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Adiscrete element thermal conductancemodel suitable for themodelling of heatflowbetween sintered particles
has been proposed. The model is formulated using the sintering geometry consisting of two spheres connected
with a cylindrical neck. The calculation of the neck size is based on the criterion of volume conservation. There-
fore the neck obtained is more accurate than that of the popular Coble's model. The thermal conductance is de-
termined for different neck sizes by the finite element simulations of the heat flow in half of the sintering
geometry. The numerical results are fitted with a linear relationship which is the basis to determine the equiva-
lent conductance between two sintered particles. The model can be used in the pipenetwork formulation of the
discrete element method for simulation of heat conduction problems in powder sintering or in sintered porous
materials.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sintering is a powder consolidation process in which an initially
compacted powder is heated and densified by keeping it at an elevated
temperature below themelting point. In the initial stage of sintering, co-
hesive bonds are formed between powder particles (Fig. 1). When the
sintering process is continued, the necks between particles grow due
to diffusivemass transport. The neck growth leads to a gradual elimina-
tion of porosity and macroscopic shrinkage. Sintering is used to obtain
fully dense materials (with very low porosity) [21] as well as porous
materials [23].

The discrete elementmethod (DEM) has been shown to be a suitable
tool to model sintering processes [9,12,14,24]. In the DEM, the powder
material is represented by an assembly of spherical particles. Sintering
is modelled in the DEM consideringmechanical interaction and the rel-
ative approach of bonded particles. The DEM sintering models [12,14,
24] are usually based on the two-particle sintering model developed
by Coble [3]. Although sintering is a thermomechanical problem ther-
mal effects were usually treated in a simplified way in DEMmodels of
sintering. Simulation of sintering was performed for isothermal condi-
tions [12,24], or a uniform temperature in the sintered material chang-
ing according to a prescribed time function was assumed [14].
Conventional sintering is a very slow process, so the assumption of uni-
form temperature and, as a consequence, neglecting heat transfer be-
tween particles is fully justified. Heat conduction between powder
l@ippt.pan.pl (R. Kasztelan),
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particles has been taken into account in DEM models of non-
conventional sintering, such as electrically enhanced sintering [27] or
selective laser sintering [8]. Termomechanical DEM coupled model has
been used in the simulation of high heating rate sintering [22]. The
DEM thermal model can also be useful to analyse the thermal or electri-
cal conductivity of partially sintered porous material [18].

An exact treatment of the heat conduction through sintered particles
would require a certain discretisation of particles. Finite element
discretisation of discrete elements was used to determine the evolution
of the effective thermal conductivity of the powder during spark plasma
sintering by Zhang and Zavaliangos [26]. Such modelling is, however,
computationally very expensive, and its practical use is limited to a
small number of particles.

Efficient modelling of heat conduction in the granular material is
possible using the so-called thermal pipe-networkmodel in the thermal
formulation of the discrete element model [4]. The thermal pipe net-
workmodel is the lattice type model created by truss thermal elements
connecting particle centres. Heat flow in the thermal pipe can be
expressed in terms of the average temperatures of connected particles
and a certain heat conductance parameter. The thermal pipe-network
DEMmodel has been used to evaluate the effective thermal conductiv-
ity of randomly packed granular material by Liang [7]. The network
model has been used by Roussel et al. [18] to evaluate the effective elec-
trical conductivity of a sintered porous material. The flow of electricity
can be treated in the same way as heat conduction taking advantage
of the thermal-electrical analogy [15].

