where the function 𝛼(Δēp) is given as

with

and

After calculating the effective plastic strain increment the 
strain and the backstress variables are updated according to 
the following relations:

Subsequently, the total deviatoric stress is updated, i.e.,

The derivation of specific equation sets for the cases of uni-
axial tension/compression and torsion/reverse torsion pro-
cesses can be found in [21]. These equations were utilized 
for the purpose of approximating the experimental data and 
are summarized in the following sections.

(10)�
pr

n+1
= �n + 2�Δ�.

(11)r(Δēp) =
[
k + R(ēp

n
+ Δēp)

]
𝛼(Δēp) − J2(�) = 0,

(12)𝛼(Δēp) = 1 +

(
3𝜇 +

M∑
i=1

wiCi

)
Δēp

k + R(ē
p
n + Δēp)

,

(13)wi =
1

1 + 𝛾iΔē
p
, i = 1, 2,… ,M,

(14)J2(�) =

√
3

2
� ⋅ �,� = �

pr

n+1
−

M∑
i=1

wi�
(i)
n
.

(15)�
(i)

n+1
= wi

(
�(i)

n
+

2

3
CiΔ�

p
)
,�n+1 =

M∑
i=1

�
(i)

n+1
.

(16)�n+1 = �n+1 +
�

𝛼(Δēp)
.
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4  Experimental setup

4.1  Material, specimen and testing machine

Experiments were performed on specimens made of pure 
copper M1E (notation according to the Polish Standard). 
The specimens used were thin-walled tubes of the circu-
lar cross section with total length, gauge length, external 
diameter, and wall thickness equal to 122 [mm], 60 [mm], 
19 [mm], and 1.5 [mm], respectively, Fig. 1.

The model 1343 INSTRON electrohydraulic, closed-
loop, servo-controlled, biaxial testing machine enabling 
combined loading in tension–compression–torsion–reverse 
torsion was used in all experiments. The maximum axial 
and torsional load capacities are rated at ±100 [kN] and 
±1000 [Nm], respectively. Two separate servo-controller 
units connected to the computer of the INSTRON loading 
system can independently apply controlled axial load and 
torsional moment. The hydraulic pressure in the actua-
tors comes from two servo-valves operated by servo-
controllers provided with set-point control signals from 
the computer. A multiple analogue-to-digital converter 
(TestStar II) feeds the computer with the signals of: axial 
displacement machine piston, rotation of the grip fixture 
of a specimen, axial force, twisting moment, axial strain 
and torsional strain.

The axial force and the torque applied to the speci-
men were measured using load cells incorporated in the 
machine. The software developed for these tests enabled 
the maintenance of constant strain rates during plastic 
loading and the resulting stress–strain responses were 
recorded by an acquisition unit. It was connected to the 
control computer enabling both direct on-line observations 
of the experimental results and also their saving onto the 
hard disk of the computer during each test.

The strains during standard tensile tests were cap-
tured by means of the MTS extensometer of the gauge 
length equal to 25 [mm]. The strains during low cyclic 

fatigue (LCF) tests were measured with the use of two 
temperature compensated 45◦ rosette strain gauges (type: 
EP-08-125RA-120 with gauge factor of 2.06 ± 1 [%] , tem-
perature range from [ −75 ◦ C] to +205 [ ◦C], and grid resist-
ance of 120.0 [ Ω ] ±0.2 [%] ) bonded to the outer surface of 
the specimen located on the opposite sides of the specimen 
gauge length and two additional separate strain gauges 
located on a specially designed semi-ring, which were 
used for temperature compensation in axial direction. The 
three stacked strain gauges in the 45◦ rosette were arranged 
in such a manner that one strain gauge was aligned with 
the longitudinal axis of the specimen while the other two 
gauges made a 45◦ angle, symmetric with respect to the 
longitudinal gauge. Thus, such a strain measurement sys-
tem enables independent monitoring of axial and shear 
strains by means of two full bridge circuits. These strain 
measurement circuits were connected to the INSTRON 
measurement systems. At all tests the hoop strains were 
also registered by means of the additional half bridge 
circuit of two strain gauges bonded to the specimen and 
connected to the INSTRON measurement system. Before 
running the tests, all circuits were calibrated using a highly 
sensitive Hottinger tensometric bridge (UGR 60). All tests 
were controlled by a TestStar II using such software as 
TestWare-SX v. 4.0D.

