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A B S T R A C T

A finite-strain phase-field model of coupled deformation twinning and crystal plasticity is
developed in the paper. Twinning is treated as a displacive transformation characterized by a
volume-preserving stretch rather than a simple shear, the latter considered in the conventional
approach. It is shown that the two approaches are equivalent in the sharp-interface description,
but not in the diffuse-interface description. In the proposed stretch-based kinematics, each pair
of conjugate twinning systems is represented by a single twin deformation variant, and thus a
single order parameter suffices to consistently describe the two conjugate twinning systems,
thereby treating them equally. The model is formulated in the framework of incremental
energy minimization, which, upon time discretization, leads to a quasi-optimization problem
due to the specific form of the incremental potential within the diffuse interfaces. To facilitate
finite-element implementation, a micromorphic formulation of the model is employed. As an
application, tensile twinning in HCP magnesium alloys is examined, and a set of comprehensive
2D plane-strain problems is studied to illustrate the features of the proposed approach.

. Introduction

In addition to plastic slip, deformation twinning is an important inelastic deformation mechanism in metals and alloys with
ace-centered cubic (FCC), body-centered cubic (BCC) and hexagonal close-packed (HCP) crystal structures (Yoo and Lee, 1991;
hristian and Mahajan, 1995; Gray, 2012; Beyerlein et al., 2014). In general, deformation twinning occurs in both FCC (typically,
f low stacking-fault energy) and BCC metals and alloys at high strain rates or low temperatures. However, in HCP crystals, twinning
s particularly common as a result of the lack of easily-activated non-basal slip systems, and is considered as a dominant deformation
echanism at room temperature, as frequently observed in experiments (e.g., Al-Samman and Gottstein, 2008; Beyerlein et al., 2010;
hapuis and Driver, 2011; Luan et al., 2018).

It is very well known that the mechanisms governing the plastic slip and deformation twinning are dissimilar in nature (Mahajan
nd Williams, 1973; Christian and Mahajan, 1995). Plastic slip is associated with the relative displacement of the planes of atoms
ith respect to each other as a result of the glide of dislocations on these planes. During twinning, a large collection of atoms
ndergoes a simultaneous movement such that the resulting twinned lattice is reoriented (where the reorientation is constant and
ccurs abruptly) and adopts a mirror symmetry with the original undeformed lattice about the twin plane. Critical differences are also
iscernible in the characteristics of plastic slip and deformation twinning, which lead to significant differences in the corresponding
echanical responses (Beyerlein and Arul Kumar, 2018). In particular, twinning induces a well-defined constant amount of shear and

s intrinsically polarized. The latter means that, unlike the plastic slip, the activation of twin depends on the sense of the shear within
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the twin plane. In HCP crystal, this brings on the concept of extension and contraction twin families, characterized by the 𝑐∕𝑎 ratio.
Another important difference is that, despite the heterogeneity of both twinning and slip, the characteristic spatial scale of twinning
is by orders of magnitude larger than that of slip and is analogous to the dimensions of the polycrystalline grains (Capolungo et al.,
2009; Wang et al., 2013; Beyerlein and Arul Kumar, 2018). Furthermore, the temporal scale at which the dislocation slip evolves
is considerably higher compared to that of twins (Christian and Mahajan, 1995).

On account of the physical disparities discussed above, modeling the phenomenon of deformation twinning poses several
additional challenges to be dealt with in comparison with the plastic slip, see Kasemer and Dawson (2020) for a related discussion,
see also Roters et al. (2010). In the classical approaches based on crystal plasticity, following the seminal work of Kalidindi (1998),
see also Van Houtte (1978), twinning is modeled in a mean-field sense, i.e., each twinning system is treated like an additional
slip system (referred to as ‘pseudo-slip’) and is represented by a twin volume fraction (e.g., Agnew et al., 2001; Staroselsky and
Anand, 2003; Graff et al., 2007; Kowalczyk-Gajewska, 2010; Izadbakhsh et al., 2011; Zhang and Joshi, 2012; Chang and Kochmann,
2015). The major advantages of the pseudo-slip approaches are that they are computationally inexpensive and are able to provide
a reasonable prediction of the global mechanical response and the (homogenized) microstructure evolution. Nevertheless, such
approaches are incapable of capturing the spatially-resolved twin morphology and, as a result, completely ignore the heterogeneous
nature of the twins.

In contrast to the classical crystal-plasticity-based approaches, which are mainly relevant at the macro-scale, atomistic simulation
techniques, such as molecular dynamics (MD), have gained much popularity due to the fact that they can provide valuable insights
into the atomic-scale mechanisms of deformation twinning (e.g., Wang et al., 2009; Pei et al., 2018; Agarwal and Dongare, 2019).
In fact, in the light of the very fast twin nucleation process, it is difficult to investigate experimentally the phenomenon of twin
nucleation, the early-stage growth of the twin nuclei, and the related aspects; whereas these phenomena seem to be suitable
for atomistic simulations (Capolungo and Beyerlein, 2008). On the debit side, however, atomistic techniques are restricted by
the accessible spatial and temporal scales, and thereby demand large computational resources to tackle the problem of complete
twin evolution. As a consequence, an intermediate (meso-scale) computational framework between the atomistic techniques and
macroscopic (homogenized) approaches is needed in order to be able to resolve the morphology of the twin microstructure at
adequate spatial and temporal scales.

Meso-scale modeling of twin morphology evolution has been the subject of active research in the past decade. The necessity
to gain a deep understanding of the mechanisms behind the twin formation and evolution at the intra-grain and inter-grain
levels and the corresponding effects on the overall mechanical behavior of materials has driven an increasing development of
computational methods in this area. Notably, the phase-field method is a powerful computational tool that has found its way into
the meso-scale modeling of deformation twinning. In particular, the phase-field method has been used to model the deformation
twinning alone (Clayton and Knap, 2011; Liu et al., 2018b) or in combination with crystal plasticity to model the coupling between
deformation twinning and dislocation slip (Kondo et al., 2014; Liu et al., 2018a; Grilli et al., 2020; Ma and Sun, 2021; Hu et al.,
2021). The essence of the phase-field method is that it employs a diffuse-interface description by using an order parameter (or
order parameters in the case of multiple twinning systems) that distinguishes between the matrix (untwinned) and the twinned
regions and varies smoothly across the matrix–twin interface (in general, the order parameter can be conceived as the twin volume
fraction, however, with a different interpretation than that in the classical crystal-plasticity-based approaches). The total free energy
then comprises, in addition to the elastic strain energy, an interfacial energy contribution that is formulated in terms of the order
parameter and its gradient, hence introducing an intrinsic length-scale into the model. Accordingly, the twin microstructure is
described directly by the spatial distribution of the order parameter, whose evolution is governed by the classical time-dependent
Ginzburg–Landau equation (Allen and Cahn, 1979), and, thereby, direct tracking of interfaces is avoided.

Apart from the phase-field method, a number of modeling approaches have been developed in recent years in an attempt to
delineate the evolution of the twin microstructure at the meso-scale. In this respect, a class of models are centered around the
idea of explicit incorporation of twinned domains, typically in the shape of twin plates, into the matrix (Ardeljan et al., 2015; Jin
et al., 2019; Kasemer and Dawson, 2020). The main drawback of these models resides in the complexity of the solution algorithm
and the associated meshing procedure, as a result of which, the presented model applications are limited only to the nucleation
stage and the early-stage thickening of twin plates. In addition, extension of the models to more realistic and complex scenarios,
e.g., the presence of multiple twin variants, seems to be highly intricate. Another major limitation of these models is that there is
no interfacial energy, hence no intrinsic length-scale, attributed to the matrix–twin interfaces, and thus these models fail to predict
the size effects. In another class of meso-scale models, twinning morphology is predicted by including the twin evolution law into
the constitutive description. This list contains the micromechanics-based model of Mareau and Daymond (2016) and the complex
physics-based model of Cheng et al. (2018). Modeling the twinning microstructure has been also attempted by incorporating an
interaction energy term into the crystal plasticity model with the aim to penalize the simultaneous existence of the matrix and the
twin (Chester et al., 2016) or by adopting a phenomenological constitutive response including softening and hardening branches
that correspond to, respectively, the twin nucleation and growth stages (Qiao et al., 2016). Gradient effects are not considered by
these models and also special treatments are required for the nucleation of the twin and to prevent formation of overly diffuse
matrix–twin interfaces.

It appears that the phase-field method is by far the most suitable computational tool for modeling the twin microstructure
evolution. Nevertheless, the application of the phase-field method in this area is still limited (the papers mentioned earlier in
the context of the phase-field method are essentially the only related contributions), and thus there is a large space for further
exploration. In this work, a finite-element-based model of coupled deformation twinning and plastic slip is developed via combining
2

the phase-field method and crystal plasticity. The kinematics of the model obeys the finite-strain theory and takes into account the
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reorientation induced by twinning. The model formulation and its finite-element implementation contain specific ingredients, which
will be elaborated later on. Following the approach adopted by Hildebrand and Miehe (2012), see also Tůma et al. (2016, 2018),
a variational structure of the model is established by casting the model into the incremental energy minimization framework.

A distinctive feature of the present model is that twinning is interpreted as a displacive transformation, as in the martensitic
ransformation, and, thereby, the related kinematics is formulated accordingly. More specifically, the deformation twinning is
dentified as a volume-preserving stretch followed by a rigid-body rotation (where the rotation is contained in the elastic part of the
eformation gradient). This is in contrast to the conventional approach adopted in the literature, in which twinning is characterized
y a simple shear deformation (Clayton and Knap, 2011; Kondo et al., 2014; Liu et al., 2018b; Grilli et al., 2020; Ma and Sun,
021; Hu et al., 2021). Although the two approaches are equivalent in the sharp-interface description, they are not necessarily
quivalent in the diffuse-interface description. In particular, contrary to the conventional approach, the stretch-based kinematics
llows equal treatment of the conjugate twinning systems, which is particularly relevant when the conjugate twinning systems are
rystallographically equivalent. These aspects are discussed extensively in Sections 2.2–2.4 and illustrated in the computational
tudy in Section 5.2. It should be remarked here that, in the present context, the only prior application of such kinematics, see Liu
t al. (2018a), pertains to the case of twinning only (without plasticity) and within the small-strain framework in which the correct
rientation of the twin planes is obtained at the cost of having a compressible twinning deformation.

The remainder of this paper is structured as follows. The finite-strain kinematics of deformation twinning, in both sharp- and
iffuse-interface descriptions, is presented in Section 2. To make the presentation of the model concise and comprehensible, the
inematics is customized to HCP crystals, in particular magnesium and its alloys. The variational structure of the model is presented
n Section 3 and the finite-element implementation is briefly commented in Section 4. In Section 5, illustrative 2D computational
tudies are carried out and discussed.

. Finite-strain kinematics of deformation twinning

.1. Preliminaries

In this section, we discuss the finite-strain kinematics of coupled deformation twinning and crystal plasticity in sharp- and diffuse-
nterface descriptions. Only primary twinning is considered, which includes detwinning, i.e., reverse twinning. Secondary twinning,
.e., subsequent twinning of twinned domains, is thus not included in the analysis. Deformation twinning in HCP crystals, and in
agnesium and its alloys in particular, is considered as a representative case study, however, the same concepts apply to other

ases, in particular to FCC and BCC crystals, see Appendix A.
The finite-deformation framework is used throughout this work. Accordingly, the basic kinematic quantity is the deformation

radient, F = ∇𝝋, which is defined as the gradient (relative to the reference configuration) of the deformation mapping 𝝋 that maps
material points from the reference configuration to the current configuration, i.e., x = 𝝋(X), where X and x denote the positions in
he respective configurations. The deformation gradient F is multiplicatively decomposed into the elastic part Fe and the inelastic

part Fin,

F = FeFin, F = ∇𝝋 = I + ∇u. (1)

Here, u = x − X is the displacement vector, and I is the second-order identity tensor. The inelastic deformation described by Fin
can result from deformation twinning and from plastic slip in both the matrix and the twin. The related kinematics is discussed in
detail in the following subsections.

2.2. Twinning as a displacive transformation

The {101̄2}⟨1̄011⟩ tensile twining is an important deformation mechanism in magnesium and its alloys (Christian and Mahajan,
1995; Beyerlein et al., 2014). It involves six crystallographically-equivalent twinning systems that can be grouped into three pairs
of conjugate twinning systems. A pair of conjugate twinning systems with the (101̄2) and (1̄012) twin planes is illustrated in Fig. 1.
To fix attention, the discussion below is carried out using this pair as a representative example. The main line of reasoning in
this subsection, which leads to the concept of one twin deformation variant replacing two conjugate twinning systems, follows Liu
et al. (2018a). Note that the kinematics described below corresponds to stress-free conditions such that Fe in the multiplicative
decomposition (1) is a rigid-body rotation, while the inelastic contribution Fin results solely from twinning, i.e., plastic slip is absent.

Consider thus two conjugate twinning systems indexed by 𝑖 = 1, 2. Twinning is associated with simple shear that is characterized
by the deformation gradient of the form

F(𝑖)tw = I + 𝛾twa
(𝑖) ⊗m(𝑖), (2)

where 𝛾tw is the twinning shear (Christian and Mahajan, 1995),

𝛾tw = 𝛼2 − 1 =

√

3𝑎
− 𝑐

√
, 𝛼 =

√

3𝑎
> 1, (3)
3

𝛼 𝑐 3𝑎 𝑐
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Fig. 1. Schematic illustration of the {101̄2}⟨1̄011⟩ tensile twinning in HCP crystal structure. (a) The hexagonal unit cell with the (101̄2) and (1̄012) twin planes
of two conjugate twinning systems. The small colored hexagonal unit cells represent the matrix and the three possible twin deformation variants. (b) Two
conjugate twinning systems and the associated shear deformation described by F(𝑖)tw. (c) Deformation twinning interpreted as a displacive transformation involving
the stretch Utw of the matrix lattice followed by a rigid-body rotation R(𝑖)

tw.

with 𝑐∕𝑎 <
√

3 for magnesium alloys, while the unit vectors m(𝑖) and a(𝑖) specify, respectively, the twin plane normal and twinning
shear direction, and m(𝑖) ⋅ a(𝑖) = 0. Adopting the coordinate system with the 𝑥1-axis along [1̄010] and the 𝑥2-axis along [0001], see
Fig. 1, the components of vectors m(𝑖) and a(𝑖) are given by

m(1,2) = 1
√

1 + 𝛼2
(∓1, 𝛼, 0)C, a(1,2) = 1

√

1 + 𝛼2
(±𝛼, 1, 0)C, (4)

where the notation (⋅, ⋅, ⋅)C is introduced to distinguish the Cartesian coordinates from the Miller indices. Note that the vectors m(𝑖)

and a(𝑖) of the conjugate twin pair are perpendicular to the 𝑥3-axis, i.e., to the [1̄21̄0] direction. The (1̄21̄0) plane is thus the plane
of shear for both twins.

By applying the polar decomposition, the deformation gradient F(𝑖)tw can be decomposed into a symmetric stretch tensor U(𝑖)
tw and

a rotation (proper-orthogonal) tensor R(𝑖)
tw,

F(𝑖)tw = R(𝑖)
twU

(𝑖)
tw. (5)

It can be shown that the stretch tensors of two conjugate twins are equal,

U(1)
tw = U(2)

tw = Utw, (6)

while the rotation tensors are the inverse of each other, i.e., they correspond to the rotation by the same angle but in the opposite
direction,

R(1)
tw =

(

R(2)
tw
)T = Rtw. (7)

As a result, we have

F(1)tw = RtwUtw, F(2)tw = RT
twUtw. (8)

The components of Utw and Rtw are the following,

Utw =

⎛

⎜

⎜

⎜

⎝

1
𝛼

0 0
0 𝛼 0
0 0 1

⎞

⎟

⎟

⎟

⎠

, Rtw = 1
1 + 𝛼2

⎛

⎜

⎜

⎝

2𝛼 𝛼2 − 1 0
1 − 𝛼2 2𝛼 0

0 0 1 + 𝛼2

⎞

⎟

⎟

⎠

. (9)

The stretch Utw describes elongation by 𝛼 > 1 along the 𝑥2-axis (i.e., the [0001]-axis of the crystal lattice) and contraction by 1∕𝛼
along the 𝑥1-axis (i.e., along the [1̄010] direction within the basal plane), which justifies the name ‘tensile twinning’. Clearly, the
volume is preserved by twinning deformation, det F(𝑖)tw = det Utw = 1.

It follows that deformation twinning, which is classically identified with the shear deformation (Fin = F(𝑖)tw so that Fe = I), see
Fig. 1(b), can be equivalently interpreted as a stretch (Fin = Utw) followed by a rigid-body rotation (Fe = R(𝑖)

tw), as illustrated in
Fig. 1(c). Accordingly, instead of considering the six {101̄2}⟨1̄011⟩ twinning systems, each represented by the corresponding simple
shear, as in Eq. (2), it is sufficient to consider a displacive transformation, resembling a phase transformation, between the matrix
4
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(parent phase) and three twin deformation variants (product phase), as schematically shown in Fig. 1(a). The rigid-body rotation is
eeded to preserve displacement continuity, and, for a given twin deformation variant, each of the two possible twinning planes
s associated with the corresponding rotation R(𝑖)

tw. The stretch tensors corresponding to the other two twin deformation variants
re obtained by rotating the stretch tensor Utw of the first twin variant, Eq. (9), by ±60◦ about the [0001]-axis. It is stressed that

the stretch tensors describe the overall deformation of the crystal lattice, but locally the deformation is accompanied by atomic
shuffling, as in the case of the usual shear deformation (Christian and Mahajan, 1995).