The conductance of the thermal pipes is contributed by the conduc-
tance of the particles as well as by the conductance properties of the
contact interface between particles. In the case of small Biot numbers
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Fig. 1. SEM images of bonded particles during sintering – fracture of a material at an early
stage sintering: (a) nearly equal size particles, (b) unequal size particles.
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characterising the ratio of the conduction resistance within a solid body
(particle) to the conduction resistance external to the body, the heat
conduction in the particle can be neglected, which means a uniform
temperature in the particle can be assumed, and heat exchange be-
tween particles is governed by the thermal resistance/conductance of
the contact interface and temperature jump at the contact [27]. This as-
sumption is justified for small particles. Uniform temperatures within
particles have been assumed in the thermal DEM by many authors, cf.
[5,10,17,25]. This assumption has also been used in the thermal part of
the DEM thermomechanical model of the high heating rate sintering
by Teixeira et al. [22]. The interparticle conductance in the thermal con-
tact model is expressed as a function of the heat transfer coefficient and
the actual contact area.

A more general DEM thermal model is one based on the pipe net-
work approach. It can take into account both heat conduction in the par-
ticle, and if necessary, it can additionally include a contribution of the
contact interface [4,18,25]. The conductance of the thermal pipe can
be determined by solving the problem of heat between two contacting
particles numerically. The equivalent conductance for two sintered par-
ticles with various neck radii was calculated using the finite difference
method by Birnboim et al. [2]. Argento and Bouvard [1] calculated the
thermal resistance (inverse of the conductance) of two touching de-
formed spheres of equal size by the finite element method. It has been
shown by Birnboim et al. [2] and Argento and Bouvard [1] that the ther-
mal conductance can be approximated by a linear function of the radius
of contact/neck area.

Thus, the neck or contact area radius is a parameter controlling heat
flow in the thermal pipe as well as in the heat exchange at the contact.
Its determination is very important in the evaluation of heat conduction
in the discrete element method. When the DEM thermal model is ap-
plied to an assembly of loose or mechanically compacted particles, the
contact area can be determined using an appropriate mechanical con-
tact model. Gobal and Ravani [6] calculated the radius of the contact
area using the Hertzian contact model between two elastic spheres.
The contact radius between two sintered particles under compression
was evaluated by finite element computation assuming a plastic mate-
rial model by Semenov et al. [20]. It was shown that the neck radius ob-
tained from the plastic model is more than twice that of the elastic one.
Ganeriwala and Zohdi [5], Zohdi [27], and Quintana-Ruiz and Campello
[16] calculated the contact area between sintered particles as the inter-
section area of overlapping spheres. The evolution of the neck radius
during sintering can be determined by solving the diffusion problem
numerically [19]. Neck radius in the finite difference calculations of
two spheres by Birnboim et al. [2] was obtained by the numerical solu-
tion of Coble's sintering model for the surface diffusion [3]. A finite dif-
ference model was also used to determine the neck growth rate
caused by surface diffusion by Matsuda [13]. This is, however, quite an
expensive approach and difficult to use in the discrete elementmethod.
As an efficient alternative, themodel of two-particle sintering proposed
by Coble [3], and commonly used in the mechanical discrete element
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model of powder sintering, e.g. [11], is also used to determine the
neck radius in the discrete element thermalmodels of sintered particles
[18] or undergoing sintering [22].

The review presented here shows some inconsistencies of discrete
element thermal models of sintered particles. First of all, in many
models, the determination of the neck radius is based on oversimplified
assumptions. Calculation of the contact surface according to the elastic
or elastoplastic contact models, e.g. [6,20], does not correspond to the
physical phenomena occurring at the particle contact zone during
sintering, i.e. neck growth due to diffusion. Neither is the neck growth
treated appropriately in the geometrical considerations employed in
[5,16,27]. Coble's analytical formula for the neck radius based on the
sintering model and used for instance in [18,22] gives a good assess-
ment of neck size for the initial stage sintering, however as it will be
shown in this paper, it overestimates the neck size and the error in-
creaseswith the neck growth. As a result, the total volume in the system
of two particles connected by the neck is not conserved. The neck radius
is the main parameter of the conductancemodels for sintered particles,
including the model given by the relationship obtained by Argento and
Bouvard [1] and used by Roussel et al. [18]. Thismodel is suitable for the
DEM thermal formulation. It is given by a simple linear relationship, and
it is based on the analysis of heat conduction in a pair of contacting par-
ticles with a varying contact area. Here, it must be noted, however, that
in the original calculations, Argento and Bouvard [1] used the geometry
of particles deformed plastically under compressive force. The aim of
the present work is to establish a new model for the thermal conduc-
tance of sintered particles suitable for the discrete element method.
An original sintering geometry consisting of two spheres connected
with a cylindrical neck will be proposed. Unlike the popular Coble's
model, the new geometrical model will satisfy exactly the criterion of
volume conservation. Determination of the cylindrical neck size re-
quires the solution of a nonlinear problem. An efficient iterative solution
will be proposed. The proposed sintering geometry will be used to per-
form FE analysis of the heat conduction. The results of the FEM simula-
tionswill be used to determine the thermal conductance of the particle–
neck–particle neck system as a function of the neck radius. Unlike the
relationship obtained by Argento and Bouvard [1], the new model will
be based on the FE simulations on the sintering geometry.