To fix the thin-walled tubular specimen in the testing 
machine a special gripping system was designed. It enabled 
elimination of the backlashes in assembly of the specimen 
and its automatic alignment during loading.

4.2  Program of tests

The comprehensive research program for strength and LCF 
testing included: 

1. Static tensile tests (3 tests) for pure copper in the as-
received state carried out to determine basic mechanical 
parameters;

Fig. 1  Thin-walled tubular 
specimen
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2. LCF tests under symmetric tension–compression and 
torsion–reverse torsion in order to determine parameters 
necessary for cyclic models evaluation.

Uniaxial tensile tests were performed at strain rate equal to 
2 × 10−4 s−1 . Details of the experimental setup are shown 
in Fig. 2. The range of fatigue loads was established on the 
basis of the yield strength R0.2 determined from the uniaxial 
tensile test.

LCF tests were carried out according to a strain controlled 
loading program under frequency of cycles equal to 0.02 Hz 
and equivalent strain of 0.8% . For both types of cyclic load-
ing (tension–compression and torsion–reverse torsion) the 
number of cycles was the same (15 full cycles).

4.3  Results of tests

A range of mechanical parameters determined from tensile 
characteristic of copper are presented in Table 1.

The experimental results of LCF tests clearly demon-
strated, that the copper exhibited a significant softening 
effect that is similar for both types of cyclic loading. The 
hysteresis loops obtained for both programs will be dis-
cussed wider during presentation of comparison of the 
experimental data to predictions achieved by the models 
proposed.

5  Approximation of cyclic tension/
compression data

Equations (10–16) that were derived using the radial return 
mapping algorithm were subsequently transformed into a 
specific form which is correct for the uniaxial tension/com-
pression process. The obtained equation set is presented 
below. It was utilized for calculating the theoretical stress 
values during the least squares approximation of experimen-
tal data.

5.1  Calculating theoretical stress values

In the case of uniaxial tension/compression process the 
stress state has one non-zero axial component, i.e., �11 = � 
while �22 = �33 = 0 , which leads to the stress deviator and 
the backstress as given below:

At every increment, the predictor stress is calculated first. 
Thus, for the computational step n + 1:

with Δ�a being the increment of the axial strain. Subse-
quently, the yield criterion given by Eq. (3) is checked. If the 
condition ∣ 𝜎pr

n+1
− Xn ∣< k + R(ē

p
n) is satisfied the plastic flow 

does not occur and it is assumed that �n+1 = �
pr

n+1
 . When the 

aforementioned nonequality is not satisfied the plastic flow 
occurs. In this case the following nonlinear equation needs 
to be solved for the effective plastic strain increment Δēp:

where

The function fsolve offered by Scilab software [22] was 
used for solving Eq. (19). After obtaining Δēp the backstress 
values are updated, i.e.,

(17)

�3×3 =

⎡
⎢⎢⎢⎣

2

3
� 0 0

0 −
1

3
� 0

0 0 −
1

3
�

⎤
⎥⎥⎥⎦
,�3×3 =

⎡
⎢⎢⎢⎣

2

3
X 0 0

0 −
1

3
X 0

0 0 −
1

3
X

⎤
⎥⎥⎥⎦
.

(18)�
pr

n+1
= �n + EΔ�a,

(19)
[
k + R(ēp

n
+ Δēp)

]
𝛼(Δēp)− ∣ Z ∣= 0,

(20)

𝛼(Δēp) = 1 +

(
E +

M∑
i=1

wiCi

)
Δēp

k + R(ē
p
n)
,

Z = 𝜎
pr

n+1
−

M∑
i=1

wiX
(i)
n
.