Remark 2.1. The two descriptions of the kinematics of deformation twinning (Fin = F(𝑖)tw or Fin = Utw) are equivalent in the
harp-interface formulation, as discussed above. However, they are no longer equivalent when the twin boundary is treated as a
iffuse interface, see Remark 2.5 in Section 2.4.

emark 2.2. As already stated, the kinematics described above corresponds to stress-free conditions. In the general case of non-zero
tresses, within the twin we have

F = FeUtw = F∗eF
(𝑖)
tw, Fe = F∗eR

(𝑖)
tw, (10)

here Fe and F∗e are the elastic parts of the deformation gradient that correspond to the two kinematics descriptions. The two local
ntermediate configurations defined by Fin = F(𝑖)tw and Fin = Utw are clearly different, as they differ by a rigid-body rotation through
(𝑖)
tw. However, upon adequate formulation of the elastic strain energy of the twin, including an adequate rotation of the elastic moduli

ensor of the twin, the mechanical response of the twin can be shown to be invariant with respect to the choice of the intermediate
onfiguration. This, in particular, implies that the thermodynamic driving force for propagation of an arbitrarily-oriented sharp
nterface separating the matrix and the twin is also invariant. The two kinematic descriptions of twinning are thus fully equivalent
lso in the general case of non-zero stresses. It is emphasized again that this only holds in the sharp-interface formulation, but not
n the diffuse-interface formulation, as discussed in Section 2.4 and illustrated in Section 5.2.

emark 2.3. The two twinning systems corresponding to one twin deformation variant can be found by solving the following
ompatibility condition,

QUtw − I = c⊗ n, (11)

n which the stretch Utw is given and unknown are the rotation Q and vectors c and n. Eq. (11) expresses the condition of
isplacement continuity along a planar interface of the normal n in stress-free conditions, i.e., a rank-one connection between the
eformation gradient in the twin (QUtw) and in the matrix (I), as in the classical crystallographic theory of martensite (Bhattacharya,
003). Since the middle eigenvalue of Utw is equal to one (𝜆2 = 1), Eq. (11) has exactly two solutions that can be found using
roposition 4 of Ball and James (1987), see also Bhattacharya (2003). The two solutions satisfy n = m(𝑖), c = 𝛾twa(𝑖) and Q = R(𝑖)

tw for
= 1, 2, see Eq. (2). Note that the compatibility condition (11) can also be formulated in terms of the twinning shear F(𝑖)tw. Taking,

or instance, F(1)tw with m(1), a(1) and 𝛾tw given, the compatibility condition reads

Q
(

I + 𝛾twa(1) ⊗m(1)) − I = c⊗ n. (12)

his equation also has two solutions. One solution is trivial (Q = I, n = m(1), c = 𝛾twa(1)) and the second solution gives
=

(

R(2)
tw
)2 = R−2

tw , n = m(2) and c = 𝛾twa(2), so that the second solution retrieves the other twinning shear, F(2)tw . In particular,
he following relationship holds: F(2)tw = R−2

tw F
(1)
tw .

.3. Twinning and crystal plasticity

Within a continuum sharp-interface framework, the matrix–twin interface has a zero thickness, and thus each material point
elongs either to matrix or to twin. Plastic deformation in the matrix (prior to twinning) is then described by the standard crystal
lasticity theory (Hill and Rice, 1972; Asaro, 1983), and the corresponding deformation gradient Fm is the only contribution to the
nelastic deformation gradient Fin,

Fin = Fm, ḞmF
−1
m =

𝑛𝑠
∑

𝑠=1
𝛾̇𝑠ms

𝑠
m ⊗ n𝑠m, (13)

here the unit vectors s𝑠m and n𝑠m denote, respectively, the slip direction and the slip-plane normal associated with the slip system 𝑠
ithin the matrix, 𝛾̇𝑠m is the corresponding slip rate, and 𝑛𝑠 denotes the number of slip systems.

Once a material point is transformed to a twin, which corresponds to a (zero-thickness) twin boundary passing through this point,
ts crystallographic lattice undergoes twinning deformation. As discussed in the previous subsection, the respective deformation
radient Ftw can be adopted in the form of either shear deformation, Ftw = F(𝑖)tw, or stretch, Ftw = Utw, see Eq. (10), the latter
pproach being advocated in this work. Henceforth, the prior plastic deformation in the matrix is frozen (i.e., Ḟm = 0) and further
lastic deformation is realized by the plastic slip in the twin. The total inelastic deformation gradient Fin takes then the following
orm (Levitas, 1998; Homayonifar and Mosler, 2012),

Fin = FpFtwFm, ḞpF
−1
p =

𝑛𝑠
∑

𝛾̇𝑠ps
𝑠
p ⊗ n𝑠p, Ftw = Utw, Ḟm = 0, (14)
5

𝑠=1
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Fig. 2. Rotations relating slip systems in the matrix and in the twin: (a) the classical approach, i.e., rotation by 180◦ about m(2), (b) rotation by 180◦ about
t = t(2), (c) rotation by −90◦ about v.

Fig. 3. Illustration of the isoclinic configuration in the case of twinning transformation.

where the slip system in the twin is specified by s𝑠p and n𝑠p, and 𝛾̇𝑠p is the corresponding slip rate (subscript ‘p’ stands for ‘product’).
Vectors s𝑠p and n𝑠p are obtained by applying to, respectively, s𝑠m and n𝑠m a 180◦ rotation about the vector t = t(𝑖) that is oriented

at 45◦ with respect to the basal plane,

s𝑠p = Rm→ps
𝑠
m, n𝑠p = Rm→pn

𝑠
m, Rm→p = R(𝜋, t) = 2t⊗ t − I, (15)

where Rm→p is the corresponding rotation tensor, t(1) =
√

2
2 (−1, 1, 0)C and t(2) =

√

2
2 (1, 1, 0)C. Note that the rotation by 180◦ about

the vector t, as specified by the tensor Rm→p, transforms the hexagonal unit cell of the matrix to that of the twin, see the sketch
in Fig. 2(b). Moreover, as illustrated in Fig. 2(c), the two unit cells are also related by a ±90◦ rotation about vector v = (0, 0, 1)C,
so that the corresponding rotation tensor R̃m→p = R(±𝜋∕2,v) also defines an equivalent set of slip systems in the twin. The related
possible difference in the sign of the vectors specifying the slip systems (e.g., compare s𝑠p in Fig. 2(b) and s̃𝑠p in Fig. 2(c)) has no
influence, since it can be accommodated by a change in the sign of the slip rate 𝛾̇𝑠p.

The kinematics specified by the multiplicative decomposition of Fin in Eq. (14)1 is consistent with the classical concept of isoclinic
intermediate local configuration, as illustrated in Fig. 3. The lattice is not distorted by the plastic slip in the matrix (prior to twinning)
and in the twin (after twinning) so that the vectors specifying the slip systems do not change in the course of plastic deformation.
During the twinning transformation, the lattice of the matrix is transformed to that of the twin through the twinning stretch Utw,
and this is accompanied by the transformation of the slip systems, see Eq. (15) and the succeeding discussion. It is stressed that the
rigid-body rotation is contained in the elastic deformation gradient, Fe = ReUe, which is a part of the solution of the problem.

In the discussion above, it has been tacitly assumed that only one twin deformation variant may appear at a given material
point. This is a viable assumption in the sharp-interface description, but not necessarily in the diffuse-interface description which
is discussed in the next subsection.

Remark 2.4. In the classical approach, in which Ftw = F(𝑖)tw is used in Eq. (14), vectors ŝ𝑠p and n̂𝑠p defining the slip systems in the
twin are obtained by rotating those in the matrix through a 180◦ rotation about the twin plane normal m(𝑖), see Fig. 2(a),

ŝ𝑠p = R̂m→ps𝑠m, n̂𝑠p = R̂m→pn𝑠m, R̂m→p = R(𝜋,m(𝑖)). (16)

If the two conjugate twinning systems are treated as independent, the respective slip systems should be defined separately for each
twinning system. Note that the two descriptions, i.e., the slip systems in the twin defined by Eq. (15) and by Eq. (16), are in fact
equivalent. Indeed, the following identity holds,

R(𝜋,m(𝑖)) = R(𝑖)R(𝜋, t(𝑖)), (17)
6

tw



Journal of the Mechanics and Physics of Solids 163 (2022) 104855M. Rezaee-Hajidehi et al.

R

w
s

2

i
i
i

N
t
d

t
i

H
t
i

i
2
w
I
a
t
s
k
s
d
o

R
o

w
e
c
b
Q
r
i
w
c
a
m
l
m

which, in particular, implies that the slip systems (s𝑠p,n𝑠p) and (ŝ𝑠p, n̂
𝑠
p) are rotated with respect to each other by the rotation tensor

(𝑖)
tw, i.e., ŝ𝑠p = R(𝑖)

tws𝑠p and n̂𝑠p = R(𝑖)
twn𝑠p. Then, in analogy to Eq. (10), we have

F = FeFpUtwFm = F∗eF
∗
pF

(𝑖)
twFm, Fe = F∗eR

(𝑖)
tw, Fp =

(

R(𝑖)
tw
)TF∗pR

(𝑖)
tw, (18)

here F∗p is defined in terms of (ŝ𝑠p, n̂
𝑠
p), as in Eq. (14). It can also be shown that the resolved shear stresses on the individual slip

ystems in the twin (to be discussed in Section 3.2) are identical in the two formulations.

.4. Diffuse-interface description

In the phase-field method, the twinning plane is treated as a diffuse interface. A continuous order parameter 𝜂, where 0 ≤ 𝜂 ≤ 1,
s thus introduced such that 𝜂 = 0 represents the matrix, 𝜂 = 1 represents the twin, and 0 < 𝜂 < 1 represents a diffuse matrix–twin
nterface. The strain due to twinning is then continuously interpolated within the diffuse interface. In the case of twinning only,
.e., when Fin = Ftw, the following logarithmic mixing rule (Tůma et al., 2016) can be adopted,

Ftw(𝜂) = exp(𝜂 logUtw), ḞtwF
−1
tw = 𝜂̇ logUtw. (19)

ote that the logarithmic mixing rule (19) guarantees that twinning deformation is incompressible, det Ftw = 1, for 0 ≤ 𝜂 ≤ 1, while
his property does not hold for the popular linear mixing rule, Ftw = (1− 𝜂)I+ 𝜂Utw (Levitas and Preston, 2005), see also the related
iscussion on the interface stresses (Basak and Levitas, 2017).

Consider now the general case of twinning and plasticity. Since the diffuse matrix–twin interface is treated as a mixture of the
wo ‘‘phases’’, the inelastic deformation gradient Fin must comprise the contributions of plastic deformation both in the matrix and
n the twin, for instance, in the following form,

Lin = ḞinF
−1
in = (1 − 𝜂)

𝑛s
∑

𝑠=1
𝛾̇𝑠ms

𝑠
m ⊗ n𝑠m + 𝜂

𝑛s
∑

𝑠=1
𝛾̇𝑠ps

𝑠
p ⊗ n𝑠p + 𝜂̇ logUtw. (20)

ere, the individual plastic-slip contributions, cf. Eqs. (13) and (14), are weighted by the respective fractions taken linear in 𝜂, while
he last term is the contribution of twinning in the form resulting from the logarithmic mixing rule (19). Clearly, the flow rule (20)
s consistent with those in Eqs. (13) and (14) for 𝜂 = 0 and 𝜂 = 1, respectively.

Formulae for the inelastic velocity gradient Lin resembling that in Eq. (20) (or, analogously, for the total plastic strain rate
n the small-strain theory) can be found in several phase-field models of twinning and plasticity (Kondo et al., 2014; Liu et al.,
018b; Grilli et al., 2020; Hu et al., 2021; Ma and Sun, 2021), as well as in numerous meso-scale crystal plasticity formulations in
hich twinning is treated as a pseudo-slip system (e.g., Kalidindi, 1998; Staroselsky and Anand, 2003; Kowalczyk-Gajewska, 2010;

zadbakhsh et al., 2011; Zhang and Joshi, 2012; Chang and Kochmann, 2015). The difference with respect to all these formulations,
nd the distinctive feature of the present model, is the form of the twinning contribution in Eq. (20), which is a consequence of
reating the twinning as a displacive transformation characterized by the stretch Utw, as discussed in Sections 2.2 and 2.3. It is also
tressed that the slip systems in the twin are here defined by Eq. (15), so that the twinning rotation R(𝑖)

tw is not included in the
inematics of Fin, as illustrated in Figs. 2 and 3. All this allows us to use a single twin deformation variant with the corresponding
ingle set of slip systems to consistently represent two conjugate twinning systems, each involving the respective set of slip systems
efined by Eq. (16). Importantly, only one order parameter is here sufficient to represent two conjugate slip systems. Generalization
f Eq. (20) to the case of three twin deformation variants is immediate and is omitted here for brevity.

emark 2.5. A popular choice for the mixing rule, as an alternative to Eq. (19), is the rank-one mixing rule defined in terms of
ne of the twinning systems (here, 𝑖 = 1 to fix the attention),

Ftw(𝜂) = I + 𝜂𝛾twa
(1) ⊗m(1), (21)

hich has been employed in phase-field models for twinning only (Clayton and Knap, 2011) and for twinning with plasticity (Kondo
t al., 2014; Liu et al., 2018b; Ma and Sun, 2021; Hu et al., 2021). By construction, the rank-one mixing rule (21) ensures a
ompatible planar diffuse matrix–twin interface with the normal m(1) for all 0 ≤ 𝜂 ≤ 1. However, for 0 < 𝜂 < 1, Ftw(𝜂) defined
y Eq. (21) does not satisfy the compatibility condition for the matrix–twin interface with the normal m(2) (i.e., the condition
Ftw(𝜂) − I = c ⊗ m(2), cf. Eq. (12), is not satisfied for any Q and c), and thus elastic strains are needed to accommodate the

elated incompatibility. As a result, formation of the two interfaces may not be energetically equivalent, see the related discussion
n Section 5.2. A possible workaround is to use two order parameters, one for each twinning system, which is, however, associated
ith an additional computational cost and would be particularly pronounced in the 3D setting with 6 twinning systems in HCP

rystals and 12 twinning systems in FCC and BBC crystals. In the case of the logarithmic mixing rule (19), the two twinning systems
re treated equivalently. However, none of the corresponding diffuse interfaces is perfectly compatible so that the incompatibility
ust be accommodated by elastic strains. As shown in Section 5.2, in terms of incompatibility and overall energy of interfaces, the

ogarithmic mixing rule (19) can be considered an intermediate case between the two twinning systems treated by the rank-one
7

ixing rule (21).
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Remark 2.6. It has been observed in experiments that interaction of two conjugate twins leads to formation of a twin–twin
oundary which is a low-angle tilt boundary (Yu et al., 2014). One of the consequences of using a single order parameter to represent
wo conjugate twins is that such a twin–twin boundary is not represented by a genuine interface once the matrix–twin interfaces
f the two conjugate twins annihilate and the order parameter becomes thus constant within the single ‘‘twin phase’’ formed by
he two twins. The results reported in Section 5.5, see Fig. 20 and the corresponding discussion, show that the twin–twin boundary
s then represented by a steep gradient of the lattice orientation angle, which can be interpreted as a low-angle tilt boundary in a
iffuse form, consistent with the phase-field framework. However, such a boundary cannot be controlled in terms of its energy and
obility, which is a limitation of the present approach.

emark 2.7. The proposed stretch-based kinematics treats the two conjugate twinning systems equally, as discussed in
Remark 2.5. Accordingly, this approach is particularly suitable for those twinning modes in which the conjugate twinning systems
are crystallographically equivalent, in particular, for the {101̄2}⟨1̄011⟩ twinning mode in HCP crystals (studied in detail in this
paper) and also for the {111}⟨112̄⟩ twinning mode in FCC crystals and {112}⟨1̄1̄1⟩ twinning mode in BCC crystals that are briefly
commented in Appendix A. When the conjugate twining systems are not crystallographically equivalent, both in high- and low-
symmetry crystals, they may be characterized by different interfacial energies and interface mobilities, and this should be accounted
for in the corresponding phase-field description.

Remark 2.8. Eq. (20) is not the only option to define Fin in the diffuse-interface framework. In principle, the multiplicative
decomposition (14)1 can be used directly, provided that the components Fm, Ftw and Fp are integrated individually. This is
particularly simple in the case of single slip, i.e., when only one slip system is considered in the matrix and in the twin, so that Fin
can be written in an explicit form,

Fin(𝜂, 𝛾̃m, 𝛾̃p) = Fp(𝛾̃p)Ftw(𝜂)Fm(𝛾̃m). (22)

Here, Ftw is defined by Eq. (19)1, while the plastic deformation in the matrix, described by Fm, is defined in terms of the effective
slip 𝛾̃m on slip system (sm,nm), and likewise Fp in the twin is defined in terms of 𝛾̃p and (sp,np),

Fm(𝛾̃m) = I + 𝛾̃msm ⊗ nm, Fp(𝛾̃p) = I + 𝛾̃psp ⊗ np, (23)

where the effective slips are governed by

̇̃𝛾m = (1 − 𝜂)𝛾̇m, ̇̃𝛾p = 𝜂𝛾̇p. (24)

A brief discussion regarding the kinematic assumption specified by Eqs. (22)–(24) is provided in Section 5.3.