The outline of the paper is as follows. Thermal pipe-network formu-
lation of the discrete element method is briefly described in Section 2.
The conductance parameter of the thermal pipe is introduced. Evalua-
tion of the equivalent conductance of two contacting particles by a com-
bination of contributions of the particles and the contact area is
presented in Section 3. Sintering geometries of Coble's model and the
model with a cylindrical neck are defined in Section 4. Calculation of
the cylindrical neck radius based on the criterion of mass preservation
is presented. The necks calculated in this way are compared with the
neck size in Coble's model showing the lack of volume conservation in
Coble's model. Thermal conductance of a semisphere with a neck (half
of the sintering geometry) is determined for different neck sizes with
the finite element simulation in Section 5. The numerical results are ap-
proximated with a linear analytical relationship which is the basis for
the evaluation of thermal conductance for a pair of sintered particles
which is shown in Section 6. Finally, the work is summarised, and con-
clusions are given.

2. Thermal formulation of the discrete element method

The discrete elementmethod for thermal analysis based on the ther-
mal pipe network model [4] employs a system of lumped capacitances
Ci concentrated at the particle centres given by

Ci ¼ mic , ð1Þ

where mi is the particle mass and c – the specific heat. The centres of
contacting particles are connected with the conducting bars (thermal



Fig. 3. Thermal pipe connecting two particles with a contact interface.
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pipes). The pipe network model of the heat conduction in the particle
system is shown schematically in Fig. 2.

The rate of heat storing in the lumped capacitance should be in bal-
ance with the rate heat flow through the pipes and any other contribu-
tions of heat transfer. The heat balance equation for the i-th particle can
be written in the following form:

Ci
_Ti ¼ _Qi , ð2Þ

where Ti is the average temperature of the i-th particle, and Q
·
i is the

resultant heat flow rate (heat flux) including the rate of heat
conducted through the pipes _Q

cond
ij , the rate of internal heat

generation (for instance due to Joule heating) _Q
int
i , and the rate of

heat transfer to the environment due to convection or radiation, _Q
conv
i

and _Q
rad
i , respectively

_Qi ¼ ∑
nc

j¼1

_Q
cond
ij þ _Q

int
i þ _Q

conv
i þ _Q

rad
i : ð3Þ

where nc is the number of particles in contact with the i-th particle. The
conductive heat flux Q

·
ij between particles i and j can be expressed in

terms of particle temperatures, Ti and Tj, and a certain heat
conductance parameter Kij

_Q ij ¼ K ijðTj � TiÞ ð4Þ

Determination of the heat conductance for sintered particles is the
main objective of the present paper. Eq. (2) supplemented with initial
conditions (initial particle temperatures) defines the initial value prob-
lem. The solution of this problem by an appropriate time integration
method yields the evolution of particle temperatures.

