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Abstract: In the present work, the compatibility relationship on the failure criteria between aluminium
and polymer was established, and a mechanics-based model for a three-layered sandwich panel
was developed based on the M-K model to predict its Forming Limit Diagram (FLD). A case study
for a sandwich panel consisting of face layers from AA5754 aluminium alloy and a core layer from
polyvinylidene difluoride (PVDF) was subsequently conducted, suggesting that the loading path
of aluminium was linear and independent of the punch radius, while the risk for failure of PVDF
increased with a decreasing radius and an increasing strain ratio. Therefore, the developed formability
model would be conducive to the safety evaluation on the plastic forming and critical failure of
composite sandwich panels.

Keywords: formability; M-K model; failure criteria; composite sandwich panel

1. Introduction

The Forming Limit Diagram (FLD) is a mature method to describe the formability of
sheet metals. The right side of the FLD, representing positive minor and major strain, was
proposed by Keeler and Backofen [1] and subsequently extended by Goodwin [2] with
the addition of the negative minor strain. As the metals exhibit different behaviour at
various strain rates and temperatures, multiple Forming Limit Curves (FLCs) are generally
presented on a single FLD, of which biaxial strain states could represent necking and
subsequent failure.

The Nakajima test is one of the most commonly used methods to determine the FLD,
and has been defined in standards such as ISO 12004-2 [3] and BSI 12004-2 [4], in which
an upper and lower die with draw beads are applied to ensure the flow of the sheet metal
along the perimeter of the hole, and a hemispherical punch is used to plastically deform the
material. Sheet metal samples are designed with different widths, which leads to a varied
strain ratio between the lateral direction (minor strain) and longitudinal direction (major
strain). In order to demonstrate a linear strain ratio evolution (loading path), a lubricant is
used to minimise the friction. Consequently, the samples with different strain ratios are
able to capture linear loading paths, and their critical strains at the verge of necking could
be recorded on FLCs. The FLD is subsequently generated by obtaining multiple critical
strains from different sample designs.

Theoretical FLD prediction models have been the subject of significant research, with
the development of models including the Swift’s diffuse necking model [5], Hill’s localized
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necking model [6], the bifurcation analysis-based models [7] and the Marciniake-Kuczynski
(M-K) model [8]. Especially, the M-K model enabled the prediction of forming limits for var-
ious metals, such as 2060 aluminium alloy [9], 7075 aluminium alloy [10], DP1180 steel [11]
and DC01 low-carbon steel [12] at different loading paths, strain rates and elevated tem-
peratures. When combined with the rate-dependent plasticity, polycrystal, self-consistent
(VPSC) model, the model was able to realistically predict the fracture behaviour of met-
als [13]. The fracture angle and local inhomogeneous deformation bands could also be
predicted by considering the effect of plastic anisotropy into the model [14]. In addition
to the FLD, a generalised forming limit diagram (GFLD) allowing proportional loading
with all six independent stress components could be obtained by using the M-K model [15],
which has been applied to the prediction of the mesoscaled deformation of clad foils [16].

In recent years, sandwich panels bonded by a polymer as the core layer and metals as
the skin layers are being increasingly applied to the construction [17–19], aircraft [20,21]
and automobile sectors [22] due to the excellent strength/stiffness-to-weight ratio, thermal
insulation, bearing capacity and cost-effectiveness [23]. Among them, sandwich panels
made from aluminium alloys and polyvinylidene difluoride (PVDF) have found particu-
lar applications on lightweight sealing and insulating components due to PVDF’s strong
chemical resistance, oxidation resistance and shock resistance. Moreover, the range of appli-
cations increased by the inclusion of multiwalled carbon nanotubes (MWCNT) reinforced
honeycomb structures to enhance the damping effect [24,25]. At present, a great challenge
on the application of the sandwich panels is that the core polymer layer is found to fail
earlier than the skin metal layer due to its low resistance to normal pressure. In order to
increase the formability of polymer layers, polyethylene [26], polymethyl-methacrylate
(PMMA) [27] and polypropylene-polyethylene [28] were applied as adhesion layers. In
addition, a density-based topology optimization method was designed and integrated
with a multistage algorithm (GA) to optimise the formability of the carbon-fibre-reinforced
thermoplastics as the core material of the sandwich panels [29]. To this end, although great
efforts have been made to improve the performance of these metal-polymer sandwich
panels, the fracture mode and crack propagation of polymers is different to those of metals,
leading to lower FLCs and thus earlier failure of the polymer layers [30]. However, the
traditional FLD model is not capable of predicting the formability of composite materials,
resulting in inaccurate failure prediction of the sandwich panels.

In order to overcome this limitation, the compatibility relationship on the failure
criteria between aluminium and polymer layers was established in the present work, and a
mechanics-based model for a three-layered sandwich panel was subsequently developed
based on the M-K model to predict its formability. Consequently, the critical failures of the
sandwich panel at various strain ratios and curvature radii were predicted. Furthermore,
the analytical failure solution of the sandwich panel consisting of two AA5754 aluminium
alloy layers and a polyvinylidene difluoride (PVDF) layer was presented as a case study,
demonstrating the curvature-radius-dependent FLD.