3. Variational formulation of the model

In this section, a variational formulation of the phase-field model of deformation twinning is developed by following the approach
of Hildebrand and Miehe (2012), see also Tůma et al. (2016, 2018). The approach is here extended to include crystal plasticity
as an additional mechanism of inelastic deformation, and a micromorphic regularization is employed to facilitate finite-element
implementation of the model (Forest, 2009; Rezaee-Hajidehi and Stupkiewicz, 2021).

3.1. Free energy function and micromorphic regularization

The elastic strain energy 𝜓e, the stored plastic energy 𝜓h, and the (interfacial) energy of twin boundaries 𝜓𝛤 constitute the
components of the (isothermal) total free energy 𝜓 , i.e.,

𝜓(F,Fin, 𝛾̄ , 𝜂,∇𝜂) = 𝜓e(Fe, 𝜂) + 𝜓h(𝛾̄) + 𝜓𝛤 (𝜂,∇𝜂) + 𝐼[0,1](𝜂), (25)

where Fe = FF−1in , and 𝛾̄ is the accumulated plastic slip with the following evolution law,

̇̄𝛾 = (1 − 𝜂)
𝑛s
∑

𝑠=1
|𝛾̇𝑠m| + 𝜂

𝑛s
∑

𝑠=1
|𝛾̇𝑠p|. (26)

In order to account for the inequality constraints on the order parameter, 0 ≤ 𝜂 ≤ 1, the indicator function 𝐼[0,1] is included in
Eq. (25) and is expressed as

𝐼[0,1](𝜂) =

{

0 if 0 ≤ 𝜂 ≤ 1,
+∞ otherwise.

(27)

Next, we specify the individual components of the total free energy. The elastic strain energy 𝜓e is expressed as

𝜓e(Fe, 𝜂) =
1
2
He ⋅ L(𝜂)He, He = 1

2
log(Ce), Ce = FT

eFe, (28)

where He is the logarithmic elastic strain, and L(𝜂) = (1 − 𝜂)Lm + 𝜂Lp is the fourth-order elastic stiffness tensor. Here, Lm is the
elastic stiffness tensor of the matrix (transversely isotropic in the case of an HCP crystal) and L is that of the twin, which can be
8
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obtained by applying the rotation Rm→p to Lm (i.e., Lp = Rm→p◦Lm), see Section 2.3. The Hencky-type anisotropic elastic strain
nergy (28) behaves well in a much wider range of strains than the popular St. Venant–Kirchhoff energy (Rezaee-Hajidehi et al.,
021). However, its practical application, specifically calculation of the stress and the tangent operator, requires computation of
he first and second derivatives of the tensor logarithm, which is not straightforward. The closed-form representation of the matrix
ogarithm (Hudobivnik and Korelc, 2016) is used here for this purpose, see Section 4.

The stored plastic energy 𝜓h that accounts for the hardening behavior is written as

𝜓h(𝛾̄) =
1
2
𝐻𝛾̄2, (29)

where 𝐻 is the hardening parameter. This form of 𝜓h corresponds to a simple linear (isotropic) hardening which is adopted here
for simplicity.

The energy of the twin boundaries 𝜓𝛤 , assumed here isotropic, is formulated in terms of the order parameter 𝜂 and its gradient
∇𝜂, i.e.,

𝜓𝛤 (𝜂,∇𝜂) = 𝛥𝑓𝜂(1 − 𝜂) + 𝜅∇𝜂 ⋅ ∇𝜂, (30)

where the parameters 𝛥𝑓 and 𝜅 characterize, respectively, the height of the energy barrier for the formation of the twin interface
and the gradient energy associated with the twin interface and are defined as

𝛥𝑓 = 4𝛤
𝜋𝓁

, 𝜅 = 4𝛤𝓁
𝜋

, (31)

here 𝛤 is the interfacial energy density (per unit area) and 𝓁 is the interface thickness parameter. In the case of the so-called
double-obstacle potential specified by Eq. (30), the theoretical interface thickness is equal to 𝜋𝓁 (Steinbach, 2009; Tůma et al.,
2018).

We now reformulate the total free energy density in the framework of the micromorphic approach. This general approach (and
its name) is adopted after Forest (2009), and its application to the phase-field method follows Rezaee-Hajidehi and Stupkiewicz
(2021). As will be shown in the sequel, the micromorphic regularization facilitates the finite-element implementation of the model.
In this approach, a new variable 𝜒 is introduced into the model and is enforced to be close to the order parameter 𝜂 through a
penalty term. The new form of the total free energy, 𝜓𝜇 , now reads

𝜓𝜇(F,Fin, 𝛾̄ , 𝜂, 𝜒,∇𝜒) = 𝜓e(Fe, 𝜂) + 𝜓h(𝛾̄) + 𝜓𝛤 (𝜂,∇𝜒) + 𝜓pen(𝜂, 𝜒) + 𝐼[0,1](𝜂), (32)

where the term 𝜓pen penalizes the discrepancy between 𝜂 and 𝜒 and is expressed as

𝜓pen(𝜂, 𝜒) =
1
2
𝜖𝜇(𝜂 − 𝜒)2, (33)

with 𝜖𝜇 as the micromorphic penalty parameter. According to Eq. (32), upon the micromorphic regularization, the interfacial energy
of twin boundaries, 𝜓𝛤 , is expressed in terms of the gradient of the micromorphic variable ∇𝜒 instead of ∇𝜂, i.e., 𝜓𝛤 (𝜂,∇𝜒) =
𝑓𝜂(1 − 𝜂) + 𝜅∇𝜒 ⋅ ∇𝜒 .

The indicator function 𝐼[0,1] imposing the bound constraints on 𝜂 in Eq. (32) is not differentiable. In the following derivations,
e approximate 𝐼[0,1] by a regularized indicator function 𝐼𝜀[0,1] that is convex and continuously differentiable and depends on a

egularization parameter 𝜀 such that, in the limit 𝜀→ ∞, the regularized indicator function 𝐼𝜀[0,1] converges to 𝐼[0,1]. This replacement
s made in order to simplify the subsequent derivations only, as the related aspects are not crucial here. Note, however, that in
he actual finite-element implementation of the model, the inequality constraints are imposed exactly by using the augmented
agrangian method, see the discussion in Section 4.

.2. Formulation of the rate-problem

Considering that the free energy 𝜓𝜇 depends on F and Fin only through Fe = FF−1in in 𝜓e, cf. Eq. (32), the rate of change of 𝜓𝜇
an be expressed as

𝜓̇𝜇 =
𝜕𝜓e
𝜕Fe

⋅ Ḟe +
𝜕𝜓𝜇
𝜕𝛾̄

̇̄𝛾 +
𝜕𝜓𝜇
𝜕𝜂

𝜂̇ +
𝜕𝜓𝜇
𝜕𝜒

𝜒̇ +
𝜕𝜓𝜇
𝜕∇𝜒

⋅ ∇𝜒̇ , Ḟe = ḞF−1in − FeLin. (34)

he first term in Eq. (34)1 can be transformed, in the standard manner, to
𝜕𝜓e
𝜕Fe

⋅ Ḟe =
(

PFT
in

)

⋅ Ḟe = P ⋅ Ḟ −M ⋅ Lin, (35)

where P = 𝜕𝜓𝜇∕𝜕F = 𝐽𝝈F−T is the first Piola–Kirchhoff stress tensor, M = FT
ePF

T
in = 𝐽FT

e𝝈F
−T
e is the (nonsymmetric) Mandel stress,

is the Cauchy stress and 𝐽 = det F.
Eq. (34) together with the evolution rules for Fin, Eq. (20), and for 𝛾̄, Eq. (26), indicate the dependence of 𝜓̇𝜇 on the rate quantities

Ḟ, 𝜸̇, 𝜂̇, 𝜒̇ ,∇𝜒̇), where the vector 𝜸̇ = {𝜸̇m, 𝜸̇p} gathers the slip rates associated with the matrix and the twin, 𝜸̇m = {𝛾̇1m, 𝛾̇
2
m,… , 𝛾̇𝑛𝑠m }

nd 𝜸̇p = {𝛾̇1p , 𝛾̇
2
p ,… , 𝛾̇𝑛𝑠p }. To shorten the notation, whenever it is more convenient, the rate quantities (Ḟ, 𝜸̇, 𝜂̇, 𝜒̇ ,∇𝜒̇) are collectively

eferred to as ḣ,
̇ ̇ ̇
9

h = {F, 𝜸, 𝜂̇, 𝜒̇ ,∇𝜒̇}, (36)
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so that 𝜓̇𝜇(Ḟ, 𝜸̇, 𝜂̇, 𝜒̇ ,∇𝜒̇) and 𝜓̇𝜇(ḣ) can be used interchangeably. Here, the dependence of 𝜓̇𝜇 on the state variables (F,Fin, 𝛾̄ , 𝜂, 𝜒,∇𝜒)
s not indicated.

Upon using the evolution laws (20) and (26), the free energy rate 𝜓̇𝜇 can be expressed as

𝜓̇𝜇(ḣ) = P ⋅ Ḟ − (1 − 𝜂)
𝑛𝑠
∑

𝑠=1

(

𝜏𝑠m𝛾̇
𝑠
m + 𝑞|𝛾̇𝑠m|

)

− 𝜂
𝑛𝑠
∑

𝑠=1

(

𝜏𝑠p𝛾̇
𝑠
p + 𝑞|𝛾̇𝑠p|

)

− (𝜏∗tw + 𝑓𝜂)𝜂̇ − 𝑓𝜒 𝜒̇ − f∇𝜒 ⋅ ∇𝜒̇ , (37)

here the thermodynamic driving forces conjugate to 𝛾̄, 𝜂, 𝜒 and ∇𝜒 are expressed, respectively, as

𝑞 = −
𝜕𝜓𝜇
𝜕𝛾̄

, 𝑓𝜂 = −
𝜕𝜓𝜇
𝜕𝜂

, 𝑓𝜒 = −
𝜕𝜓𝜇
𝜕𝜒

, f∇𝜒 = −
𝜕𝜓𝜇
𝜕∇𝜒

, (38)

nd the resolved shear stresses 𝜏𝑠m and 𝜏𝑠p,

𝜏𝑠m = M ⋅ (s𝑠m ⊗ n𝑠m), 𝜏𝑠p = M ⋅ (s𝑠p ⊗ n𝑠p), (39)

re defined in terms of the Mandel stress M, in agreement with the classical finite-strain crystal plasticity theory (Hill and Rice,
972; Asaro, 1983). Finally, the stress-induced driving force for twinning has the following form,

𝜏∗tw = M ⋅ logUtw, (40)

hat results from the kinematic assumption in Eq. (20), and 𝜏∗tw + 𝑓𝜂 is the total driving force for twinning. Considering that logUtw
s traceless, the driving force 𝜏∗tw is pressure insensitive, as expected. The star in the superscript is introduced to distinguish 𝜏∗tw,
hich depends on the magnitude of twinning deformation, from the resolved shear stresses 𝜏𝑠m and 𝜏𝑠p.

In order to arrive at a global variational formulation of the model, let us introduce the functional of the total potential energy,
= 𝛹 + 𝛺, where 𝛹 = ∫𝐵 𝜓𝜇d𝑉 is the total free energy and 𝛺 is the potential of external loads (assumed conservative), which is

eft unspecified. The rate of the potential energy takes thus the following form,

̇[𝝋̇, 𝜸̇, 𝜂̇, 𝜒̇] = 𝛹̇ [𝝋̇, 𝜸̇, 𝜂̇, 𝜒̇] + 𝛺̇[𝝋̇], 𝛹̇ [𝝋̇, 𝜸̇, 𝜂̇, 𝜒̇] = ∫𝐵
𝜓̇𝜇(ḣ)d𝑉 , (41)

here 𝐵 denotes the domain occupied by the body in the reference configuration. In the present notation, the arguments of the
unctions are placed inside round brackets, while the arguments of the functionals, i.e., the functions, are placed inside square
rackets. Next, the global rate-potential is defined,

𝛱[𝝋̇, 𝜸̇, 𝜂̇, 𝜒̇] = ̇[𝝋̇, 𝜸̇, 𝜂̇, 𝜒̇] +[𝜸̇, 𝜂̇], [𝜸̇, 𝜂̇] = ∫𝐵
𝐷(𝜸̇, 𝜂̇)d𝑉 , (42)

here 𝐷 is the local dissipation potential that contains contributions from plastic slip (within the matrix and the twin) and twinning,

𝐷(𝜸̇, 𝜂̇) = 𝐷m(𝜸̇m) +𝐷p(𝜸̇p) +𝐷tw(𝜂̇). (43)

ach dissipation contribution in Eq. (43) consists of rate-independent and viscous parts. The plastic slip contributions, 𝐷m and 𝐷p,
re defined as

𝐷m(𝜸̇m) = (1 − 𝜂)
𝑛𝑠
∑

𝑠=1
𝜏c,𝑠

m

(

|𝛾̇𝑠m| +
(𝛾̇𝑠m)2

2𝛾̇0

)

, 𝐷p(𝜸̇p) = 𝜂
𝑛𝑠
∑

𝑠=1
𝜏c,𝑠

p

(

|𝛾̇𝑠p| +
(𝛾̇𝑠p)

2

2𝛾̇0

)

, (44)

where 𝜏c,𝑠
m and 𝜏c,𝑠

p denote the critical resolved shear stresses of individual slip systems, respectively, in the matrix and in the twin, and
characterize the respective rate-independent thresholds for the plastic slip. The viscous (rate-dependent) contribution is additionally
characterized by the reference slip rate 𝛾̇0. Note that here, for simplicity, an identical reference slip rate 𝛾̇0 is assumed for all the
slip systems in the matrix and in the twin, while in a more general setting, 𝛾̇0 may vary from one slip system to another.

The twinning contribution to dissipation, 𝐷tw, is specified by postulating the following form of the dissipation potential expressed
in terms of 𝑣n, the propagation speed of a smooth sharp twin interface (in the direction normal to the interface),

𝐷̂tw(𝑣n) = 𝜏c
tw𝛾tw

(

|𝑣n| +
𝑣2n
2𝑣0

)

, (45)

where 𝜏c
tw is the critical resolved shear stress for twinning, and 𝑣0 is the reference interface propagation speed. We refer here to the

general notion of a sharp interface, assumed smooth at the scale of interest, and 𝐷̂tw is the density per unit area of the interface in
the reference configuration. Considering the theoretical profile of the order parameter 𝜂 across a propagating diffuse interface, the
issipation potential 𝐷̂tw(𝑣n) can be equivalently formulated in terms of 𝜂̇ (Tůma et al., 2018),

𝐷tw(𝜂̇) = 𝜏c
tw𝛾tw

(

|𝜂̇| +
𝜂̇2

2𝜂̇0

)

, 𝜂̇0 =
𝜋𝑣0
8𝓁

, (46)

here the reference rate 𝜂̇0 depends on the reference interface propagation speed 𝑣0 and on 𝓁, the interface thickness parameter,
ee Eqs. (30) and (31). Associated with a diffuse interface, 𝐷tw is the density per unit volume in the reference configuration such
hat the integral of 𝐷 over the interface thickness is equal to 𝐷̂ .
10
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The complete evolution problem is now formulated as the following global minimization problem (Hildebrand and Miehe, 2012;
ůma et al., 2016, 2018),

{𝝋̇, 𝜸̇, 𝜂̇, 𝜒̇} = arg min
𝝋̇,𝜸̇,𝜂̇,𝜒̇

𝛱[𝝋̇, 𝜸̇, 𝜂̇, 𝜒̇]. (47)

t is shown in Section 3.3 that the necessary conditions for the minimum of the rate-potential 𝛱 deliver the governing equations of
he evolution problem.

Since the free energy function 𝜓𝜇 and the dissipation potential 𝐷 do not depend on the gradients of 𝜸̇ and 𝜂̇ (the gradient of 𝜂̇
s not involved thanks to the micromorphic formulation), the minimization of 𝛱 with respect to 𝜸̇ and 𝜂̇ can be performed locally
t each material point. The local minimization problem is therefore formulated in the following form

{𝜸̇, 𝜂̇} = argmin
𝜸̇,𝜂̇

𝜋(Ḟ, 𝜸̇, 𝜂̇, 𝜒̇ ,∇𝜒̇), (48)

here 𝜋 is the local rate-potential,

𝜋(Ḟ, 𝜸̇, 𝜂̇, 𝜒̇ ,∇𝜒̇) = 𝜓̇𝜇(Ḟ, 𝜸̇, 𝜂̇, 𝜒̇ ,∇𝜒̇) +𝐷(𝜸̇, 𝜂̇). (49)

Accordingly, the reduced local potential 𝜋red can be introduced,

𝜋red(Ḟ, 𝜒̇ ,∇𝜒̇) = min
𝜸̇,𝜂̇

𝜋(Ḟ, 𝜸̇, 𝜂̇, 𝜒̇ ,∇𝜒̇), (50)

and thereby the global variables 𝝋̇ and 𝜒̇ are determined by minimizing the global reduced potential 𝛱 red,

{𝝋̇, 𝜒̇} = argmin
𝝋̇,𝜒̇

𝛱 red[𝝋̇, 𝜒̇], 𝛱 red[𝝋̇, 𝜒̇] = ∫𝐵
𝜋red(∇𝝋̇, 𝜒̇ ,∇𝜒̇)d𝑉 + 𝛺̇[𝜑̇]. (51)

3.3. Governing equations in explicit form

The local rate-potential 𝜋 is a convex function of 𝜸̇ and 𝜂̇, and it is non-smooth in view of the contributions of the rate-independent
dissipation, cf. Eqs. (44) and (46), and of the accumulated plastic slip 𝛾̄, cf. Eqs. (26) and (37). The necessary and sufficient conditions
for the minimum of 𝜋 with respect to 𝜸̇ and 𝜂̇ take thus the form of the following inclusions,

0 ∈ 𝜕𝜸̇𝜋(ḣ), 0 ∈ 𝜕𝜂̇𝜋(ḣ), (52)

where 𝜕𝜸̇𝜋 and 𝜕𝜂̇𝜋 denote the subdifferentials of 𝜋 (Rockafellar, 1970). To prove the convexity of 𝜋 = 𝜓̇𝜇 +𝐷 with respect to 𝜸̇ and
̇ we note that 𝜓̇𝜇 is a convex function of 𝛾̇𝑠m and 𝛾̇𝑠p (since −𝑞 = 𝐻𝛾̄ ≥ 0 and 0 ≤ 𝜂 ≤ 1) and it is linear in 𝜂̇, see Eq. (37), while 𝐷 is
obviously convex.