3. Equivalent conductance of a pair of particles

The equivalent conductance Kij for a pipe connecting particle centres
can be obtained by combining contributions of the particles as well as
that of the contact interface. Following [4] and taking advantage of the
analogy to the electrical resistors connected in series the equivalent
thermal resistance Rij can be expressed in terms of the constituent
resistances as follows

Rij ¼ Ri þ Rj þ Rc , ð5Þ

where Ri and Rj are resistances of the pipes representing contributions
of the respective particles, and Rc is the contact resistance. If the
contribution of the contact interface can be neglected, then

Rij ¼ Ri þ Rj : ð6Þ
Fig. 2. Pipe network model.
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Conductance and resistance are related by the inverse relationship:

K ij ¼
1
Rij

, Ki ¼ 1
Ri

, Kj ¼ 1
Rj

, Kc ¼ 1
Rc

: ð7Þ

Thus, the respective formulae for Eqs. (5) and (6) are the following:

K ij ¼
KiKjKc

KiKj þ KjKc þ KiKc
, ð8Þ

K ij ¼
KiKj

Ki þ Kj
: ð9Þ

4. Geometrical models of two particle sintering

4.1. Coble's model

The geometry assumed by Coble [3] for the two-particle sintering
model with shrinkage is shown in Fig. 4. It consists of two spheres of
radii r intersecting each other with overlap h. The neck of radius a has
concave curvature with radius ρ. The geometric parameters are linked
by the following relationship [3]:

h
2
¼ ρ ¼ a2

4r
ð10Þ
Fig. 4. Sintering geometry of two-particle Coble's model.
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Thus, for a given overlap h the neck radius a can be obtained as

a ¼
ffiffiffiffiffiffiffiffiffiffi
2r h

p
ð11Þ

The model was proposed by Coble for equal-sized particles. It can be
adapted for a pair of unequal sized particles with different radii ri and
rj substituting radius r in Eq. (11) with the effective radius r*, cf. [12]:

r� ¼ 2rirj
ri þ rj

ð12Þ

It should be remarked that Coble proposed this model for initial
sintering [3]. It is commonly accepted that it is valid for values of a/r
ratio up to 0.6 [12], however in practice, in numerical simulations, it
can be used with some corrections for larger ratios a/r [18]. Coble's
model is based on approximate geometrical relationships. Actually,
equalities in Eq. (10) are approximate. As it will be shown further,
Eq. (10) overestimates the neck size, and therefore the volume of the
particle-neck-particle system is not conserved. A simplified geometry
with the cylindrical neck will be proposed below. This simplification
will allow calculation of the neck based on the volume conservation cri-
terion.

4.2. Model with a cylindrical neck for equal-sized particles

We assume that two spherical particles of radii r undergoing
sintering are connectedwith a neckwhich can be idealised as a cylinder
of height hn and radius a. The assumed sintering geometry is shown in
Fig. 5. The distance between the particle centres d is given as

d ¼ 2r � h ð13Þ

where h is the overlap of two spheres. The aim is to determine the neck
radius a for given particle radii r and overlap h based on the criterion of
volume conservation. We observe that the volume of cylindrical neck
Vcyl must be equal to twice the volume Vcap of the spherical cap with
the radius of the base equal a and the height hc (Fig. 5):

Vcyl ¼ 2Vcap ð14Þ

which after applying the formulae for the volumes of the cylinder and
caps can be rewritten as follows:

πa2hn ¼ 2 πh2c r �
π
3
h3c

� �
ð15Þ

Eq. (15) contains three unknowns: a, hn and hc. The set of equations
will be completed with two geometrical relationships:

hn ¼ 2hc � h ð16Þ

r2 ¼ a2 þ ðr � hcÞ2 ð17Þ

Eliminating the unknowns a and hn from the set of Eqs. (15)–(17)
the following quadratic equation can be obtained for hc:
Fig. 5. Two equal particles connected by the neck.
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4h2c � 3ð2r þ hÞhc þ 6rh ¼ 0 : ð18Þ