Fig. 2  Experimental setup: 
a general view; b specimen 
fixed in the patented device (A 
device for mounting thin-walled 
tubular specimens in the griping 
system of a testing machine, 
Patent No 223676, 2016) ena-
bling its automatic alignment 
during loading
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with the signum function of variable Z defined as 
sgn (Z) = Z∕ ∣ Z ∣ . Finally, the stress value in the increment 
n + 1 is calculated from the formula

which follows from Eq. (16).

5.2  Identification of material parameters

The experimental measurements gathered in the cyclic ten-
sion/compression test along with the derived theoretical 
relationships were utilized for the determination of mate-
rial parameters of Chaboche–Rousselier (Ch–R) model. For 
that purpose, the least squares method was used. The mini-
mization of the total square error was performed using the 
Scilab software and the fminsearch function which is 
available in this program [22]. The following error function 
to be minimized was defined:

(21)X
(i)

n+1
= wi

[
X(i)
n
+ CiΔē

p sgn (Z)
]
,Xn+1 =

M∑
i=1

X
(i)

n+1
,

(22)𝜎n+1 = Xn+1 +
Z

𝛼(Δēp)
,

where j is the number of a collocation point, n is the total 
number of used collocation points, � is the theoretical stress 
value calculated with Eqs. (17–22), �̃ is the experimentally 
measured stress and � is the matrix of material parameter 
values being optimized.

The previously determined value of the Young’s modu-
lus, i.e. E = 113 [GPa] (cf Table 1) was used in the calcula-
tions, whereas the initial yield stress k = 145 [MPa] was 
determined from the uniaxial test data. The Poisson’s ratio 
� = 0.32 [-] was estimated based on the values given in the 
available databases [23]. The determined values of material 
constants were used during the process of evaluating the 
remaining parameters of the Ch–R model.

The material parameters were identified for three different 
versions of the Ch–R constitutive model, i.e.:

• A model with single Voce term describing kinematic 
hardening ( N = 1 ) and single backstress variable ( M = 1 ) 
which evolves according to the Armstrong–Frederick 
(A–F) equation;

(23)F(�) =

n∑
j=1

[
(�(�))j − (�̃)j

]2
,

Fig. 3  Comparison of experi-
mental results obtained for 
copper (cyclic tension/compres-
sion) and theoretical predictions 
of Chaboche–Rousselier elasto-
plastic model with one isotropic 
hardening term ( N = 1 ) and one 
backstress variable ( M = 1)

Table 1  Mechanical parameters determined from the standard tensile test carried out according to the PN-EN10002-2:AC1 Standard

E [GPa] R0.2 [MPa] R
m
 [MPa] R

u
 [MPa] A5 [ %] A

r
 [ %] Z [ %]

113 220 250 638 48 8.35 10.13
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• A modification of the model described above obtained by 
adding an additional backstress variable which follows 
the Prager’s rule (this model formulation was used by 
Yoshida et al. [9]);

• A model with two Voce terms ( N = 2 ) and two back-
stress variables ( M = 2 ) that evolve according to two 
separate A–F equations;

• A model with three Voce terms ( N = 3 ) and three back-
stress variables ( M = 3 ) that evolve according to three 
separate A–F equations.

The curve-fitting results obtained for the first version of the 
model ( N = 1 , M = 1 ) can be seen in Fig 3. The material 
parameters of the Ch–R model are gathered in Table 2.

Only slightly better approximation was achieved for the 
model formulation that was proposed by Yoshida. Thus, 
the plot showing the approximation is not included here, 
whereas the identified material parameter values are gath-
ered in Table 3.