Inclusion (52)1 yields the evolution equation for the slip rates,

𝛾̇𝑠𝑘 = 𝛾̇0 sign(𝜏𝑠𝑘)
⟨|𝜏𝑠𝑘| − (𝜏c,𝑠

𝑘 +𝐻𝛾̄)⟩

𝜏c,𝑠
𝑘

, 𝑘 ∈ {m,p}, (53)

here the Macaulay bracket ⟨𝑥⟩ = 1
2 (|𝑥| + 𝑥) returns 𝑥 if 𝑥 is positive, and zero otherwise. Note that the identity sign(𝛾̇𝑠𝑘) = sign(𝜏𝑠𝑘)

has been taken into account in Eq. (53). It follows that the dissipation potentials 𝐷m and 𝐷p, Eq. (44), and likewise 𝐷tw in Eq. (46),
efine a Perzyna-type flow rule with a rate-independent threshold and plastic slip proportional to the overstress.

Similarly, the evolution law for the order parameter 𝜂 can be derived from the inclusion (52)2 in the following form,

𝜂̇ = 𝜂̇0 sign(𝜏∗tw + 𝑓𝜂)
⟨|𝜏∗tw + 𝑓𝜂| − 𝜏c

tw𝛾tw⟩
𝜏c

tw𝛾tw
, (54)

where

𝑓𝜂 = −
𝜕𝜓𝜇
𝜕𝜂

= −1
2
He ⋅ (Lp − Lm)He − 𝛥𝑓 (1 − 2𝜂) − 𝜖𝜇(𝜂 − 𝜒) − 𝜆, (55)

𝜆 = 𝜕𝐼𝜀[0,1]∕𝜕𝜂, and it can be shown that sign(𝜂̇) = sign(𝜏∗tw + 𝑓𝜂).
On the other hand, the condition of stationarity of the global potential 𝛱 red, Eq. (51), with respect to 𝝋̇,

0 = 𝛿𝝋̇𝛱
red[𝝋̇, 𝜒̇] = ∫𝐵

P ⋅ ∇𝛿𝝋̇d𝑉 − ∫𝜕𝐵𝑡
t∗ ⋅ 𝛿𝝋̇d𝑆 ∀ 𝛿𝝋̇, (56)

elivers the mechanical equilibrium equation in weak form, where 𝛿𝝋̇ denotes the kinematically admissible variation of 𝝋̇. To fix
ttention, the potential of the external loads in Eq. (56) has been assumed as 𝛺 = − ∫𝐵 t

∗ ⋅ 𝝋̇, where t∗ denotes the nominal traction
prescribed over the boundary 𝜕𝐵𝑡. Note that the stationarity condition 𝛿𝝋̇𝛱 red = 0 imposes the equilibrium condition on 𝝋 rather
than on 𝝋̇ since 𝛱 red is a linear functional of 𝝋̇ (Tůma et al., 2016).

Finally, stationarity of 𝛱 red with respect to 𝜒̇ is expressed as

0 = 𝛿𝜒̇𝛱
red[𝝋̇, 𝜒̇] =

(

𝜖𝜇(𝜒 − 𝜂)𝛿𝜒̇ + 𝜅∇𝜒 ⋅ ∇𝛿𝜒̇
)

d𝑉 ∀ 𝛿𝜒̇, (57)
11
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where 𝛿𝜒̇ denotes an admissible variation of 𝜒̇ . Eq. (57) is, in fact, a weak form of the following Helmholtz-type PDE,

𝜒 − 𝓁𝜇∇2𝜒 = 𝜂, 𝓁𝜇 =
√

𝜅
𝜖𝜇
, (58)

which emerges in a natural way as a result of the micromorphic regularization with 𝓁𝜇 as the corresponding characteristic
length-scale (Forest, 2009).

The above PDE can be accompanied by the usual boundary conditions that replace the corresponding boundary conditions
on the order parameter in a conventional (non-micromorphic) phase-field model. If a Dirichlet boundary condition, 𝜒 = 𝜒∗, or
a homogeneous Neumann boundary condition, ∇𝜒 ⋅ n = 0, or a periodic boundary condition is adopted on 𝜕𝐵, then the related
boundary contribution to the total potential energy  vanishes, as assumed in this paper, see Eq. (41). In the case of periodic
and homogeneous Neumann boundary conditions, one can show that ∫𝐵 𝜒 d𝑉 = ∫𝐵 𝜂 d𝑉 so that 𝜒 approximates 𝜂 not only locally
(through the penalty term 𝜓pen), but also globally. Periodic boundary conditions (on the boundary of the computational domain)
and homogeneous Neumann boundary conditions (on the grain boundaries) are used in the examples studied in Section 5.

Remark 3.1. It is stressed that the present model does not require any special treatment of twin nucleation. This is because the
order parameter 𝜂 is directly used in the logarithmic mixing rule, Eq. (19), rather than through a nonlinear (typically polynomial)
interpolation function. Accordingly, for 𝜂 = 0 (and for 𝜂 = 1), the evolution of 𝜂 is triggered once the transformation condition,
𝜏∗tw + 𝑓𝜂| − 𝜏c

tw𝛾tw > 0, is satisfied, see Eq. (54). This feature is distinct from the usual phase-field formulations (e.g., Clayton and
nap, 2011; Liu et al., 2018a,b; Hu et al., 2021; Ma and Sun, 2021) that employ a nonlinear interpolation function, the derivative
f which vanishes for 𝜂 = 0 and 1, and, as a result, the driving force for twinning vanishes at these points. This necessitates a
pecial treatment to trigger nucleation, such as a stochastic twin nucleation model applied at grain boundaries (Liu et al., 2018b),
angevin noise (Liu et al., 2018a), or introduction of local random fluctuations of the order parameter (Hu et al., 2021). Clearly, if
he initial state is homogeneous, or piecewise homogeneous, as in the examples studied in Sections 5.2–5.4, the present model would
redict a homogeneous evolution of 𝜂 in the entire domain. A twin nucleus is then introduced to trigger localized twinning, which
s a common practice in such idealized problems. However, no twin nucleus is introduced in the 10-grain problem in Section 5.5.
ikewise, twin transmission in the bi-crystal problem of Section 5.4 is triggered solely by the local stress inhomogeneity caused by
he primary twin impinging at the grain boundary.

.4. Time-integration scheme

The rate evolution problem described above is now discretized in time by using the backward Euler scheme. We denote the
urrent time instant by 𝑡𝑛+1 and the previous time instant by 𝑡𝑛, where 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡. The corresponding variables are thereby
abeled by the superscripts 𝑛+ 1 and 𝑛, respectively, with the latter considered to be known. The incremental form of the evolution
aw (20) is obtained by applying the volume-preserving exponential mapping (e.g. Miehe, 1996),

F𝑛+1in = exp(𝛥𝑡 L𝑛+1in )F𝑛in, (59)

here

𝛥𝑡 L𝑛+1in = (1 − 𝜂)
𝑛s
∑

𝑠=1
𝛥𝛾𝑠ms

𝑠
m ⊗ n𝑠m + 𝜂

𝑛s
∑

𝑠=1
𝛥𝛾𝑠ps

𝑠
p ⊗ n𝑠p + 𝛥𝜂 log(Utw), (60)

nd 𝛥𝛾𝑠m, 𝛥𝛾𝑠p and 𝛥𝜂 are the increments of the respective quantities.
We begin the formulation of the incremental minimization problem by rewriting the local minimization rate-problem, Eq. (48),

uch that the state-dependence on the order parameter 𝜂 is indicated explicitly (the reason for this treatment is explained later),

{𝜸̇, 𝜂̇} = argmin
𝜸̇,𝜂̇

𝜋(Ḟ, 𝜸̇, 𝜂̇, 𝜒̇ ,∇𝜒̇ ; 𝜂), (61)

here 𝜋 is here rewritten as

𝜋(Ḟ, 𝜸̇, 𝜂̇, 𝜒̇ ,∇𝜒̇ ; 𝜂) = 𝜓̇𝜇(Ḟ, 𝜸̇, 𝜂̇, 𝜒̇ ,∇𝜒̇ ; 𝜂) +𝐷(𝜸̇, 𝜂̇; 𝜂). (62)

At the current time instant 𝑡𝑛+1, the local rate potential 𝜋 in Eq. (62) is approximated by using the backward Euler scheme. In order
to make the notation more concise and consistent with the rate formulation in Section 3.2, a new vector 𝛥h is defined,

𝛥h = {F𝑛+1, 𝛥𝜸, 𝛥𝜂, 𝛥𝜒,∇(𝛥𝜒)}, (63)

where 𝛥𝜸 = {𝛥𝜸m, 𝛥𝜸p}. Note that the symbol 𝛥h (notice the 𝛥) has been exploited here since it collects all the quantities related
to the incremental formulation, while it does not merely represent the increments of all related quantities. Note also that F𝑛+1in does
not appear here as an independent variable, as it is explicitly defined by Eqs. (59)–(60).

The rate-potential 𝜋 is now approximated as

𝜋(ḣ; 𝜂)||
|𝑡=𝑡𝑛+1

≈ 1
𝛥𝑡
𝛥𝜋(𝛥h; 𝜂̃𝑛+1), (64)

here the incremental potential 𝛥𝜋 is defined as

𝛥𝜋(𝛥h; 𝜂̃𝑛+1) = 𝜓𝑛+1(𝛥h; 𝜂̃𝑛+1) − 𝜓𝑛 + 𝛥𝐷(𝛥𝜸, 𝛥𝜂; 𝜂̃𝑛+1), (65)
12
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𝜓𝑛+1𝜇 denotes the free energy at 𝑡𝑛+1 that is evaluated according to Eq. (32),

𝜓𝑛+1𝜇 (𝛥h; 𝜂̃𝑛+1) = 𝜓𝜇(F𝑛+1,F𝑛+1in , 𝛾̄𝑛+1, 𝜂𝑛+1, 𝜒𝑛+1,∇𝜒𝑛+1), (66)

nd the accumulated plastic slip at 𝑡𝑛+1 is integrated as, cf. Eq. (26),

𝛾̄𝑛+1 = 𝛾̄𝑛 + (1 − 𝜂̃𝑛+1)
𝑛𝑠
∑

𝑠=1
|𝛥𝛾𝑠m| + 𝜂̃𝑛+1

𝑛𝑠
∑

𝑠=1
|𝛥𝛾𝑠p|. (67)

Note that an independent variable 𝜂̃𝑛+1 has been introduced above to distinguish the dependence of 𝛥𝜋 on the current value of
= 𝜂̃𝑛+1 that results from the state-dependence of 𝜋 on 𝜂, as indicated in Eq. (62), from the dependence of 𝛥𝜋 on the current value
f 𝜂 = 𝜂𝑛+1 = 𝜂𝑛 + 𝛥𝜂 that results from the dependence of 𝜋 on 𝜂̇. This distinction is important to preserve the consistency of the
ncremental minimization problem introduced below, Eq. (72), with the original rate problem (61).

Upon applying the backward Euler scheme, the time-discrete dissipation potential 𝛥𝐷 ≈ 𝛥𝑡𝐷 is obtained as,

𝛥𝐷(𝛥𝜸, 𝛥𝜂; 𝜂̃𝑛+1) = 𝛥𝐷m(𝛥𝜸m; 𝜂̃𝑛+1) + 𝛥𝐷p(𝛥𝜸p; 𝜂̃𝑛+1) + 𝛥𝐷tw(𝛥𝜂), (68)

here the time-discrete dissipation contributions resulting from the respective rate forms, Eqs. (44) and (46), are expressed as

𝛥𝐷m(𝛥𝜸m; 𝜂̃𝑛+1) = (1 − 𝜂̃𝑛+1)
𝑛𝑠
∑

𝑠=1
𝜏c,𝑠

m

(

|𝛥𝛾𝑠m| +
(𝛥𝛾𝑠m)2

2𝛥𝑡𝛾̇0

)

, (69)

𝛥𝐷p(𝛥𝜸p; 𝜂̃𝑛+1) = 𝜂̃𝑛+1
𝑛𝑠
∑

𝑠=1
𝜏c,𝑠

p

(

|𝛥𝛾𝑠p| +
(𝛥𝛾𝑠p)

2

2𝛥𝑡𝛾̇0

)

, (70)

and

𝛥𝐷tw(𝛥𝜂) = 𝜏c
tw𝛾tw

(

|𝛥𝜂| +
𝛥𝜂2

2𝛥𝑡𝜂̇0

)

. (71)

Finally, the local incremental minimization problem is formulated as

{𝛥𝜸, 𝛥𝜂} = arg min
𝛥𝜸,𝛥𝜂

𝛥𝜋(F𝑛+1, 𝛥𝜸, 𝛥𝜂, 𝛥𝜒,∇(𝛥𝜒); 𝜂̃𝑛+1). (72)

t is stressed that the minimization problem (72) is not a standard optimization problem but rather a quasi-optimization problem.1
In the rate-problem (48), minimization is performed with respect to 𝜂̇ at fixed 𝜂. In a consistent manner, minimization in Eq. (72)
s performed with respect to 𝛥𝜂, but not with respect to 𝜂̃𝑛+1 which, however, coincides with 𝜂𝑛+1 and thus depends on 𝛥𝜂, but
he substitution 𝜂̃𝑛+1 = 𝜂𝑛+1 is to be made after establishing the necessary condition for the minimum of 𝛥𝜋 with respect to 𝛥𝜂. In
nalogy to the inclusions in Eq. (52), the time-discrete evolution equations for 𝛥𝜸 and 𝛥𝜂 result from the following inclusions,

0 ∈ 𝜕𝛥𝜸𝛥𝜋(𝛥h, 𝜂̃𝑛+1), 0 ∈ 𝜕𝛥𝜂𝛥𝜋(𝛥h, 𝜂̃𝑛+1). (73)

ote that the incremental potential 𝛥𝜋 is in general not convex in 𝛥𝜂, but it is convex if 𝛥𝑡 is sufficiently small (Tůma et al., 2018,
ppendix B), and the inclusion in Eq. (73)2 is to be understood in this sense. In practice, we have not encountered any problems
elated to non-convexity of 𝛥𝜋.

The rest of the procedure follows that of the rate-problem presented in Section 3.2. Specifically, a global incremental potential
s defined and is minimized with respect to the global fields (𝝋𝑛+1, 𝜒𝑛+1), see Section 3.3.

. Finite-element implementation

In this work, the finite-element method is employed for the spatial discretization of the governing equations. The problem at
and comprises two global unknown fields, namely the displacement u = 𝝋−X and the micromorphic variable 𝜒 . The computations
re limited to 2D plane-strain problems, see Section 5. Accordingly, the 8-noded elements with serendipity shape functions (with
he reduced 2 × 2 Gauss quadrature rule) are used to discretize the displacement field u, while the 4-noded elements with bi-linear
hape functions (with the standard 2 × 2 Gauss quadrature rule) are used for the micromorphic variable 𝜒 . Based on the results
f our supplementary analyses and also our prior modeling experiences in other contexts, this discretization scheme leads to more
fficient computations and more accurate results compared to other possibilities tested.

The local sub-problem, Eq. (72), is a non-smooth minimization problem to be solved at each Gauss point. The non-smoothness,
hich requires adequate handling in the finite-element implementation, arises from the rate-independent dissipation contributions,
qs. (69)–(71), from the inequality constraints on the twinning order parameter, Eq. (27), and from the absolute value function
n the definition of the accumulated plastic slip, Eq. (67). Following Stupkiewicz and Petryk (2013), the augmented Lagrangian

1 The quasi-optimization problem (72) can be formally written in the following form,

{𝛥𝜸∗ , 𝛥𝜂∗} = arg min
𝛥𝜸,𝛥𝜂

𝛥𝜋(F𝑛+1 , 𝛥𝜸, 𝛥𝜂, 𝛥𝜒,∇(𝛥𝜒); 𝜂𝑛 + 𝛥𝜂∗),

with (𝛥𝜸∗ , 𝛥𝜂∗) denoting the solution of the problem. Similar quasi-optimization problems emerge, for instance, in frictional contact problems (Alart and Curnier,
13

1991), see also Petryk (2020).
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Fig. 4. The setup of illustrative 2D problems: (a) the operative slip systems considered; (b) sketch of problem #1 and #2; (c) sketch of problem #3.

method is exploited here to replace the non-smooth minimization problem by an equivalent smooth saddle-point problem. The
corresponding Lagrange function is defined in terms of the primal unknowns (𝛥𝜸 = {𝛥𝜸m, 𝛥𝜸p} and 𝛥𝜂) and the respective Lagrange
multipliers. As the Lagrange function is continuously differentiable, the necessary condition for the saddle point is solved using the
Newton method. The details are omitted here.