The only physically meaningful solution of the quadratic Eq. (18) is
the following:

hc ¼
3ð2r þ hÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð2r þ hÞ2 � 96rh

q
8

: ð19Þ

Eq. (17) can be rewritten as

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rhc � h2c

q
: ð20Þ

Substituting expression (19) into Eq. (20), we obtain the explicit ex-
pression for the neck radius a based on the criterion of the volume con-
servation. The neck radius determined from Eqs. (19) and (20)
normalised with respect to the particle radius r is plotted in Fig. 6 in
comparison with the normalised neck radius according to Coble's
model given by Eq. (11) as a function of the normalised overlap. It can
be clearly seen that Coble's model overestimates the neck size. The per
cent error of the Coble's neck radius with respect to the neck radius
based on the volume preservation criterion is plotted as a function of
the normalised neck radius in Fig. 7.

4.3. Model with a cylindrical neck for unequal-sized particles

Let us consider a pair of spherical particles of radii ri and rj (ri < rj)
undergoing sintering (Fig. 8). The distance between the particle
centres d is known, so the particle overlap h (h > 0) is given by

h ¼ ri þ rj � d : ð21Þ

We assume the sintering neck connecting particles can be idealised
as a cylinder of height hn and radius a. The neck radius cannot be
larger than the radius of the smaller particle: a ≤ ri.

The aim is to determine the neck radius a satisfying the requirement
of volume preservation. The volume is preserved if the volume of cylin-
drical neck Vcyl is equal to the volumes Vcap(i) and Vcap(j) of the spherical
caps being the intersections of the cylindrical neck and the particles
(Fig. 8):

Vcyl ¼ VcapðiÞ þ VcapðjÞ ð22Þ

The radius of the bases of the caps is equal a, and their heights are hci
and hcj. Substituting the formulae for the volumes of the cylinder and
spherical caps into Eq. (22) we obtain

πa2hn ¼ πh2cir �
π
3
h3ci þ πh2cjr �

π
3
h3cj ð23Þ
Fig. 6. Neck radius as a function of overlap for the same size particles.



Fig. 7. Percent error of the neck radius according to the Coble's model as a function of the
normalised neck radius.
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Eq. (23) contains four unknowns: hci, hcj, a and hn. The set of
equations will be completed with three geometrical relationships:

hn ¼ hci þ hcj � h ð24Þ

r2i ¼ a2 þ ðri � hciÞ2 ð25Þ

r2j ¼ a2 þ ðrj � hcjÞ2 ð26Þ

It would be difficult to obtain a closed-form solution of the problem
defined by the set of Eqs. (23)–(26). We will present a numerical solu-
tion to this problem.

Let us rewrite Eq. (23) as

Z ¼ 3a2hn � h2cjð3rj � hcjÞ � h2cið3ri � hciÞ ¼ 0 ð27Þ

and Eqs. (25) and (26) in the following form:

hci ¼ ri �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i � a2

q
ð28Þ

hcj ¼ rj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j � a2

q
ð29Þ

It can be easily noted that Z introduced in Eq. (27) is an implicit function
of a:

Z ¼ Zða,hciðaÞ, hcjðaÞ,hnðhciðaÞ, hcjðaÞÞÞ ð30Þ

where hci(a), hcj(a), and hn(hci(a), hcj(a)) are defined by Eqs. (28), (29)
and (24), respectively. Function Z for ri = 1 mm, rj = 3 mm, and h =
0.2 mm has been calculated in the interval a = [0, ri] and plotted in
Fig. 9a).