A significant improvement of the curve fitting was 
observed for the third model under consideration ( N = 2 , 

Fig. 4  Comparison of experi-
mental results obtained for 
copper (cyclic tension/compres-
sion) and theoretical predictions 
of Chaboche–Rousselier elasto-
plastic model with two isotropic 
hardening terms ( N = 2 ) and 
two backstress variables ( M = 2

)

Fig. 5  Comparison of experi-
mental results obtained for 
copper (cyclic tension/compres-
sion) and theoretical predic-
tions of Chaboche–Rousselier 
elastoplastic model with three 
isotropic hardening terms 
( N = 3 ) and three backstress 
variables ( M = 3)
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M = 2 ). The approximation results can be viewed in 
Fig. 4, while the determined material parameter values 
are listed in Table 4.

A more sophisticated version of the model with three 
Voce terms ( N = 3 ) and three backstresses ( M = 3 ) exhib-
ited only a negligible improvement of the curve fitting. 
The approximation results are shown in Fig. 5 while the 
material parameter values are gathered in Table 5. The 
information about the residue (RSS—Residual Sum of 
Squares) is given in the figures.

To validate the methodology described above some 
analytical relationships were derived. The relations listed 
below hold for the Ch–R elastoplastic model and any uni-
axial tension/compression process. They follow from the 
tensor equations which were given in Sect. 2.

According to Eqs. (3) and (17) for ∣ 𝜎 − X ∣< k + R no 
plastic flow occurs and the stress can be determined from 
the linear relation which follows from Eq. (1), i.e.

If the material is actively yielding, Eq. (3) leads to the for-
mula for the stress:

with

According to Eq. (8) the total backstress is given as:

(24)� = E(�a − �p).

(25)� = X + �(k + R),

(26)� = sgn (� − X) =
� − X

∣ � − X ∣
.

After integrating Eq. (9) and applying the initial conditions, 
it is found that:

where �p
0
 is the initial plastic strain and X(i)

0
 is the initial 

backstress value ( i = 1, 2,… ,M ). In this particular case the 
initial values are interpreted as the accumulated values of 
plastic strain and backstress at the start of the current flow 
process.

It follows from Eq. (7) that the isotropic hardening is 
determined by N Voce terms, i.e.

with the effective plastic strain given as:

The predictions of the analytical Eqs. (24–30) were used 
to verify the results obtained using the discretized version 
of the model, i.e., Eqs. (18–22). In Fig. 6, the stress val-
ues calculated for an exemplary cyclic tension/compression 
process are compared. It is seen that the predictions of the 
analytical equations and the numerical computations are in 
a prefect agreement. The validation test was performed for 

(27)X =

M∑
i=1

X(i).

(28)X(i) = X
(i)

0
e−��i(�

p−�
p

0
) + �

Ci

�i

(
1 − e−��i(�

p−�
p

0
)
)
,

(29)R =

N∑
i=1

Ri,Ri = Qi

(
1 − e−biē

p)
,

(30)ēp(t) = ∫
t

0

̇̄ep(t�)dt� = ∫
t

0

∣ �̇�p(t�) ∣ dt�.

Fig. 6  Comparison of analytical 
and numerical results obtained 
for exemplary cyclic tension/
compression process and 
elastoplastic model with two 
isotropic terms ( N = 2 ) and two 
backstress variables ( M = 2)
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the material parameter values determined from the uniaxial 
process for N = 2 and M = 2 , cf Table 4.

6  Approximation of cyclic torsion–reverse 
torsion data

The general relations of the discretized model which are given 
in Sect. 3 were used to derive a set of equations describing 
the cyclic torsion–reverse torsion process. These equations are 
discussed below. They were utilized for calculating the theo-
retical shear stress values during the least squares optimization 
procedure.