2. The Mechanics-Based Analysis of the Nakajima Test with Sandwich Panels
2.1. Principles of Plastic Deformation

The Logan-Hosford yield criterion [31] was applied as the principle to describe the
anisotropic behaviour of metal layers under the plane stress state:

R2σl
1 + R1σl

2 + R1R2(σ1 − σ2)
l = R2(R1 + 1)σl (1)

R1(2dε2 + dε1)
l + R2(2dε1 + dε2)

l + R1R2(dε1 − dε2)
l = R2(R1 + 1)dεl (2)

where R1 and R2 were the r-values in the first and second principal directions, and l was
a material constant. If a stress ratio was defined as α = σ2/σ1, Equation (1) could be
rewritten as:

[R2 + R1αl + R1R2(1− α)l ]σl
1 = R2(R1 + 1)σl (3)
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The external loading path was assumed as linear, leading to a constant strain ratio
β = dε2/dε1 = ε2/ε1. Consequently, the equivalent strain was expressed as:

[R1(2β + 1)l + R2(β + 2)l + R1R2(1− β)l ]εl
1 = R2(R1 + 1)εl (4)

The constitutive relationship of the sheet metal was described as a power law between
the flow stress and plastic deformation, where K was the strength coefficient and n was the
strain-hardening exponent:

σ = Kεn (5)

The associate flow rule was used to describe the plastic flow behavior as Equation (6)
by defining a positive scaler dλ, in order to establish the relationship between dεij and
∂σ/∂σij. As a result, the strain ratio β could be expressed as a function of the stress ratio α,
as shown in Equation (8).

dεij = dλ
∂σ

∂σij
→ dλ = dεij/

∂σ

∂σij
(6)

dε1

R2σl−1
1 + R1R2(σ1 − σ2)

l−1 =
dε2

R1σl−1
2 − R1R2(σ1 − σ2)

l−1 (7)

β =
R1α− R1R2(1− α)l−1

R2 + R1R2(1− α)l−1 (8)

2.2. Strain and Stress Analysis of Sandwich Panels

In the Nakajima tests, the friction was generally ignored in the derivation under the
lubricated conditions. Therefore, the failure would occur at the apex of the dome in the
frictionless case. Figure 1 shows the stress state at an infinitesimal apex element in a single
metal layer, of which the stress equilibrium along the thickness direction was derived as:

2σ1tRdθ sin
dϕ

2
+ 2tRdϕ sin

dθ

2
= pR2dθdϕ (9)

where R was the radius of the punch, t was the thickness at the deformed stage, and p was
the contact pressure between the sheet and forming tools on the element. Considering that
sin dϕ

2 ≈
dϕ
2 and sin dθ

2 ≈
dθ
2 for the infinitesimal elements, the stress equilibrium equation

could be simplified as:
(σ1 + ασ1)t = pR (10)

The stress equilibrium equation was modified for the three-layered sandwich panel,
consisting of two skin metal layers (layer I and III) and one core polymer layer (layer II),
as shown in Figure 2. For each layer, Equations (9) and (10) remained valid as long as
the contact pressure was amended to the pressure difference between the top and bottom
surfaces, considering that the contact pressure decreased from the inner face to the outer
face. Thus, the stress equilibrium was developed as Equations (11)–(13):

(σI
1 + αIσI

1)t
I = (p1 − p2)R (11)

(σI I
1 + αI IσI I

1 )tI I = (p2 − p3)R (12)

(σI I I
1 + αI I IσI I I

1 )tI I I = (p3 − p4)R (13)

where σI
1 , σI I

1 and σI I I
1 were the first principal stresses on each layer, tI , tI I and tI I I were the

thicknesses of each layer at the deformation stage, and p1, p2, p3 and p4 were the contact
pressures on each contact surface.
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Based on the volume constancy, the relationship between the initial thickness and the
first principal strain, ε1 could be derived as:

ln
tI/I I/I I I

tI/I I/I I I
0

= ε3 = −ε1 − ε2 = −(1 + β)ε1 (14)

where tI/I I/I I I
0 was the initial thickness of each layer. Note that the strain components and

strain ratio β in the three layers were the same, due to the compatibility.
By eliminating tI , tI I and tI I I in Equations (11)–(14), the relationship of strains was

simplified as:

R · exp[(1 + β)ε1] =
tI
0σI

1(1 + αI)

p1 − p2
=

tI I
0 σI I

1 (1 + αI I)

p2 − p3
=

tI I
0 σI I I

1 (1 + αI I I)

p3 − p4
(15)

2.3. Failure Criteria of Polymer Layer

A critical normal pressure pcp was defined as the failure criteria of the polymer layer.
Thus, the boundary conditions at failure were the contact pressure p2 = pcp applied on



Materials 2022, 15, 4140 5 of 12

the polymer layer and p4 = 0 applied on the skin layer. As a result, Equation (15) was
rewritten as:

R · exp[(1 + β)ε1] =
tI
0σI

1(1 + αI)

p1 − pcp
=

tI I
0 σI I

1 (1 + αI I)

pcp − p3
=

tI I I
0 σI I I

1 (1 + αI I I)

p3
(16)