The nonlinear Eq. (27) can be solved using a suitable numerical
method, such as the bisection or Newton's method. Newton's method
requires evaluation of the derivative Z′(a) which can be calculated
using the chain rule for implicit differentiation:
Fig. 8. Two particles of different size connected by the neck.
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Z0ðaÞ ¼ dZ
da

¼ ∂Z
∂a

þ ∂Z
∂hci

dhci
da

þ ∂Z
∂hcj

dhcj
da

þ ∂Z
∂hn

∂hn
∂hci

dhci
da

þ ∂hn
∂hcj

dhcj
da

 !
ð31Þ

The successive iterations in the Newton's method can be presented
generally as

ai ¼ ai � 1 � Zðai � 1Þ
Z0ðai � 1Þ

ð32Þ

The Coble's radius is a good starting point for the Newton's method:

a0 ¼ aCoble ð33Þ

The Newton's solutionwith the Coble's neck radius aCoble taken as a0
is presented graphically in Fig. 9b). Since the difference is not so large
even the first iteration

a1 ¼ aCoble � ZðaCobleÞ
Z0ðaCobleÞ

ð34Þ

gives very good approximation of the neck radius a. In the case pre-
sented in Fig. 9, the value of the neck radius obtained by Newton's
method with 6-digit accuracy is a=0.741466mm, the Coble's solution
is 0.774597 mm (error 4.47%), and the first iteration gives a1 =
0.745039 mm, which gives an error of 0.48%.

The neck radii for different particle size ratio rj/ri obtained by the
Newton's method are plotted in Fig. 10. The difference between the
neck radii according to the Coble's model and those obtained from the
volume preservation criterion is illustrated in Fig. 11 by the per cent
error.

5. Thermal conductance of a semisphere with a neck

The effective conductance Kij a thermal pipe connecting the centres
of a pair of sintered particles will be evaluated by combining
contributions (conductances Ki and Kj) of the particles according to
formulae presented in Section 3. The conductance Ki in a pair of equal
size particles will be determined for considering heat conduction
through the half of the sintering geometry shown in Fig. 5. Definition
of geometry and boundary conditions for the thermal problem is
presented in Fig. 12. The segment of a sphere of radius r = 10 mm
with the bases of radii r and a is combined with the cylinder of radius
a and height hn/2. A number of cases with different a (0 < a < r) corre-
sponding to different overlaps h have been analysed. The neck radius a
and height hn have been determined using Eqs. (19) and (20).

The steady-state heat conduction problem has been analysed. The
insulation of the lateral surface and prescribed temperatures 10∘C at
the top surface and 0∘C at the bottom surface have been assumed as
boundary conditions. Thermal properties of copper have been assumed
with the thermal conductivity κ = 394 W/(m·∘C). The geometry has
been discretised with four-node axisymmetric quadrilateral finite ele-
ments. The heat conduction analysis has been performed using the
Abaqus finite element program. The results for the four analysed cases
are presented in Fig. 13 in the form of temperature distribution. It can
be observed that the necks affect the temperature field. Higher temper-
ature gradients across the necks, especially close to the intersection of
the cylindrical and spherical surfaces, can be observed. According to
Fourier's thermal conductance law, the higher temperature gradient
∇T the higher heat flux density q is:

q ¼ � κ∇T : ð35Þ

Fig. 14 shows the distribution of themagnitude of the heat flux den-
sity q. Higher thermal fluxes can be noticed in the necks, and their con-
centration close to the neck–particle connections is manifested. This
effect is more pronounced for smaller neck sizes.



Fig. 9. Function Z vs. neck radius a for ri = 1 mm, rj=3mm, and h = 0.2 mm: (a) overall graph, (b) zoom.
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The simulation results have been used to determine the equivalent
conductance of the semispherewith the cylindrical neck. The equivalent
conductance Ki of the sintering geometry analysed here can be
determined as follows

Ki ¼
_Q

ΔT
ð36Þ

where ΔT is the temperature difference between the top and bottom,
and Q

·
is the heat flow rate measured in J/s through any horizontal

cross-section of the analysed geometry. The heat flow rate can be easily
calculated by summing its nodal values at the top or bottom surface,
which are evaluated in the FEM calculations