6.1  Calculating theoretical stress values

In the case of torsion/reverse torsion process the stress ten-
sor, its deviator and the backstress tensor have the following 
components:

with X� being the shear backstress component. For the com-
putational step n + 1 the predictor shear stress is given as

with Δ�s being the shear strain increment. The 
plastic f low does not occur when the condition √
3 ∣ 𝜏

pr

n+1
− X𝜏n ∣< k + R(ē

p
n) is satisfied. In this case it is 

assumed that �n+1 = �
pr

n+1
 . If the material is yielding the 

effective plastic strain increment Δēp needs to be calculated 
from the following nonlinear equation:

where

After solving Eq. (33) the shear stress value is updated, i.e.,

6.2  Identification of material parameters

The discretized model equations obtained for the tor-
sion/reverse torsion process were used for computing the 

(31)�3×3 = �3×3 =

⎡⎢⎢⎣

0 � 0

� 0 0

0 0 0

⎤⎥⎥⎦
,�3×3 =

⎡⎢⎢⎣

0 X� 0

X� 0 0

0 0 0

⎤⎥⎥⎦
,

(32)�
pr

n+1
= �n + 2�Δ�s,

(33)
�
k + R(ēp

n
+ Δēp)

�
𝛼(Δēp) −

√
3 ∣ Z ∣= 0,

(34)

𝛼(Δēp) = 1 +

(
3𝜇 +

M∑
i=1

wiCi

)
Δēp

k + R(ē
p

n+1
)
,

Z = 𝜏
pr

n+1
−

M∑
i=1

wiX
(i)
𝜏n
.

(35)𝜏n+1 = X𝜏n+1 +
Z

𝛼(Δēp)
.

theoretical shear stress values during the material param-
eter identification procedure. The experimental data from 
the cyclic torsion–reverse torsion tests performed on cop-
per were utilized. The total square error function took the 
form:

with � being the theoretical shear stress value calculated 
using Eqs. (32–35) and �̃  being the experimental stress 
measurement, whereas j is the number of the collocation 
point ( j = 1, 2,… , n ). Again, the approximation was per-
formed in the Scilab software using the fminsearch func-
tion [22]. The material parameters were identified for the 
following versions of the elastoplastic model:

• A model with single isotropic term ( N = 1 ) and single 
backstress variable ( M = 1 ) ;

• The model proposed by Yoshida et al. [9];
• A model with two isotropic terms ( N = 2 ) and two back-

stress variables ( M = 2);
• A model with three isotropic terms ( N = 3 ) and three 

backstress variables ( M = 3).

The curve fitting results that were achieved for the simplest 
version of the Ch–R elastoplastic model ( N = 1 , M = 1 ) 
are shown in Fig. 7. The determined material parameters 
have been gathered in Table 2. Only slight improvement of 
the approximation quality was obtained in the case of the 
Yoshida model. Thus, the plot presenting the curve fitting is 
not included here, whereas the identified parameters of the 
model by Yoshida are listed in Table 3.

Adding an additional isotropic term and a backstress to 
the model ( N = 2 , M = 2 ) resulted in a significant improve-
ment of the curve fitting quality, see Fig. 8. The identified 
material parameter values have been gathered in Table 4.

The model utilizing three isotropic terms ( N = 3 ) 
and three backstresses ( M = 3 ) achieved only negligible 
improvement of the approximation. The curve fitting results 
can be viewed in Fig. 9, whereas the determined parameter 
values are listed in Table 5.

All the approximations described above were performed 
using the same values of the Young’s modulus, the Poisson’s 
ratio and the initial yield stress as in the case of uniaxial ten-
sion/compression. The information about the residue (RSS) 
is provided in the figures showing the curve fitting.

For the purpose of verifying the results produced by the 
discretized version of the model given by Eqs. (32–35), the 
analytical equations describing the cyclic torsion/reverse tor-
sion process were derived. They are attached below.

The plastic f low does not occur if the condition √
3 ∣ 𝜏 − X𝜏 ∣< k + R is satisfied. In this case, the shear stress 

(36)F(�) =

n∑
j=1

[
(�(�))j − (�̃)j

]2
,
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is calculated from a linear relation which follows from Eq. 
(1)3, i.e.,

where �ps is the plastic shear strain.
If the plastic flow occurs, the stress is calculated from the 

formula which can be derived from Eq. (3):

(37)� = 2�(�s − �p
s
),

with

The total shear backstress is given as a sum

After integrating Eq. (9), the following relation for the back-
stress components is obtained:

(38)� = X� + �
1√
3

(k + R),

(39)� = sgn (� − X�) =
� − X�

∣ � − X� ∣
.