The global system of equations resulting from the finite-element discretization is solved by means of the Newton method in a
monolithic scheme. Computer implementation has been done in AceGen (Korelc and Wriggers, 2016). AceGen is a code generation
tool that delivers automatic differentiation (AD) and advanced code simplification techniques. As a consequence, the derived finite-
element codes are highly efficient, and most importantly, an exact tangent matrix is achieved, which is essential to obtain an
optimum convergence of the Newton method. A closed-form representation of the matrix exponential and matrix logarithm is
available in AceGen (Korelc and Stupkiewicz, 2014; Hudobivnik and Korelc, 2016), which facilitates direct implementation of the
exponential mapping, Eq. (60), and the matrix logarithm in the logarithmic elastic strain, Eq. (28), including the respective first
and second derivatives.

Finite-element computations are done in AceFEM, a finite-element environment that is closely integrated with AceGen. A direct
linear solver (MKL PARDISO) is employed to solve the linear system at each iteration of the Newton method. All the computations
were conducted on a 12-core workstation equipped with an Intel i9-10920X CPU and 128 GB RAM.

5. Illustrative examples

In this section, four representative 2D plane-strain problems are studied to illustrate the features and capabilities of the proposed
model. The first study is aimed at illustrating the impact of the adopted kinematics of deformation twinning. The second and third
studies are intended to address, respectively, the twin evolution in a single crystal under combined tension–shear loading, and the
twin transmission across grain boundaries in a bi-crystal setup. In the final study, the nucleation and evolution of twins and the
interaction of twinning and plastic slip is investigated in a unit cell containing 10 grains.

5.1. Problem setup

In the numerical examples reported below, we assume that only one twin deformation variant, and thus only two conjugate
twinning systems, can be active. Accordingly, we consider a class of 2D plane-strain problems in the (1̄21̄0) plane which admits such
plane-strain deformation, see Fig. 1. To preserve plane-strain conditions, the slip systems must be adequately defined, as discussed
below.

In general, HCP metals have 30 slip systems, out of which basal (3), prismatic (3) and second-order ⟨𝑎 + 𝑐⟩ pyramidal (6) slip
systems are predominantly activated in magnesium according to the experimental observations, and thus must be considered in full
3D computations (Kelley and Hosford, 1968; Graff et al., 2007). In the present simplified 2D setting, we consider three equivalent
in-plane slip systems that admit plane-strain deformation. First, an equivalent basal slip system with the (0001) slip plane and
[1̄010] slip direction is considered that represents two (co-planar) crystallographic basal slip systems with the [2̄110] and [1̄1̄20]
slip directions, which are assumed to slip concurrently and by the same amount. Likewise, we consider two symmetric equivalent
pyramidal slip systems with the (101̄1) and (1̄011) slip planes, each representing two crystallographic co-planar ⟨𝑎 + 𝑐⟩ pyramidal
slip systems. The operative slip systems (one basal and two pyramidal, numbered respectively 1 to 3) are shown in Fig. 4(a), where
tan𝜙pyr = 2𝑐∕(

√

3𝑎) (and 𝜙pyr = 61.9◦ for Mg).
The following material and model parameters are adopted in all computations, unless explicitly mentioned otherwise. The

material parameters are typical for magnesium, which has the 𝑐∕𝑎 ratio of 1.624 and thus a twinning shear angle of 𝛾tw =
0.129 (Christian and Mahajan, 1995). The values of the critical resolved shear stresses (CRSS) for plastic slip and twinning in
14
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magnesium have been the subject of considerable debate and research for many years. Studies indicate that the CRSS values of
slip and twinning are influenced by many variables, including temperature, microstructural characteristics, deformation history,
etc. (Akhtar and Teghtsoonian, 1969; Barnett et al., 2006; Al-Samman and Gottstein, 2008; Chapuis and Driver, 2011; Robson
et al., 2013; Lynch et al., 2014; Wang et al., 2019; Liu et al., 2019; Li et al., 2021). It is often assumed that tensile twinning and
basal slip systems have comparable CRSS values, although sometimes the CRSS for basal slip is assumed visibly lower than that for
twinning. At the same time, the CRSS values for non-basal slip systems are usually larger by one order of magnitude. Accordingly, in
the present simulations, a CRSS value of 𝜏c

tw = 𝜏c,1
m = 𝜏c,1

p = 15MPa has been considered for tensile twinning and basal slip (in both
atrix and twin), while a CRSS value of 𝜏c,𝑖

m = 𝜏c,𝑖
p = 150MPa (𝑖 = 2, 3) has been considered for the pyramidal slip systems (in both

atrix and twin). The elastic constants 𝑐𝑖𝑗 of magnesium with an HCP crystal structure (having the transversely isotropic symmetry
ith five independent constants) are taken as 𝑐11 = 63.5GPa, 𝑐33 = 66.5GPa, 𝑐12 = 25.9GPa, 𝑐13 = 21.7GPa and 𝑐44 = 18.4GPa (Slutsky

and Garland, 1957). A hardening parameter of 𝐻 = 0.4 GPa and a reference plastic slip rate of 𝛾̇0 = 1 s−1 have been used. Moreover, a
suitable reference twin interface propagation speed 𝑣0 = 100nm/s has been adopted such that the viscous effects are not significant,
i.e., the viscous overstress is of the order of maximum 10% of the rate-independent threshold (perhaps except at the twin tip which
may propagate faster, but the related effects are localized and do not influence the overall response significantly). In general, both
̇ 0 and 𝑣0 have been selected such that the overall response is mostly governed by the rate-independent thresholds for slip and
twinning and shows a weak rate-dependence for the loading rates used in the computations.

The parameters related to the twin-boundary energy and micromorphic regularization are specified next. The interfacial energy
density 𝛤 = 0.15 J/m2 has been adopted, in line with the results of first-principles calculations and atomistic simulations (Wang
et al., 2010a; Pei et al., 2017, 2018). This value is of the same order as those adopted in a number of phase-field studies of twinning
in magnesium, e.g., 0.117 J/m2 (Clayton and Knap, 2011; Liu et al., 2018a) or 0.585 J/m2 (Ma and Sun, 2021). On the other
hand, in some other studies, excessively large values of interfacial energy have been used, e.g., 2.95 J/m2 (Hu et al., 2021) or even
14 J/m2 (Liu et al., 2018b), as can be reckoned from the values of 𝛥𝑓 and 𝜅 provided in these papers.

The interface thickness parameter of 𝓁 = 5nm has been calibrated based on two criteria. Firstly, we note that the matrix–twin
interfaces must be properly resolved by the finite-element mesh so that, in particular, an artificial increase of the twin-boundary
energy is inhibited, see Levitas and Javanbakht (2011) and Tůma et al. (2021) for the related discussion. Accordingly, the value
of 𝓁 sets an upper bound on the element size and, considering the overall computational cost, on the size of the computational
domain, and thus 𝓁 must be possibly large. Secondly, an excessively large value of 𝓁 leads to unduly diffuse interfaces, and thereby
spoils the spatial resolution and physical relevance of the simulated microstructure. Note that 𝓁 = 5nm results in the theoretical
interface thickness of 𝜋𝓁 ≈ 16nm (in the direction normal to the interface and under stress-free conditions). With the above two
parameters defined, the barrier and gradient energy coefficients are obtained as 𝛥𝑓 = 38MJ/m3 and 𝜅 = 0.95nJ/m, see Eq. (31).
Finally, the micromorphic penalty parameter has been set to 𝜖𝜇 = 5GPa, which ensures a sufficiently small deviation between the
local order parameter 𝜂 and the global micromorphic variable 𝜒 at no significant extra computational cost, see Rezaee-Hajidehi and
Stupkiewicz (2021) for a related study.

In all simulations, a rectangular computational domain is considered, which is discretized uniformly by a mesh of quadrilateral
elements. Periodic boundary conditions are imposed, i.e., the displacement fluctuations and the micromorphic variable 𝜒 are
assumed periodic in both horizontal and vertical directions (periodicity is enforced using Lagrange multipliers). A deformation-
controlled loading is then applied by prescribing a constant macroscopic velocity gradient tensor L̄, which is defined in terms of a
constant macroscopic (effective) strain rate 𝑑 and a deviatoric tensor 𝝎 that defines the loading path,

L̄ =

√

3
2
𝑑𝝎, 𝑑 =

√

2
3
D̄ ⋅ D̄, D̄ = 1

2

(

L̄ + L̄T) . (74)

Specifically, isochoric tension or combined isochoric tension–shear loading conditions are considered, thus the components of 𝝎 are
determined based on the loading angle 𝜙L,

𝝎 =
(

−cos𝜙L 2 sin𝜙L
0 cos𝜙L

)

, (75)

so that 𝜙L = 0 corresponds to tension along the 𝑥2-direction and 𝜙L = ±90◦ corresponds to simple shear.

5.2. Study #1: on the kinematics of deformation twinning

The objective of this study is to investigate the impact of the adopted kinematics of twinning on the evolution of the twin
boundaries at the early stage of the matrix–twin transformation. Specifically, the performance of the logarithmic mixing rule (19) is
compared to that of the rank-one mixing rule (21), see Remark 2.5. Since the main focus of this study is on the intrinsic evolution
of the twin boundaries, plastic slip has been excluded.

A sketch of the problem setup is depicted in Fig. 4(b). The size of the simulation domain is 𝑤 × ℎ = 533 × 500nm2, with the
width-to-height ratio of 1.07 as in the magnesium HCP unit cell (

√

3𝑎∕𝑐 = 1.07). The domain is discretized by the mesh with 42 600
elements (element size of 2.5 nm) leading to approximately 300 000 degrees of freedom. The initial lattice orientation of the matrix
is set such that the local [0001]-axis is aligned with the global 𝑥2-axis. A circular twin nucleus with the radius of 10 nm has been
placed at the center of the simulation domain. An isochoric tension (𝜙L = 0) along the 𝑥2-axis is applied at a constant macroscopic
train rate of 𝑑 = 0.1 s−1. In some cases, with the aim to break the symmetry and trigger a specific orientation of the twin, a small
hear deformation (the overall shear strain of 0.02%) is applied prior to tension.
15
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Fig. 5. The early-stage matrix–twin transformation predicted by models with different twinning kinematics: (a) logarithmic mixing rule (19), and (b) rank-one
mixing rule (21). The arrows represent the direction of the initial shear in the case of combined shear-then-tension loading. The snapshots in each row belong
to the same elongation.

Fig. 6. Detailed view of the three microstructures from the bottom row in Fig. 5(a) represented here by a high-resolution color scale of the lattice orientation
angle 𝜃lat (top) and by the order parameter 𝜂 (bottom).

The snapshots of the early-stage matrix–twin transformation are shown in Fig. 5. The twin microstructure is represented by the
spatial distribution of the lattice orientation angle 𝜃lat which is defined as the angle between the local [0001]-axis and the global
𝑥2-axis, measured in the current configuration. The advantage of this representation compared to the typical distribution of the
order parameter is that it brings more information. Indeed, lattice rotation is caused both by twinning and by plastic slip (present
in the subsequent examples), hence activity of both mechanisms can be visualized using 𝜃lat. Moreover, lattice orientation changes
gradually within the diffuse twin boundaries, hence the diffuseness of the interfaces is also visualized by 𝜃lat. To reflect the in-plane
two-fold symmetry of the HCP unit cell (in 2D), a 180◦-periodic color scale is used to depict 𝜃lat. The two representations are
compared in Fig. 6, where the three microstructures from the bottom row in Fig. 5(a) are shown using the lattice orientation angle
𝜃lat (here represented by a color scale of a higher resolution) and using the order parameter 𝜂. Thanks to the higher resolution, the
difference in the lattice orientation of the two conjugate twins is more apparent than in Fig. 5.

The results obtained for the logarithmic mixing rule are discussed first. Fig. 5(a), see also Fig. 6, shows that in the case with
no initial shear applied (i.e., when the problem setup is symmetric), the twin nucleus develops into two symmetric crossing bands,
comprising the two conjugate twins, one spanning from bottom-right to top-left (with the lattice orientation angle of 𝜃lat = 86.3◦), and
the other spanning from bottom-left to top-right (with the lattice orientation angle of 𝜃lat = 93.7◦). This originates from the feature
of the logarithmic mixing rule that treats the two conjugate twinning systems (corresponding to the two twin bands) equally. When
the initial shear is applied, however, only one twin band develops, and its orientation is determined by the direction of this shear.
Thanks to the symmetry of the formulation, the twin microstructure obtained for the initial shear directed to the left (𝜙L = −90◦)
is perfectly the mirror image of that obtained for the initial shear directed to the right (𝜙L = 90◦). The lattice orientation angles of
the two twin bands (𝜃lat = 86.3◦ and 93.7◦) agree perfectly with the theoretical orientation predicted by the sharp-interface theory
discussed in Section 2.2 (note that the rotation tensors R(𝑖)

tw, cf. Fig. 1(c), correspond to a rotation by ±3.7◦ so that the theoretical
lattice orientation within the twin bands is indeed equal to 90◦ ± 3.7◦).

In contrast to the logarithmic mixing rule, the model with the rank-one mixing rule has a propensity to develop a twin band with
a specific orientation. This is obviously due to the fact that a specific conjugate twinning system is explicitly introduced into the
kinematics within the diffuse interface. As shown in Fig. 5(b), a twin spanning from bottom-right to top-left (𝜃lat = 86.3◦) develops
under isochoric tension with no initial shear, i.e., a non-symmetric solution is obtained even though the problem setup is symmetric.
The propensity to develop this specific twin is also reflected in the case where the initial shear is applied. As it can be seen in the
insets in Fig. 5(b), the early-stage evolution of the matrix–twin transformation in the case with the initial shear directed to the right
16
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Fig. 7. Evolution of the twin-boundary energy 𝛹𝛤 = ∫𝐵 𝜓𝛤 d𝑉 at the early-stage of the matrix–twin transformation for the models with the logarithmic mixing
ule and with the rank-one mixing rule. The letters in the parentheses denote the direction of the applied initial shear, ‘R’ and ‘L’ stand for right and left,
espectively. The vertical dashed lines correspond to the time steps at which the snapshots in Fig. 5 are taken.

s visibly affected by the strong presence of this twin (i.e., at the intermediate stage shown in the insets, the top-right twin is much
eaker in the case of the initial shear directed to the left than the top-left twin in the case of the initial shear directed to the right).

The above observations are quantitatively supported by the evolution of the total twin-boundary energy, 𝛹𝛤 = ∫𝐵 𝜓𝛤 d𝑉 ,
cf. Eq. (30). Fig. 7 reveals that the model with the rank-one mixing rule predicts the highest peak energy (corresponding to the
onset of the twin nucleus growth) for the initial shear directed to the right, which is about 1.15 times higher compared to the case
of the initial shear directed to the left. At the same time, the peak energy evaluated for the model with the logarithmic mixing rule,
regardless of the direction of the initial shear, lies between those obtained for the rank-one mixing rule. As the loading continues,
the twin band spans the whole diagonal of the simulation domain, and the twin-boundary energy in all cases converges to the same
value.

The above study confirms that, as expected, the logarithmic mixing rule preserves the symmetry of the twinning transformation
and, unlike the rank-one mixing rule, treats both twinning systems equally, also in terms of the energy of diffuse interfaces, as
discussed in Remark 2.5.

5.3. Study #2: single crystal under proportional tension–shear loading

In this study, as an essential preliminary step towards more realistic and complex scenarios, the interaction between plastic
slip and twinning is investigated in an idealized single-crystal setup. To this end, the microstructure evolution and the associated
mechanical response of the single crystal are studied under proportional combined isochoric tension–shear loading conditions. Only
a single slip system, the basal slip, is considered in the matrix and in the twin. This simplification is reasonable and is in line with
the experimental observations. Indeed, due to the high CRSS of non-basal slip systems with respect to that of the basal slip and
tensile twinning, the contribution of the non-basal slip systems to the macroscopic deformation is not significant (Christian and
Mahajan, 1995; Agnew et al., 2001, 2003; Barnett et al., 2006). This is also shown in the study of a 10-grain unit cell in Section 5.5.

The problem setup is depicted in Fig. 4(b), the model parameters are specified in Section 5.1, and the domain size and element
size are the same as in the study #1 in Section 5.2. The combined loading is applied by varying the loading angle 𝜙L, see Eq. (75),
etween 0 (isochoric tension) and 90◦ (simple shear). A twin nucleus is placed at the center of the domain. The nucleus is now
n the shape of an inclined ellipse whose major axis is parallel to the line extending from the lower-left to the upper-right corner
f the simulation domain. The resulting twin bands have thus the same orientation for all loading angles 𝜙L, which simplifies the

comparison of microstructure evolution. In order to keep the rate-dependent (viscoplastic) effects and the resulting overstress as
low as possible, a relatively low macroscopic strain-rate of 𝑑 = 0.01 s−1 is used in this study.