_Q ¼ ∑ _Qi ð37Þ

In order to ensure sufficient accuracy of the convergence of the solu-
tion with mesh refinement has been studied for all the cases. Conver-
gence of the values of the equivalent conductance with the increasing
number of elements across the neck height for the case h/r = 0.08 has
been plotted in Fig. 15. It is shown that with the increase of the number
of elements (decrease of the element size) a nearly steady value of the
equivalent conductance is obtained. The equivalent conductance Ki

has been evaluated in this way for all the cases and normalised with
respect to the conductance Kcyl of the cylinder of radius r and height r.
The conductance of the cylinder Kcyl has been obtained as

Kcyl ¼ κ
Acyl

Lcyl
ð38Þ
Fig. 10. Neck radius as a function of overlap for different size particles.
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where κ is the conductivity of the material, Lcyl is the cylinder height,
Lcyl = r, and Acyl is the cylinder cross-section area

Acyl ¼ πr2 : ð39Þ

The ratio Ki/Kcyl is plotted as a function of the cylindrical neck radius
normalised with respect to the particle radius r in Fig. 16.

It can be seen in this figure that the relationship between Ki/Kcyl and
a/r up to nearly a/r = 0.7 has a linear character. The numerical results
can be fitted by the linear approximation

K
Kcyl

¼ 1:064
a
r

ð40Þ

The results presented here are consistent with the results obtained
by Argento and Bouvard [1] who calculated the thermal resistance (in-
verse of the conductance) of two touching deformed spheres of equal
size by the finite element method. The numerical results for different
stages of particle deformation were fitted with the analytical
realtionship:

Rij

Rcyl
¼ 0:899

a
r

� � � 1
ð41Þ

where Rij = 1/Kij is the thermal resistance of two deformed spheres in
contact, r – the sphere radius, a – the contact radius, and Rcyl – the ther-
mal resistance of a cylinder of radius r and height 2r. The relationship
(41) can be rewritten in terms of conductances as follows
Fig. 11. Percent error of the Couble radius with respect to volume preservation solution.



Fig. 12. Semisphere with a neck – definition of geometry and thermal boundary condi-
tions.
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K
Kcyl

¼ 1
0:899

a
r
¼ 1:112

a
r

ð42Þ

The difference of the slope obtained in our simulations with respect
to that obtained by Argento and Bouvard [1] is around 3%. It must be re-
membered that the geometry used in both studies was different.
Argento and Bouvard [1] used the deformed configuration of two
spheres under compression, and here the idealised sintering geometry
has been used.
Fig. 13. Temperature (in ∘C) distribution for different neck sizes: (a) h/r=0.02, a/r=0.19934,
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6. Determination of the equivalent conductance of a pair of bonded
particles

The linear relationship (40) plotted in Fig. (16) can be used to deter-
mine the conductance of the thermal pipe representing two sintered
particles. In order to simplify further calculations let us substitute
Eqs. (38) and (39) into Eq. (40). Then the conductance K can be ob-
tained as follows:

K ¼ 1:064
a
r
Kcyl ¼ 1:064

a
r
κ
Acyl

Lcyl
¼ 1:064

a
r
κ
πr2

r
¼ 1:064κπa ð43Þ

It is interesting to observe that according to Eq. (43) the conductance
K does not depend explicitly on r. Thismeans that different size particles
connected with a neck of radius a have equal conductances.

The use of Eq. (40) or Eq. (43) for equal size particles does not need
any additional justification since simulations in Section 5 have beenper-
formed for the sintering geometry of equal size particles. Validity of the
relationships (40) aswell as (43) will be checked performing additional
finite element simulation. Let us consider two sintered particles of radii
ri and rj made of material with thermal conductivity κ, and the distance
between the centres dij. The procedure to determine the equivalent
conductance Kij of the conisdered pair of particles would be the
following:

1 The overlap h is determined from Eq. (21) as

h ¼ ri þ rj � d ð44Þ
(b) h/r=0.08, a/r=0.3946, (c) h/r=0.2, a/r=0.610573, (d) h/r=0.4, a/r=0.829653.