(40)X� =

M∑
i=1

X(i)
�
.

Fig. 7  Comparison of experi-
mental results obtained for 
copper (cyclic torsion–reverse 
torsion) and theoretical predic-
tions of Chaboche–Rousselier 
elastoplastic model with one 
isotropic hardening term 
( N = 1 ) and one backstress vari-
able ( M = 1)

Table 2  Material parameters of Chaboche–Rousselier elastoplastic 
model with one isotropic hardening term ( N = 1 ) and one backstress 
variable ( M = 1 ) determined for copper by approximation of uniaxial 
test data (UT) and torsion test data (TT)

No. Parameter Value (UT) Value (TT) Unit

1 Q − 33.535 − 45.411 MPa
2 b 7.597 7.489 –
3 C 72713.384 96016.047 MPa
4 � 789.36 965.077 –

Table 3  Material parameters of Yoshida elastoplastic model deter-
mined for copper by approximation of uniaxial test data (UT) and tor-
sion test data (TT)

No. Parameter Value (UT) Value (TT) Unit

1 Q − 33.302 − 44.588 MPa
2 b 8.299 8.801 –
3 C1 102281.46 139784.55 MPa
4 �1 1215.953 1515.312 –
5 C2 2383.317 2753.489 MPa

Table 4  Material parameters of Chaboche–Rousselier elastoplastic 
model with two isotropic hardening terms ( N = 2 ) and two backstress 
variables ( M = 2 ) determined for copper by approximation of uniax-
ial test data (UT) and torsion test data (TT)

No. Parameter Value (UT) Value (TT) Unit

1 Q1 − 32.526 − 32.403 MPa
2 b1 276.053 95.298 –
3 Q2 − 32.281 − 41.863 MPa
4 b2 6.264 5.893 –
5 C1 256406.71 563673.85 MPa
6 �1 3432.347 8301.297 –
7 C2 20854.821 32941.869 MPa
8 �2 409.158 524.468 –
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where �p
s0

 is the initial plastic shear strain and X(i)

�0
 is the ini-

tial shear backstress value ( i = 1, 2,… ,M ). In this particular 
case, the initial values are interpreted as the accumulated 
values of the plastic strain and the backstress at the start of 
the current flow process.

The isotropic hardening is governed by N Voce terms, 
i.e.,

(41)X(i)
�

= X
(i)

�0
e
−�

2�i√
3
(�

p
s−�

p

s0
)
+ �

Ci√
3�i

�
1 − e

−�
2�i√
3
(�

p
s−�

p

s0
)
�
,

with the effective plastic strain given as

The predictions of the analytical Eqs. (38–43) were used to 
validate the results obtained using the discretized version of 
the model, i.e., Eqs. (32–35). In Fig. 10 the stress values cal-
culated for an exemplary cyclic torsion/reverse torsion pro-
cess are compared. It is seen that the predictions of the ana-
lytical equations and the numerical computations are in an 
excellent agreement. The validation test was performed for 
the material parameter values determined from the torsion/
reverse torsion process for N = 2 and M = 2 , cf Table 4.

7  Conclusions

In this work, a new method of determining the material 
parameters of mixed hardening elastoplasticity is presented. 
The method is applicable to the constitutive model proposed 
by Chaboche and Rousselier (Ch–R) [7, 8] and its modi-
fications. The presented method is highly automated and 
requires only basic processing of the experimental data. 
Furthermore, the method can be utilized for any loading 
histories.

The developed method was used for identifying the mate-
rial parameters of copper. For that purpose, cyclic loading 

(42)R =

N∑
i=1

Ri,Ri = Qi

(
1 − e−biē

p)
,

(43)ēp(t) = ∫
t

0

̇̄ep(t�)dt� =
2√
3
∫

t

0

∣ �̇�p(t�) ∣ dt�.