The mechanical response of the single crystal under proportional loading is here expressed in terms of the macroscopic equivalent
stress 𝜎̄eq and strain 𝜀̄eq,

𝜎̄eq =
√

3
2
S̄ ⋅ S̄, 𝜀̄eq =

√

2
3
H̄ ⋅ H̄, (76)

where S̄ and H̄ denote, respectively, the macroscopic deviatoric Cauchy stress tensor and the macroscopic logarithmic strain tensor,
H̄ = 1

2 log(F̄
TF̄).

The results reveal that, except for the case of simple shear (𝜙L = 90◦) where the twin nucleus does not grow at all, the overall
appearance of the microstructure evolution is qualitatively similar for all loading angles 𝜙L. More specifically, the twin nucleus
develops into a twin band spanning from bottom-left to top-right, and subsequently thickens in the transverse direction, until the
entire simulation domain is transformed to the twin. A similar twin microstructure evolution has been reported in 3D analyses with
non-basal slip systems involved (e.g., Liu et al., 2018b; Hu et al., 2021). As a representative illustration, the microstructure evolution
and the deformation pattern are shown in Fig. 8 for 𝜙L = 22.5◦. The activity of plastic deformation is illustrated by the effective
17
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Fig. 8. Evolution of the lattice orientation angle 𝜃lat and effective basal slip in the matrix, 𝛾̃m, and in the twin, 𝛾̃p, for the loading angle 𝜙L = 22.5◦.

loading angle 𝜙L pertains to the activity of the basal slip, which increases as 𝜙L increases, i.e., as the loading mode tends towards
simple shear.

An eye-catching feature of the deformation pattern is the formation of vertical slip bands at the center of the simulation domain,
see the snapshots of 𝛾̃m in Fig. 8. The vertical bands form at the initial stage of microstructure evolution (when the twin nucleus
starts to grow), as a result of the stress concentration around the nucleus.

The effect of the loading angle 𝜙L on the macroscopic mechanical response is shown in Fig. 9(a). Except for the case of
simple shear (𝜙L = 90◦), which exhibits a bilinear trend (elastic and plastic branches), the mechanical response involves several
characteristic stages. The stage of stress overshoot and stress drop corresponds to twin propagation (i.e., growth of the nucleus
towards a fully developed twin band). The magnitude of the stress overshoot is not sensitive to the loading angle 𝜙L and is always
about 500 MPa. The stress plateau corresponds to the growth of the twin band (twin thickening). In general, the slope of the stress
plateau indicates the extent of strain hardening, which increases as the loading angle 𝜙L increases. However, as it is evident in
Fig. 9(a), see also Fig. 10, the case with 𝜙L = 45◦ does not follow this rule, and the associated mechanical response exhibits some
unique features, which can be attributed to the extra symmetry of the periodic twin microstructure, resulting from the special loading
angle 𝜙L = 45◦. Completion of the twinning transformation in the entire simulation domain is manifested by a sharp stress rise in
the mechanical response. Note that this stress rise corresponds to a sharp drop of individual stress components, which is associated
with the annihilation of twin interfaces, and it is seen as an increase of the equivalent stress 𝜎̄eq. The final stage corresponds to the
elastoplastic deformation of the fully-twinned domain. Since only one slip system is considered, plastic slip must be accommodated
by elastic deformation, hence the high slope of this branch.

Additional simulations have been performed using the multiplicative form of Fin, Eqs. (22)–(24), instead of the additive
decomposition of Lin according to Eq. (20). The corresponding results indicate that, except for some minor changes observed for
the loading angle 𝜙L = 45◦, see Fig. 10, the twin evolution and the mechanical response for all loading angles are practically the
same as those obtained for the reference model. Fig. 10 suggests that the minor changes originate from the local reverse twinning
(detwinning), indicated by the arrows in Fig. 10(b), which may have occurred spuriously as a result of the multiplicative form of
Fin that does not treat detwinning correctly.

A parametric study is performed next with the aim to assess the effect that two crucial model parameters, the hardening
parameter 𝐻 and the interface thickness parameter 𝓁, have on the simulation results. The effect of the hardening parameter 𝐻
on the deformation pattern is qualitatively similar to that of the interface thickness parameter 𝓁 within the range of the parameters
investigated here. More specifically, the lower the parameter 𝓁 (the parameter 𝐻), the stronger the activity of the basal slip, which
accordingly may influence the twin microstructure locally. Fig. 11 depicts the effect of 𝓁 on the microstructure for the loading angle
𝜙L = 22.5◦ at the macroscopic equivalent strain of 𝜀̄eq = 0.045 (a separate figure showing a similar effect of 𝐻 on the microstructure
is not provided). It can be seen that, although the activity of the basal slip is quite different for various 𝓁, the general features of
the twin microstructure are preserved for all values of 𝓁. Another important aspect concerns the effect of the interface thickness
parameter 𝓁 on the actual thickness of the diffuse matrix–twin interface. For a better visualization of the interface thickness, the
twin microstructure is additionally represented in Fig. 11 by the spatial distribution of the order parameter 𝜂.

The parameters 𝐻 and 𝓁 have quite a different impact on the stress–strain response, see Fig. 9(b,c). The interface thickness
parameter 𝓁 has a direct impact on the nucleation stress. The lower the parameter 𝓁, the higher the magnitude of the stress overshoot,
18



Journal of the Mechanics and Physics of Solids 163 (2022) 104855M. Rezaee-Hajidehi et al.
Fig. 9. The macroscopic stress–strain response of the single crystal under proportional isochoric tension–shear loading: (a) for various loading angles 𝜙L, (b)
for various hardening parameters 𝐻 , and (c) for various interface thickness parameters 𝓁. The effect of the parameters 𝐻 and 𝓁 is shown for the loading angle
𝜙L = 22.5◦.

Fig. 10. The effect of the kinematics of the inelastic deformation gradient Fin on the evolution of the twin microstructure for 𝜙L = 45◦: (a) the reference model
with Fin of the form (20); (b) the model with the multiplicative form of Fin, Eq. (22).

Fig. 11. The effect of the interface thickness parameter 𝓁 on the twin microstructure (lattice orientation angle 𝜃lat, left), the actual thickness of the matrix–twin
diffuse interfaces (order parameter 𝜂, center), and the activity of the basal slip in the matrix (effective slip 𝛾̃m, right) for the loading angle 𝜙L = 22.5◦.
19
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indicating a higher energy barrier for the nucleation of the twin, see Eq. (30). At the same time, the hardening parameter 𝐻 does
not have a considerable impact on the nucleation stress, and only affects the slope of the stress plateau.

5.4. Study #3: twin transmission across grain boundary

An important step in the study of deformation twinning is understanding the phenomenon of twin transmission across the
grain boundary, which is an essential prerequisite to gain more insight into the twin nucleation, variant selection and propagation
processes in polycrystals (Beyerlein et al., 2010; Khosravani et al., 2015; Arul Kumar et al., 2016; Shi et al., 2017). Modeling the
phenomenon of twin transmission has been the focus of various studies (e.g., Qiao et al., 2016; Liu et al., 2018a, 2019; Hu et al.,
2020, 2021), as a means to explain the mechanism behind the twin nucleation and twin–slip interaction at the grain boundary, and
also, from a modeling standpoint, as a suitable benchmark problem to test the capabilities of the modeling approaches. Therefore, the
aim of the present study is to investigate the phenomenon of twin transmission in a bi-crystal system with the grain misorientation
angle 𝜙mis (the angle formed between the [0001]-axis of the two grains in the initial state), as the main controlling parameter, varied
ystematically (Beyerlein et al., 2011; El Kadiri et al., 2013; Shi et al., 2017; Wang et al., 2018). As a follow-up of the parametric
tudy in Section 5.3, the effect of the hardening parameter 𝐻 and the interface thickness parameter 𝓁 is also examined.

The problem setup is shown in Fig. 4(c). The bi-crystal system under study consists of two grains with equal dimensions. The
nitial lattice orientation of grain 1 is fixed, with the corresponding [0001]-axis aligned with the global 𝑥2-axis, while that of grain

varies so that the grain misorientation angle 𝜙mis lies within the range [−40◦, 40◦] with the step of 10◦. A separate field of the
icromorphic variable, the counterpart of the order parameter, is introduced for each grain, and a homogeneous Neumann boundary

ondition is enforced for each variable along the grain boundary. Accordingly, twinning in the two grains is independent, and the
nteraction between the twins, including twin nucleation in grain 2, is only through the stress field.

The size of the computational domain is set to 𝑤 × ℎ = 2 × 2 μm2. The domain is uniformly discretized with the finite-element
esh consisting of 160 000 elements (element size of 5 nm), which results in approximately 1.1 million degrees of freedom. On

ccount of increasing the size of the computational domain and the element size with respect to the studies in Sections 5.2 and 5.3,
he thickness of the matrix–twin diffuse interface is also increased, i.e., the interface thickness parameter is adopted as 𝓁 = 10 nm.
ccordingly, to have proportionally equivalent viscous effects, in view of Eq. (46), the reference twinning propagation speed is

aken as 𝑣0 = 200 nm/s. The other model parameters are the same as those specified in Section 5.1. The bi-crystal is subjected to
sochoric tension (𝜙L = 0) with a constant macroscopic strain rate of 𝑑 = 0.01 s−1. The loading is continued up to the maximum
acroscopic equivalent strain of 𝜀̄eq = 0.03. A twin nucleus in the shape of an inclined ellipse, with the semi-major axis of 20 nm,
as been embedded into the center of grain 1, see Fig. 4(c). Like in the study in Section 5.3, the basal slip is considered as the only
perative slip system.

Figs. 12 and 13 illustrate the twin transmission behavior in terms of, respectively, the microstructure visualized using the lattice
rientation angle 𝜃lat and the associated activity of the basal slip in the matrix for different grain misorientation angles 𝜙mis. The
ctivity of the basal slip in the twin is relatively small compared to that in the matrix, so the corresponding snapshots are not
rovided. The main observation is that the larger the magnitude of the grain misorientation angle 𝜙mis, the less likely it is for the
win to transmit across the grain boundaries. When the grain misorientation angle is low, namely 𝜙mis = ±10◦, the twin transmits to
rain 2 almost immediately after impinging at the grain boundary. The twin transmission is deferred for grain misorientation angles
f 𝜙mis = ±20◦ and 𝜙mis = −30◦, and finally, no twin transmission occurs for 𝜙mis = 30◦ and 𝜙mis = ±40◦. The natural explanation for
his behavior is that the Schmid factor for basal slip increases with increasing magnitude of 𝜙mis, while that for twinning decreases,
hich makes the basal slip a more favorable deformation mechanism compared to twinning. The twin transmission behavior depends
ot only on the magnitude but also on the sign of the grain misorientation angle 𝜙mis. As shown in Fig. 12, the cutoff misorientation
ngle (defined as the misorientation angle at which the twin transmission ceases to occur) for positive and negative 𝜙mis is obtained
s 30◦ and −40◦, respectively. In some cases, the twin transmission into grain 2 proceeds in a discontinuous manner, i.e., the twin
ucleation in grain 2 occurs at a short distance from the grain boundary and is accompanied by a relatively high activity of the
asal slip in that region, see, e.g., the snapshots related to 𝜙mis = 20◦ and 𝜙mis = −30◦. For some grain misorientation angles,
.g., 𝜙mis = ±20◦, as a result of the stress concentration at the grain boundaries, additional twins nucleate that propagate towards
he interior of grain 1.

The results of the parametric study in Section 5.3 revealed how and to what extent the hardening parameter 𝐻 and the interface
hickness parameter 𝓁 impact the microstructure evolution in a single crystal. The most prominent observation noted was that smaller
alues of 𝐻 and 𝓁 induce a more prevalent activity of the basal slip, which in turn may influence the twin microstructure. It is
herefore of primary importance to explore the effect of these parameters on the twin transmission behavior. To this end, additional
imulations have been carried out for the hardening parameters 𝐻 = 0.2 and 0.8 GPa and the interface thickness parameters 𝓁 = 5
nd 20 nm. Recall that 𝐻 = 0.4 GPa and 𝓁 = 10 nm have been used in the reference simulations reported above. Results show
hat twin transmission is more difficult for smaller values of 𝐻 and 𝓁. More specifically, for 𝐻 = 0.2 GPa and for 𝓁 = 5 nm, twin
ransmission occurs only for low grain misorientation angles 𝜙mis = ±10◦. At the same time, for 𝐻 = 0.8 GPa and for 𝓁 = 20 nm,
win transmission is facilitated resulting in cutoff misorientation angles of ±40◦. To give a further elaboration, the effect of 𝐻 and 𝓁
or two representative grain misorientation angles 𝜙mis = −20◦ and 𝜙mis = 30◦ is shown in Figs. 14 and 15, respectively. In addition,
ig. 16 depicts the details of the twin microstructure, including the thickness of the diffuse interfaces, for different 𝓁. A similar
tudy concerning the effect of the hardening parameter on the twin transmission behavior has been reported by Hu et al. (2021).
owever, to our knowledge, no previous phase-field study has highlighted and evaluated the significant impact of the thickness of
20

he diffuse twin boundaries on the twin transmission behavior.
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Fig. 12. Twin transmission across the grain boundaries: distribution of the lattice orientation angle 𝜃lat for different grain misorientation angles 𝜙mis. Note that
the snapshots are taken at different macroscopic equivalent strains 𝜀̄eq.

Fig. 13. Twin transmission across the grain boundaries: distribution of the effective basal slip in the matrix, 𝛾̃m, for different grain misorientation angles 𝜙mis.
Note that the snapshots are taken at different macroscopic equivalent strains 𝜀̄eq (the same as in Fig. 12).

The results of the parametric study presented above and that in Section 5.3 demonstrate the key role of the hardening parameter
𝐻 and the interface thickness parameter 𝓁 on the simulation results. An important conclusion is that the selection of these parameters
must be done with a particular attention, as it may lead to physically unacceptable predictions. For instance, excessively large values
of 𝓁 result in unduly diffuse twin interfaces and partially transformed regions, see the snapshot related to 𝓁 = 20 nm in Fig. 16.

5.5. Study #4: microstructure evolution in a 10-grain unit cell

The studies presented above highlighted some specific features of the model and displayed the model predictions in idealized
single-crystal and bi-crystal setups. In the last study presented here, we address a more complex scenario of a unit cell containing
10 grains. A twofold goal is pursued. On the one hand, to use the 10-grain setup as a template to demonstrate the modeling
capabilities in terms of the microstructure evolution in a challenging computational problem. On the other hand, to qualitatively
capture some microstructural features observed in the experiments. Modeling of the spatially-resolved twin microstructure evolution
21
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Fig. 14. The effect of the hardening parameter 𝐻 on the twin transmission across the grain boundaries for the grain misorientation angles (a) 𝜙mis = −20◦, and
(b) 𝜙mis = 30◦.

Fig. 15. The effect of the interface thickness parameter 𝓁 on the twin transmission across the grain boundaries for the grain misorientation angles (a) 𝜙mis = −20◦,
and (b) 𝜙mis = 30◦.

in polycrystalline magnesium has been the subject of some recent studies, including those based on the phase-field method (e.g.,
Liu et al., 2018a,b; Ma and Sun, 2021; Hu et al., 2021) and using other approaches (e.g., Mareau and Daymond, 2016; Cheng et al.,
2018, 2021).

The problem setup is shown in Fig. 17(a). A unit cell containing 10 grains with the dimensions of 𝑤 × ℎ = 5 × 5 μm2 is
considered. The initial periodic microstructure is generated via Voronoi tessellation technique. Despite the limitations of the Voronoi
technique (Ardeljan et al., 2015), care has been taken to spatially arrange the Voronoi seeds in a way to optimize the shape of the
grains, and thus to achieve a possibly realistic grain microstructure. The initial lattice orientation of each grain, i.e., the orientation
of the local [0001]-axis, is assigned randomly within the range [−90◦, 90◦]. Since a uniform finite-element mesh is used, an element
is assigned to a specific grain when the element center belongs to the respective Voronoi cell. The grain boundaries have thus a
22
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Fig. 16. The effect of the interface thickness parameter 𝓁 on the actual thickness of the matrix–twin diffuse interface in the study of twin transmission. The
snapshots correspond to the grain misorientation angle 𝜙mis = −20◦ taken at the macroscopic equivalent strain of 𝜀̄eq = 0.02, see Fig. 15(a).

Fig. 17. (a) The initial periodic microstructure of the 10-grain unit cell under study. (b) The resulting overall mechanical response expressed in terms of the
macroscopic equivalent stress and strain. The insets show the twin nucleation events corresponding to the instants of the first stress overshoot and stress drop.
(c) The average activity of the individual deformation mechanisms during the simulation. The dashed curves in panels (b) and (c) represent the corresponding
results obtained for the simulation with no pyramidal slip.

stepped appearance. As in the bi-crystal problem in Section 5.4, a separate micromorphic variable is introduced for each grain with
a homogeneous Neumann boundary condition along the grain boundary. No twin nuclei are introduced, and twin nucleation is
triggered solely by the inhomogeneous stress state that develops in the polycrystal upon loading, see Remark 3.1.