Fig. 14.Distribution of themagnitude of heatflux (inW/m2) for different neck sizes: (a) h/r=0.02, a/r=0.19934, (b) h/r=0.08, a/r=0.3946, (c) h/r=0.2, a/r=0.610573, (d) h/r=0.4,
a/r = 0.829653.
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2 If h > 0 the neck radius a is calculated: (i) using Eqs. (19) and (20) if
ri = rj, (ii) using Newton's solution of Eq. (27) if ri ≠ rj

3 Conductances Ki and Kj of the parts of the sintering geometry
associated with each semisphere are calculated from Eq. (43).

4 Conductance Kij of the thermal pipe connecting two particles is
calculated from Eq. (9). Taking into account that according to
Eq. (43) Ki = Kj Eq. (9) yields
Fig. 15. Convergence of the solution with mesh refinement (h/r = 0.08, a/r = 0.3946).
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K ij ¼
Ki

2
¼ Kj

2
: ð45Þ

Let us apply the above procedure to two copper particles of radii ri=
1 mm and rj = 3 mm with overlap h = 0.06 mm. The copper thermal
Fig. 16. Conductance of semispheres with necks as a function of neck radius.



Fig. 17. Temperature (in ∘C) distribution in the system of two different size particles,
rj/ri = 3.
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conductivity κ = 394 W/(m·K) is taken. The neck radius obtained by
Newton's method with 6-digit accuracy is a = 0.419186 mm. The con-
ductances Ki and Kj are calculated from Eq. (43) as:

Ki ¼ Kj ¼ 1:064 � 394 � π � 0:419186 � 10 � 3 W=K ¼ 0:55207 W=K

The equivalent conductance for the pair of particles is given by Eq. (45)

K ij ¼ Ki=2 ¼ 0:276035 W=K

Now, the equivalent problem will be determined numerically. The
methodology described in Section 5 will be applied to the sintering ge-
ometry of unequal size particles shown in Fig. 8 taking ri = 1mm, rj =
3 mm, h = 0.06 mm a = 0.419186 mm. The same value of thermal
conductivity as above κ = 394 W/(m·K) is assumed. The steady-state
heat flow is analysed for prescribed prescribed temperatures 10∘C at
the top surface and 0∘C at the bottom surface and the isolated lateral
surface as boundary conditions. The problem has been analysed as axi-
symmetric. The geometry has been discretised nonuniformly with
quadrilateral axisymmetric finite elements. Themeshwith the distribu-
tion of temperature is shown in Fig. 17. It is interesting to observe that
half of the temperature difference is at the neck, this means that the
drop of temperature in both semispheres is equal, so their conduc-
tances/resistances are equal as predicted by Eq. (43).

The equivalent conductance Kij of the sintering geometry analysed
here has been obtained using Eq. (36). The convergence study with a
mesh refinement has been performed. The converged solution has
given the equivalent conductance Kij = 0.278033 W/K, which agrees
very well with the value 0.276035 W/K calculated from the linear
relationship (43).

7. Conclusions

A newmodel to determine the conductance of the thermal pipe rep-
resenting heat flow between sintered particles has been proposed. Un-
like the geometry of Coble's model, the sintering geometry of the new
model ensures volume conservation. The neck size can be evaluated ef-
ficiently usingNewton's solutionwithCoble's neck radius as the starting
point. A linear relationship has been established between the conduc-
tance and the neck radius in a broad range of neck radius (up to nearly
0.7 of the smaller particle radius). The neck radius is themain parameter
controlling heat flow. Therefore, the accuracy of the neck radius is im-
portant in the determination of thermal conductance. The thermal con-
ductance model presented in this paper should have the same range of
9

application as Coble's sintering model, i.e. it should be valid for initial
stage sintering. Themodel can be used in the pipe-network formulation
of the discrete element method for the simulation of heat conduction
problems in powder undergoing sintering or in partially sintered porous
materials.
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