Table 5  Material parameters of Chaboche–Rousselier elastoplastic 
model with three isotropic hardening terms ( N = 3 ) and three back-
stress variables ( M = 3 ) determined for copper by approximation of 
uniaxial test data (UT) and torsion test data (TT)

No. Parameter Value (UT) Value (TT) Unit

1 Q1 − 29.493 − 24.74 MPa
2 b1 381.878 175.107 –
3 Q2 − 17.737 − 26.069 MPa
4 b2 19.574 22.638 –
5 Q3 − 2354.119 − 248.189 MPa
6 b3 0.019 0.28 –
7 C1 275505.17 633896.56 MPa
8 �1 3891.632 9036.616 –
9 C2 25913.955 33921.457 MPa
10 �2 494.739 533.062 –
11 C3 527.928 0.079 MPa
12 �3 2.103 0.991 –

Fig. 8  Comparison of experi-
mental results obtained for 
copper (cyclic torsion–reverse 
torsion) and theoretical predic-
tions of Chaboche–Rousselier 
elastoplastic model with two 
isotropic hardening terms 
( N = 2 ) and two backstress 
variables ( M = 2)
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tests were performed on copper specimens that included uni-
axial tension/compression and torsion/reverse torsion pro-
cesses. The determined material parameter values of copper 
are gathered in Tables 1, 2, 3, 4, 5.

It is demonstrated that the Ch–R model utilizing two 
Voce terms to describe the isotropic plastic behavior and 
two backstress variables to simulate the kinematic hardening 
proved to provide a very good description of the elastoplastic 
response of copper (Figs. 4 and 8). Employing additional 

terms to capture the isotropic and kinematic hardening 
behaviors ( N = 3 , M = 3 ) results in a negligible improve-
ment of the approximation quality (cf Figs. 5 and 9). Thus, it 
can be concluded that in the case of copper, the model with 
two Voce terms and two backstress variables is optimal and 
there is no reason in model’s further extension within the 
discussed formulation of constitutive equation.

A certain shrinkage of the hysteresis loop was observed 
during the cyclic loading/unloading experiments that were 

Fig. 9  Comparison of experi-
mental results obtained for 
copper (cyclic torsion–reverse 
torsion) and theoretical predic-
tions of Chaboche–Rousselier 
elastoplastic model with three 
isotropic hardening terms 
( N = 3 ) and three backstress 
variables ( M = 3)

Fig. 10  Comparison of ana-
lytical and numerical results 
obtained for exemplary cyclic 
torsion–reverse torsion process 
and elastoplastic model with 
two isotropic terms ( N = 2 ) 
and two backstress variables 
( M = 2)
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performed on copper, e.g., Fig. 4. This phenomenon is 
interpreted as the isotropic softening effect. The negative 
parameter values that were identified for the Voce terms are 
responsible for capturing this effect (see Tables 2, 3, 4, 5).

It is demonstrated that a model calibrated using the 
cyclic torsion data is able to properly describe the mate-
rial response in tension/compression, cf Fig. 11a. On the 
other hand, it is shown that when the material parameters are 
determined using the tension/compression data the model is 
able to properly reproduce the material behavior in torsion 
(Fig. 11b). Thus, it can be concluded that for the considered 
group of constitutive equations the material parameter val-
ues can be identified using a single mechanical test (cyclic 
tension/compression or cyclic torsion). For the majority 
of the analyzed versions of the Ch–R elastoplastic model 
the material parameter values identified from the tension/
compression test are similar to those determined from 
the torsion test, cf Tables 2, 3, 4. However, for the model 
using three Voce terms to describe the isotropic hardening 
( N = 3 ) and three backstress variables ( M = 3 ) some sub-
stantial differences between the identified parameter values 
can be observed. This fact can be explained by the growing 
complexity of the parameter value nonlinear optimization 
problem. This complexity is manifested in the case of the 
extended version of the model.

The correctness of proposed methodology has been vali-
dated using the derived analytical relations. An excellent 
agreement between the numerical and the analytical results 
was observed, cf Figs. 6 and 10.
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