The 10-grain unit cell is subjected to isochoric tension (𝜙L = 0) at a constant macroscopic strain rate of 𝑑 = 0.01 s−1. The interface
thickness parameter of 𝓁 = 10 nm and the reference twinning propagation speed of 𝑣0 = 500 nm/s have been used. The latter, based
on the results of our auxiliary simulations, leads to relatively small viscous effects, and thus, does not affect noticeably the resulting
twin microstructure and the mechanical response. The remaining material parameters are the same as those in Section 5.1. In order
to correctly reproduce the fine features of the microstructure, a finite-element mesh with the element size of 6.25 nm has been
adopted, leading to 650 000 elements and nearly 5 million degrees of freedom. Unlike in the previous studies, all three slip systems,
namely one basal and two pyramidal slip systems, are considered operative. The simulation has been run up to the macroscopic
equivalent strain of 𝜀̄eq = 0.1.

Figs. 17(b) and 18 illustrate, respectively, the overall mechanical response of the 10-grain unit cell and the snapshots of the
twin microstructure evolution (a movie showing the complete microstructure evolution is provided as a supplementary material).
The important microstructural events, such as twin nucleation, twin impinging at the grain boundary, coalescence of the twinned
regions and the completion of the twin transformation in a grain, are marked by sudden stress changes. At the onset of twinning
(around 𝜀̄eq = 0.01), multiple twin nucleations take place at grain boundaries surrounding the grains most favorably oriented for
twinning, namely grains 3, 4 and 7, see the insets in Fig. 17(b). Recall that no additional trigger has been introduced at the grain
boundaries to assist the twin nucleation. The twin microstructure evolution then proceeds with the growth and transmission of the
existing twins, along with the nucleation of new twins (mostly at the grain boundaries). Depending on the initial lattice orientation
of the surrounding grains, the twins either grow towards the interior of the grains or along the grain boundaries. In the case of a
twin impinging at the grain boundary, twin transmission or twin suppression have been observed, which is primarily determined by
the grain misorientation angle. The twin evolution at this stage is accompanied by a plateau-like branch in the overall mechanical
response exhibiting a mild strain hardening. Starting from the equivalent strain of about 𝜀̄eq = 0.06, the hardening starts to gradually
increase and twinning starts to saturate in the preferably oriented grains (3,4,7). The increase of the strain hardening can be
attributed to decreasing activity of twinning which is compensated by the activity of the pyramidal slip, however, at a higher
CRSS. By the end of the simulation (at 𝜀̄eq = 0.1), 8 out of 10 grains are twinned (either completely or partially), while no sign of
twinning can be discerned within the grains not suitably oriented for twinning, namely grains 5 and 8.
23
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Fig. 18. Snapshots of the twin microstructure evolution represented by the lattice orientation angle 𝜃lat in the 10-grain unit cell.

Fig. 19. Snapshots of the twin microstructure, accumulated basal slip 𝛾basal
acc , and accumulated pyramidal slip 𝛾pyr

acc at two representative macroscopic equivalent
strains, 𝜀̄eq = 0.05 and 𝜀̄eq = 0.1. Note the different scale used for 𝛾basal

acc and 𝛾pyr
acc .

To gain a more comprehensive understanding of the deformation behavior, the contribution of the individual deformation
mechanisms needs to be identified. For this, the snapshots of the twin microstructure, accumulated basal slip 𝛾basal

acc , and accumulated
pyramidal slip 𝛾pyr

acc (resulting from both pyramidal slip systems) are shown in Fig. 19 for two representative macroscopic equivalent
strains, namely 𝜀̄eq = 0.05 and 𝜀̄eq = 0.1. The accumulated slips, 𝛾basal

acc and 𝛾pyr
acc , are computed according to Eq. (26) by considering

only the respective slip systems. In addition, to make a quantitative evaluation, the average activity of the individual deformation
mechanisms is plotted in Fig. 17(c). The average twinning and slip activities are calculated, respectively, as the volume average
of the effective twinning shear (𝜂𝛾tw) and the accumulated slip (𝛾basal

acc or 𝛾pyr
acc ) over the entire simulation domain. The results,

unsurprisingly, indicate that within the range of the macroscopic strain considered here, both twinning and basal slip mechanisms
exhibit strong activity. The activity of the basal slip is, in particular, more pronounced, and the corresponding average activity
follows a roughly linear trend. On the other hand, the pyramidal slip contribution to the overall plastic deformation is found to
be noticeable only at the final stage of loading, when some of the grains are largely twinned. The results presented here are in a
qualitative agreement with the related previous studies (Wang et al., 2010b; Cheng et al., 2018; Hu et al., 2021).
24
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Fig. 20. Detailed view of the lattice orientation in grains 4 and 6 (shown in the reference configuration) illustrating the interaction of conjugate twins. The
lattice orientation angle 𝜃lat is depicted using a high-resolution color scale; for the actual orientation refer to Fig. 18.

To highlight the role of the pyramidal slip systems, an additional simulation has been performed with no pyramidal slip systems
involved, see the dashed lines in Fig. 17(b,c). It follows that the twin microstructure evolution and the overall mechanical response
are qualitatively similar to those of the reference simulation (with pyramidal slip systems). In particular, the mechanical response
follows a similar trend as that of the reference case up to the point where grain 4 is entirely transformed to the twin (at 𝜀̄eq = 0.08),
and thereafter advances with a higher level of stress, which is obviously due to the lack of the pyramidal slip mechanism.

A careful analysis of the simulation results reveals several interesting microstructural features, some of them resemble those
observed in experiments. Here, we briefly comment some of the predicted features that can be noticed in Figs. 17–19, see also the
supplementary movie. In most cases, twins nucleate at grain boundaries, which is a common feature observed in experiments (e.g.,
Beyerlein et al., 2010) and is often explicitly prescribed in phase-field simulations (e.g., Liu et al., 2018b). However, in grain 2,
the basal slip originating from the grain boundaries acts as a precursor for twin nucleation in the interior of the grain, see the
snapshot corresponding to 𝜀̄eq = 0.06 in Fig. 18. It has been observed that the twins propagating towards the interior of the grains
(not along the grain boundaries) have a lenticular shape, which is generally the most widely observed shape for the twins in the
experiments (Arul Kumar et al., 2019). Grain 1 is not oriented favorably for twinning (the initial orientation angle is about −35◦),
however, it twins partially, mostly through the twin nucleating at the boundary with grain 3, to accommodate local stresses. At the
same time, strong basal slip is generated in grain 1, see Fig. 19, to relax the stresses produced at the tips of the twins impinged
at the surrounding grain boundaries. Such twin–slip interaction has been observed at a larger scale by Barnett et al. (2013). It can
also be seen that, due to the strong activity of the basal slip in grain 1, the twin propagating in this grain is (temporarily) arrested
in the interior of the grain (cf. Yaddanapudi et al., 2021).

Finally, twin–twin interaction between conjugate twins has been observed in a number of grains. In particular, grains 4 and 6
exhibit a hierarchy of twin–twin interaction events, as illustrated in more detail in Fig. 20. It can be seen that the newly-formed
twins that run towards the twin boundary of an existing twin cause the twin boundary to tilt slightly towards the approaching twin
tip, in agreement with the experiment (Yu et al., 2014) and other phase-field studies (Hu et al., 2021). The difference in the lattice
orientation of the conjugate twins is apparent in Fig. 20 thanks to the high-resolution color scale used. The difference in orientation
persists after the two twins merge (recall that a single order parameter is used to represent both conjugate twins). This is visible, for
instance, in grain 4 at the location indicated by the arrows and also at another location shown in the inset. In the case of conjugate
twins, the twin–twin boundary is a low-angle tilt boundary (Yu et al., 2014), and the steep gradient of the lattice orientation at
these two locations can be interpreted as such a low-angle tilt boundary, here having a somewhat diffuse appearance resulting from
the diffuse-interface framework. Interestingly, the apparent twin–twin boundary shown in the inset has a characteristic V-shape
appearance observed in the experiment and explained by the mechanisms of zipping and dissociating (see Yu et al., 2014, Fig. 7).

6. Conclusion

A finite-strain model of coupled deformation twinning and plastic slip has been developed in this work by combining the phase-
field method and the crystal plasticity framework. The formulation is based on the incremental energy minimization approach, and
the model is discretized by means of the finite-element method. The implementation is facilitated by resorting to the micromorphic
formulation so that the complex constitutive equations, including the evolution equation for the order parameter, are solved at the
Gauss-point level, while, on the global level, a Helmholtz-type PDE is solved for the micromorphic variable approximating the order
parameter. The resulting computational model allows simulation of spatially resolved evolution of twin microstructure, as illustrated
by a number of 2D computational studies.

As an important step towards model development, a detailed discussion of the finite-strain kinematics of deformation twinning
has been carried out considering both sharp- and diffuse-interface descriptions. It has been shown that twinning can be treated
as a displacive transformation, similar to a martensitic phase transformation, in which the parent phase (matrix) may transform
to one of several twin deformation variants, each characterized by a volume-preserving stretch tensor. Each twin deformation
variant represents then two conjugate twinning systems, where, in the conventional approach, each crystallographic twinning system
25
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is characterized by a simple shear deformation. This simple shear deformation includes a rigid-body rotation that results from
crystallography and corresponds to the theoretical orientation of the interface and to stress-free conditions. In the stretch-based
kinematics, the rigid-body rotation is a part of the solution of the problem and is included in the elastic part of the deformation
gradient. Note that the rotation may differ from the theoretical one when the orientation of the twin interface differs from the
theoretical one, e.g., at the tip of a twin plate, and when the material is under stress.

The two approaches are equivalent in the sharp-interface description, also when plastic slip is considered as an additional inelastic
eformation mechanism, and the only difference is then in a relative rotation of the respective local intermediate configurations.
owever, the equivalence does not necessarily hold in the diffuse-interface description. The stretch-based kinematics, advocated in

his work, is particularly convenient for phase-field modeling of twinning since a single order parameter can be used to describe one
win deformation variant such that the corresponding two conjugate twinning systems are treated equally (this feature is illustrated
y one of the numerical examples). Moreover, the notion of the intermediate isoclinic configuration is naturally embedded into the
tretch-based scheme.

To fix attention, detailed derivations have been provided for {101̄2}⟨1̄011⟩ tensile twinning in HCP magnesium alloys, but the
related features discussed above are more general and apply also to other cases, in particular, to {111}⟨112̄⟩ twinning in FCC crystals
and to {112}⟨1̄1̄1⟩ twinning in BCC crystals. The proposed phase-field model and its variational formulation are also general, even if
the computational model has been developed specifically for magnesium, moreover, limited to the 2D plane-strain conditions with
one twin deformation variant (thus with two conjugate twinning systems) and with three equivalent in-plane slip systems (one basal
and two pyramidal). Extension to the general 3D case would be rather straightforward, except the high computational cost.

A number of 2D plane-strain problems have been studied to illustrate the capabilities of the proposed model. To focus on the most
important features, some simplifying assumptions have been adopted, in particular, concerning hardening behavior, but otherwise
physically relevant model parameters have been adopted in the computations. Idealized single-crystal and bi-crystal setups have
been used to illustrate features such as the equal treatment of the conjugate twinning systems in the stretch-based kinematics,
twin–slip interaction, and twin transmission across the grain boundaries. As an application to a more challenging problem, twin
microstructure evolution has been studied in a unit cell containing 10 grains. Several noteworthy microstructural features have
been captured, some of which are in agreement with those observed in experiments and predicted in other phase-field studies.
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Appendix A. Stretch-based kinematics of twinning in FCC and BCC crystals

A.1. {111}⟨112̄⟩ twinning in FCC crystals

The {111}⟨112̄⟩ twinning in FCC crystals involves 12 twinning systems that form 6 pairs of conjugate twinning systems. The
stretch-based kinematics is here illustrated for a representative pair, specifically for the (111)[112̄] and (111̄)[112] twinning systems
hat are shown in Fig. A.1(a–c). The corresponding twin plane normal, twinning shear direction, and twinning shear are specified
s (Christian and Mahajan, 1995)

m(1,2) = 1
√

3
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(∓1,∓1,−2), 𝛾tw = 1
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2
, (A.1)

with the components given in the cubic basis of the matrix. By following the procedure described in Section 2.2, the twinning stretch
Utw and rotation Rtw, see Eqs. (5)–(8), are found in the following form,
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The (11̄0) plane is the plane of shear, and this plane is shown in Fig. A.1(b,c). It can be seen that the stretch Utw corresponds to
longation by

√

2 along the [110] axis and contraction by 1∕
√

2 along the [001] axis. The twinning transformation and the subsequent
26
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Fig. A.1. Illustration of the {111}⟨112̄⟩ twinning in FCC crystals (a–c) and {112}⟨1̄1̄1⟩ twinning in BCC crystals (d–f): (a,d) unit cell with the twin planes of one
pair of conjugate twinning systems; (b,e) conjugate twinning systems shown in the (11̄0) plane; (c,f) stretch-based kinematics of twinning.

rotation are illustrated in Fig. A.1(c) using the section of two crystallographic unit cells by the (11̄0) plane so that the section has
the dimensions of

√

2𝑎 × 2𝑎.
The stretch tensors of the remaining 5 pairs of conjugate twinning systems can be obtained in an analogous way or,

equivalently, by applying rotations from the point group of the cubic lattice. It turns out that the resulting stretch tensors of the
six twin deformation variants have exactly the same form as the transformation stretches of the six variants of martensite in the
cubic-to-orthorhombic transformation with the stretch parameters 𝛼 =

√

2, 𝛽 = 1∕
√

2, and 𝛾 = 1, see Bhattacharya (2003).

A.2. {112}⟨1̄1̄1⟩ twinning in BCC crystals

The {112}⟨1̄1̄1⟩ twinning in BCC crystals also involves 12 twinning systems that form 6 pairs of conjugate twinning systems. The
kinematics is here illustrated using the (112)[1̄1̄1] and (1̄1̄2)[111] twinning systems that are shown in Fig. A.1(d–f). The corresponding
twin plane normal, twinning shear direction, and twinning shear are specified as (Christian and Mahajan, 1995)
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with the components given in the cubic basis of the matrix. The twinning stretch Utw and rotation Rtw are now found in the following
form,

Utw = 1
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Note that the rotation tensor Rtw in Eq. (A.4) is the transpose of that in Eq. (A.2).
The plane of shear is here also the (11̄0) plane, and this plane is shown in Fig. A.1(e,f). The stretch Utw corresponds now to

contraction by 1∕
√

2 along the [110] axis and elongation by
√

2 along the [001] axis.
As in the case of FCC crystals, the transformation stretches of the six twin deformation variants have the same form as those in

the cubic-to-orthorhombic transformation, now with the stretch parameters 𝛼 = 1∕
√

2, 𝛽 =
√

2, and 𝛾 = 1.
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Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2022.104855.

eferences

garwal, G., Dongare, A.M., 2019. Deformation twinning in polycrystalline Mg microstructures at high strain rates at the atomic scales. Sci. Rep. 9, 1–11.
gnew, S.R., Tomé, C.N., Brown, D.W., Holden, T.M., Vogel, S.C., 2003. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling.

Scripta Mat. 48, 1003–1008.
gnew, S.R., Yoo, M.H., Tome, C.N., 2001. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing

Li or Y. Acta Mater. 49, 4277–4289.
khtar, A., Teghtsoonian, E., 1969. Solid solution strengthening of magnesium single crystals—I alloying behaviour in basal slip. Acta Metall. 17, 1339–1349.
l-Samman, T., Gottstein, G., 2008. Room temperature formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanisms.

Mater. Sci. Eng. A 488, 406–414.
lart, P., Curnier, A., 1991. A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Engrg.

92, 353–375.
llen, S.M., Cahn, J.W., 1979. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27,

1085–1095.
rdeljan, M., McCabe, R.J., Beyerlein, I.J., Knezevic, M., 2015. Explicit incorporation of deformation twins into crystal plasticity finite element models. Comput.

Methods Appl. Mech. Engrg. 295, 396–413.
rul Kumar, M., Beyerlein, I.J., McCabe, R.J., Tome, C.N., 2016. Grain neighbour effects on twin transmission in hexagonal close-packed materials. Nat. Commun.

7, 1–9.
rul Kumar, M., Capolungo, L., McCabe, R.J., Tomé, C.N., 2019. Characterizing the role of adjoining twins at grain boundaries in hexagonal close packed

materials. Sci. Rep. 9, 1–10.
saro, R.J., 1983. Micromechanics of crystals and polycrystals. In: Hutchinson, J.W., Wu, T.Y. (Eds.), In: Advances in Applied Mechanics, vol. 23, Elsevier, pp.

1–115.
all, J.M., James, R.D., 1987. Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–50.
arnett, M.R., Keshavarz, Z., Ma, X., 2006. A semianalytical sachs model for the flow stress of a magnesium alloy. Metall. Mat. Trans. A 37, 2283–2293.
arnett, M.R., Stanford, N., Ghaderi, A., Siska, F., 2013. Plastic relaxation of the internal stress induced by twinning. Acta Mater. 61, 7859–7867.
asak, A., Levitas, V.I., 2017. Interfacial stresses within boundary between martensitic variants: Analytical and numerical finite strain solutions for three phase

field models. Acta Mater. 139, 174–187.
eyerlein, I.J., Arul Kumar, M., 2018. The stochastic nature of deformation twinning: application to HCP materials. In: Andreoni, W., Yip, S. (Eds.), In: Handbook

of Materials Modeling, Springer Nature, Switzerland.
eyerlein, I.J., Capolungo, L., Marshall, P.E., McCabe, R.J., Tomé, C.N., 2010. Statistical analyses of deformation twinning in magnesium. Phil. Mag. 90, 2161–2190.
eyerlein, I.J., McCabe, R.J., Tomé, C.N., 2011. Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A

multi-scale modeling study. J. Mech. Phys. Solids 59, 988–1003.
eyerlein, I.J., Zhang, X., Misra, A., 2014. Growth twins and deformation twins in metals. Ann. Rev. Mat. Res. 44, 329–363.
hattacharya, K., 2003. Microstructure of Martensite: Why It Forms and how It Gives Rise To the Shape-Memory Effect. Oxford University Press, Oxford.
apolungo, L., Beyerlein, I.J., 2008. Nucleation and stability of twins in hcp metals. Phys. Rev. B 78, 024117.
apolungo, L., Marshall, P.E., McCabe, R.J., Beyerlein, I.J., Tomé, C.N., 2009. Nucleation and growth of twins in Zr: a statistical study. Acta Mater. 57, 6047–6056.
hang, Y., Kochmann, D.M., 2015. A variational constitutive model for slip-twinning interactions in hcp metals: Application to single- and polycrystalline

magnesium. Int. J. Plast. 73, 39–61.
hapuis, A., Driver, J.H., 2011. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater. 59, 1986–1994.
heng, J., Hu, X., Bong, H.J., Ghosh, S., Sun, X., 2021. A finite element formulation for deformation twinning induced strain localization in polycrystal magnesium

alloys. Comput. Mater. Sci. 190, 110323.
heng, J., Shen, J., Mishra, R.K., Ghosh, S., 2018. Discrete twin evolution in Mg alloys using a novel crystal plasticity finite element model. Acta Mater. 149,

142–153.
hester, S.A., Bernier, J.V., Barton, N.R., Balogh, L., Clausen, B., Edmiston, J.K., 2016. Direct numerical simulation of deformation twinning in polycrystals. Acta

Mater. 120, 348–363.
hristian, J.W., Mahajan, S., 1995. Deformation twinning. Prog. Mat. Sci. 39, 1–157.
layton, J.D., Knap, J., 2011. A phase field model of deformation twinning: nonlinear theory and numerical simulations. Physica D 240, 841–858.
l Kadiri, H., Kapil, J., Oppedal, A.L., Hector Jr., L.G., Agnew, S.R., Cherkaoui, M., Vogel, S.C., 2013. The effect of twin–twin interactions on the nucleation

and propagation of {101̄2} twinning in magnesium. Acta Mater. 61, 3549–3563.
Forest, S., 2009. Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135, 117–131.
Graff, S., Brocks, W., Steglich, D., 2007. Yielding of magnesium: From single crystal to polycrystalline aggregates. Int. J. Plast. 23, 1957–1978.
Gray, G.T., 2012. High-strain-rate deformation: mechanical behavior and deformation substructures induced. Ann. Rev. Mat. Sci. 42, 285–303.
Grilli, N., Cocks, A.C.F., Tarleton, E., 2020. A phase field model for the growth and characteristic thickness of deformation-induced twins. J. Mech. Phys. Solids

143, 104061.
Hildebrand, F.E., Miehe, C., 2012. A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Phil. Mag. 92,

4250–4290.
Hill, R., Rice, J.R., 1972. Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20, 401–413.
Homayonifar, M., Mosler, J., 2012. Efficient modeling of microstructure evolution in magnesium by energy minimization. Int. J. Plast. 28, 1–20.
Hu, X., Ji, Y., Chen, L., Lebensohn, R.A., Chen, L.-Q., Cui, X., 2021. Spectral phase-field model of deformation twinning and plastic deformation. Int. J. Plast.

143, 103019.
Hu, X., Ji, Y., Heo, T.W., Chen, L.-Q., Cui, X., 2020. Phase-field model of deformation twin-grain boundary interactions in hexagonal systems. Acta Mater. 200,

821–834.
Hudobivnik, B., Korelc, J., 2016. Closed-form representation of matrix functions in the formulation of nonlinear material models. Finite Elem. Anal. Des. 111,

19–32.
Izadbakhsh, A., Inal, K., Mishra, R.K., Niewczas, M., 2011. New crystal plasticity constitutive model for large strain deformation in single crystals of magnesium.

Comput. Mater. Sci. 50, 2185–2202.
Jin, T., Mourad, H.M., Bronkhorst, C.A., Beyerlein, I.J., 2019. A single crystal plasticity finite element formulation with embedded deformation twins. J. Mech.

Phys. Solids 133, 103723.
Kalidindi, S.R., 1998. Incorporation of deformation twinning in crystal plasticity models. J. Mech. Phys. Solids 46, 267–290.
28

https://doi.org/10.1016/j.jmps.2022.104855
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb1
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb2
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb2
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb2
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb3
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb3
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb3
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb4
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb5
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb5
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb5
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb6
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb6
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb6
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb7
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb7
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb7
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb8
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb8
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb8
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb9
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb9
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb9
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb10
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb10
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb10
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb11
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb11
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb11
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb12
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb13
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb14
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb15
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb15
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb15
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb16
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb16
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb16
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb17
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb18
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb18
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb18
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb19
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb20
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb21
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb22
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb23
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb23
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb23
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb24
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb25
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb25
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb25
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb26
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb26
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb26
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb27
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb27
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb27
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb28
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb29
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb30
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb30
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb30
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb31
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb32
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb33
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb34
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb34
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb34
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb35
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb35
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb35
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb36
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb37
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb38
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb38
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb38
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb39
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb39
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb39
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb40
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb40
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb40
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb41
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb41
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb41
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb42
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb42
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb42
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb43


Journal of the Mechanics and Physics of Solids 163 (2022) 104855M. Rezaee-Hajidehi et al.

K
K

Kasemer, M., Dawson, P., 2020. A finite element methodology to incorporate kinematic activation of discrete deformation twins in a crystal plasticity framework.
Comput. Methods Appl. Mech. Engrg. 358, 112653.

elley, E.W., Hosford, W.F., 1968. Plane-strain compression of magnesium and magnesium alloy crystals. Trans. Metall. Soc. AIME 242, 5–13.
hosravani, A., Fullwood, D.T., Adams, B.L., Rampton, T.M., Miles, M.P., Mishra, R.K., 2015. Nucleation and propagation of {101̄2} twins in AZ31 magnesium

alloy. Acta Mater. 100, 202–214.
Kondo, R., Tadano, Y., Shizawa, K., 2014. A phase-field model of twinning and detwinning coupled with dislocation-based crystal plasticity for HCP metals.

Comput. Mater. Sci. 95, 672–683.
Korelc, J., Stupkiewicz, S., 2014. Closed-form matrix exponential and its application in finite-strain plasticity. Int. J. Numer. Methods Engrg. 98, 960–987.
Korelc, J., Wriggers, P., 2016. Automation of Finite Element Methods. Springer International Publishing, Switzerland.
Kowalczyk-Gajewska, K., 2010. Modelling of texture evolution in metals accounting for lattice reorientation due to twinning. Eur. J. Mech. A Solids 29, 28–41.
Levitas, V.I., 1998. Thermomechanical theory of martensitic phase transformations in inelastic materials. Int. J. Solids Struct. 35, 889–940.
Levitas, V.I., Javanbakht, M., 2011. Phase-field approach to martensitic phase transformations: Effect of martensite–martensite interface energy. Int. J. Mat. Res.

102, 652–665.
Levitas, V.I., Preston, D.L., 2005. Thermomechanical lattice instability and phase field theory of martensitic phase transformations, twinning and dislocations at

large strains. Phys. Lett. A 343, 32–39.
Li, N., Yang, L., Wang, C., Monclús, M.A., Shi, D., Molina-Aldareguía, J.M., 2021. Deformation mechanisms of basal slip, twinning and non-basal slips in Mg–Y

alloy by micropillar compression. Mater. Sci. Eng. A 819, 141408.
Liu, H., Lin, F.X., Zhao, P., Moelans, N., Wang, Y., Nie, J.F., 2018a. Formation and autocatalytic nucleation of co-zone {101̄2} deformation twins in polycrystalline

Mg: A phase field simulation study. Acta Mater. 153, 86–107.
Liu, C., Shanthraj, P., Diehl, M., Roters, F., Dong, S., Dong, J., Ding, W., Raabe, D., 2018b. An integrated crystal plasticity–phase field model for spatially resolved

twin nucleation, propagation, and growth in hexagonal materials. Int. J. Plast. 106, 203–227.
Liu, C., Shanthraj, P., Robson, J.D., Diehl, M., Dong, S., Dong, J., Ding, W., Raabe, D., 2019. On the interaction of precipitates and tensile twins in magnesium

alloys. Acta Mater. 178, 146–162.
Luan, Q., Britton, T.B., Jun, T.-S., 2018. Strain rate sensitivity in commercial pure titanium: The competition between slip and deformation twinning. Mater. Sci.

Eng. A 734, 385–397.
Lynch, P.A., Kunz, M., Tamura, N., Barnett, M.R., 2014. Time and spatial resolution of slip and twinning in a grain embedded within a magnesium polycrystal.

Acta Mater. 78, 203–212.
Ma, R., Sun, W.C., 2021. Phase field modeling of coupled crystal plasticity and deformation twinning in polycrystals with monolithic and splitting solvers. Int.

J. Numer. Methods Engrg. 122, 1167–1189.
Mahajan, S., Williams, D.F., 1973. Deformation twinning in metals and alloys. Int. Metall. Rev. 18, 43–61.
Mareau, C., Daymond, M.R., 2016. Micromechanical modelling of twinning in polycrystalline materials: Application to magnesium. Int. J. Plast. 85, 156–171.
Miehe, C., 1996. Exponential map algorithm for stress updates in anisotropic multiplicative elastoplasticity for single crystals. Int. J. Numer. Methods Engrg. 39,

3367–3390.
Pei, Z., Sheng, H., Zhang, X., Li, R., Svendsen, B., 2018. Tunable twin stability and an accurate magnesium interatomic potential for dislocation-twin interactions.

Mat. Des. 153, 232–241.
Pei, Z., Zhang, X., Hickel, T., Friák, M., Sandlöbes, S., Dutta, B., Neugebauer, J., 2017. Atomic structures of twin boundaries in hexagonal close-packed metallic

crystals with particular focus on Mg. Npj Comput. Mat. 3, 1–7.
Petryk, H., 2020. A quasi-extremal energy principle for non-potential problems in rate-independent plasticity. J. Mech. Phys. Solids 136, 103691.
Qiao, H., Barnett, M.R., Wu, P.D., 2016. Modeling of twin formation, propagation and growth in a Mg single crystal based on crystal plasticity finite element

method. Int. J. Plast. 86, 70–92.
Rezaee-Hajidehi, M., Stupkiewicz, S., 2021. Micromorphic approach to phase-field modeling of multivariant martensitic transformation with rate-independent

dissipation effects. Int. J. Solids Struct. 222, 111027.
Rezaee-Hajidehi, M., Tůma, K., Stupkiewicz, S., 2021. A note on Padé approximants of tensor logarithm with application to Hencky-type hyperelasticity. Comput.

Mech. 68, 619–632.
Robson, J.D., Stanford, N., Barnett, M.R., 2013. Effect of precipitate shape and habit on mechanical asymmetry in magnesium alloys. Metall. Mat. Trans. A 44,

2984–2995.
Rockafellar, R.T., 1970. Convex Analysis. Princeton University Press, Princeton, New Jersey.
Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D., 2010. Overview of constitutive laws, kinematics, homogenization and multiscale

methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58, 1152–1211.
Shi, D., Liu, T., Wang, T., Hou, D., Zhao, S., Hussain, S., 2017. {10–12} Twins across twin boundaries traced by in situ EBSD. J. Alloys Compd. 690, 699–706.
Slutsky, L.J., Garland, C.W., 1957. Elastic constants of magnesium from 4.2 K to 300 K. Phys. Rev. 107, 972.
Staroselsky, A., Anand, L., 2003. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B. Int. J. Plast.

19, 1843–1864.
Steinbach, I., 2009. Phase-field models in materials science. Model. Simul. Mat. Sci. Eng. 17, 073001.
Stupkiewicz, S., Petryk, H., 2013. A robust model of pseudoelasticity in shape memory alloys. Int. J. Numer. Methods Engrg. 93, 747–769.
Tůma, K., Rezaee-Hajidehi, M., Hron, J., Farrell, P., Stupkiewicz, S., 2021. Phase-field modeling of multivariant martensitic transformation at finite-strain:

computational aspects and large-scale finite-element simulations. Comput. Methods Appl. Mech. Engrg. 377, 113705.
Tůma, K., Stupkiewicz, S., Petryk, H., 2016. Size effects in martensitic microstructures: Finite-strain phase field model versus sharp-interface approach. J. Mech.

Phys. Solids 95, 284–307.
Tůma, K., Stupkiewicz, S., Petryk, H., 2018. Rate-independent dissipation in phase-field modelling of displacive transformations. J. Mech. Phys. Solids 114,

117–142.
Van Houtte, P., 1978. Simulation of the rolling and shear texture of brass by the taylor theory adapted for mechanical twinning. Acta Metall. 26, 591–604.
Wang, L., Barabash, R., Bieler, T., Liu, W., Eisenlohr, P., 2013. Study of {112̄1} twinning in 𝛼-Ti by EBSD and laue microdiffraction. Metall. Mat. Trans. A 44,

3664–3674.
Wang, Y., Chen, L.-Q., Liu, Z.-K., Mathaudhu, S.N., 2010a. First-principles calculations of twin-boundary and stacking-fault energies in magnesium. Scripta Mat.

62, 646–649.
Wang, J., Hoagland, R.G., Hirth, J.P., Capolungo, L., Beyerlein, I.J., Tomé, C.N., 2009. Nucleation of a (1̄012) twin in hexagonal close-packed crystals. Scripta

Mat. 61, 903–906.
Wang, J.-Y., Li, N., Alizadeh, R., Monclús, M.A., Cui, Y.W., Molina-Aldareguía, J.M., LLorca, J., 2019. Effect of solute content and temperature on the deformation

mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys. Acta Mater. 170, 155–165.
Wang, H., Raeisinia, B., Wu, P.D., Agnew, S.R., Tomé, C.N., 2010b. Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet.

Int. J. Solids Struct. 47, 2905–2917.
Wang, B., Shi, J., Ye, P., Deng, L., Wang, C., Chen, J., Yang, X., Li, Q., 2018. In-situ investigation on nucleation and propagation of {10-12} twins during uniaxial

multi-pass compression in an extruded AZ31 Mg alloy. Mater. Sci. Eng. A 731, 71–79.
29

http://refhub.elsevier.com/S0022-5096(22)00068-0/sb44
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb44
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb44
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb45
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb46
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb46
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb46
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb47
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb47
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb47
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb48
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb49
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb50
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb51
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb52
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb52
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb52
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb53
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb53
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb53
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb54
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb54
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb54
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb55
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb55
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb55
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb56
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb56
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb56
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb57
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb57
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb57
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb58
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb58
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb58
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb59
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb59
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb59
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb60
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb60
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb60
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb61
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb62
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb63
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb63
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb63
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb64
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb64
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb64
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb65
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb65
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb65
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb66
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb67
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb67
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb67
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb68
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb68
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb68
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb69
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb69
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb69
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb70
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb70
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb70
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb71
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb72
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb72
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb72
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb73
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb74
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb75
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb75
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb75
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb76
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb77
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb78
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb78
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb78
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb79
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb79
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb79
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb80
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb80
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb80
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb81
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb82
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb82
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb82
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb83
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb83
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb83
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb84
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb84
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb84
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb85
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb85
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb85
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb86
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb86
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb86
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb87
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb87
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb87


Journal of the Mechanics and Physics of Solids 163 (2022) 104855M. Rezaee-Hajidehi et al.
Yaddanapudi, K., Leu, B., Kumar, M.A., Wang, X., Schoenung, J.M., Lavernia, E.J., Rupert, T.J., Beyerlein, I.J., Mahajan, S., 2021. Accommodation and formation
of {1̄012} twins in Mg-Y alloys. Acta Mater. 204, 116514.

Yoo, M.H., Lee, J.K., 1991. Deformation twinning in h.c.p. metals and alloys. Phil. Mag. A 63, 987–1000.
Yu, Q., Wang, J., Jiang, Y., McCabe, R.J., Li, N., Tomé, C.N., 2014. Twin–twin interactions in magnesium. Acta Mater. 77, 28–42.
Zhang, J., Joshi, S.P., 2012. Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J. Mech. Phys. Solids

60, 945–972.
30

http://refhub.elsevier.com/S0022-5096(22)00068-0/sb88
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb88
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb88
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb89
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb90
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb91
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb91
http://refhub.elsevier.com/S0022-5096(22)00068-0/sb91

	Deformation twinning as a displacive transformation: Finite-strain phase-field model of coupled twinning and crystal plasticity
	Introduction
	Finite-strain kinematics of deformation twinning
	Preliminaries
	Twinning as a displacive transformation
	Twinning and crystal plasticity
	Diffuse-interface description

	Variational formulation of the model
	Free energy function and micromorphic regularization
	Formulation of the rate-problem
	Governing equations in explicit form
	Time-integration scheme

	Finite-element implementation
	Illustrative examples
	Problem setup
	Study 1: on the kinematics of deformation twinning
	Study 2: single crystal under proportional tension–shear loading
	Study 3: twin transmission across grain boundary
	Study 4: microstructure evolution in a 10-grain unit cell

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Stretch-based kinematics of twinning in FCC and BCC crystals
	111112 twinning in FCC crystals
	112111 twinning in BCC crystals

	Appendix B. Supplementary data
	References