Combining Equations (3) and (4), the power law of Equation (5) was modified
as below:

[
R2 + R1αl + R1R2(α− 1)l

R2(R1 + 1)
]

1/l

σ1 = K[
R2(β + 2)l + R1(2β + 1)l + R1R2(β− 1)l

R2(R1 + 1)
]

n/l

εn
1 (17)

By eliminating σI/I I/I I I
1 in Equation (16),

R · exp[(1 + β)ε1]

1 + αI =
tI
0K Iεn

1[
RI

2(β+2)l I
+RI

1(2β+1)l I
+RI

1RI
2(β−1)l I

RI
2(RI

1+1)
]
nI /l I

(p1 − pcp)[
RI

2+RI
1αl I +RI

1RI
2(α−1)l I

RI
2(RI

1+1)
]
1/l I (18)

R · exp[(1 + β)ε1]

1 + αI I =
tI I
0 K I Iεn

1[
RI I

2 (β+2)l I I
+RI I

1 (2β+1)l I I
+RI I

1 RI I
2 (β−1)l I I

RI I
2 (RI I

1 +1)
]
nI I /l I I

(pcp − p3)[
RI I

2 +RI I
1 αl I I +RI I

1 RI I
2 (α−1)l I I

RI I
2 (RI I

1 +1)
]
1/l I I (19)

R · exp[(1 + β)ε1]

1 + αI I I =
tI I I
0 K I I Iεn

1[
RI I I

2 (β+2)l I I I
+RI I I

1 (2β+1)l I I I
+RI I I

1 RI I I
2 (β−1)l I I I

RI I I
2 (RI I I

1 +1)
]
nI I I /l I I I

p3[
RI I I

2 +RI I I
1 αl I I I +RI I I

1 RI I I
2 (α−1)l I I I

RI I I
2 (RI I I

1 +1)
]
1/l I I I (20)

By eliminating p3 in Equations (19) and (20),

pcp · R · exp[(1 + β)ε1] =

tI I
0 KI I εn

1 [
RII

2 (β+2)l
I I
+RII

1 (2β+1)l
I I
+RII

1 RII
2 (β−1)l

I I

RI I
2 (RII

1 +1)
]

nII /l I I

·(1+αI I)

[
RII

2 +RII
1 αl I I

+RII
1 RII

2 (α−1)l I I

RI I
2 (RII

1 +1)
]

1/l I I

+
tI I I
0 KI I I εn

1 [
RII I

2 (β+2)l
I I I

+RII I
1 (2β+1)l

I I I
+RII I

1 RII I
2 (β−1)l

I I I

RI I I
2 (RII I

1 +1)
]

nII I /l I I I

·(1+αI I I)

[
RII I

2 +RII
1 αl I I I

+RII I
1 RII I

2 (α−1)l I I I

RI I I
2 (RII I

1 +1)
]

1/l I I I

(21)

If the strain ratio β and other material constants were given, αI I and αI I I could be
calculated by Equation (8), resulting in the only unknown factor, ε1 in Equation (21), which
would be solved numerically. It should be noted that the solution might not exist, due
to the fact that the term on the left side of Equation (21) (Term 1) increased exponentially
with increasing ε1, while the term on the right side (Term 2) increased polynomially. This
indicated that Term 1 increased at a higher rate than that of Term 2 after a given point,
where the derivative of each side was equal. Thus, there were four bifurcation conditions,
as shown in Figure 3:

(a) If Term 1 was always larger than Term 2, no solution existed, suggesting that the
sandwich panel would not fail as the failure criteria of the polymer layer was not met;

(b) If Term 1 was larger than Term 2 when ε1 = 0 and the two terms became equal at a
given point, where the derivative of each was equal, a unique solution existed;
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(c) If Term 1 was larger than Term 2 when ε1 = 0 and it became smaller at a given point,
where the derivative of each was equal, two solutions existed, of which the smaller
one was true as the failure occurred and the increase in ε1 terminated;

(d) If Term 1 was smaller than Term 2 when ε1 = 0, a unique solution existed.
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initially larger than Term 2 and became smaller at a given point; (d) Term 1 was smaller than Term 2.

It was advised to limit the solution domain to be positive with an initial estimate of
0 when solving Equation (21). Once ε1 was solved, the pressure on each interface could be
obtained by using Equations (18)–(20).

2.4. Failure Criteria of Metal Layers

The M-K model [8] was applied to determine the forming limit of the metal layers,
assuming that a perfection Zone a and an imperfection Zone b coexisted in the metal layers,
while a perfection Zone a existed in the polymer layer, as shown in Figure 4. Once the
failure criterion of Equation (22) was met, the metal layers failed.

dεI/I I I
3b

dεI/I I I
3a

=
ε3b,i − ε3b,i−1

ε3a,i − ε3a,i−1
> 10 (22)

In order to activate the failure criteria of the metal layers, an initial geometrical
nonhomogeneity along the thickness direction, known as the ‘imperfection factor f ’, was
defined as Equation (23), which had evolved from the initial imperfection factor f0. The
upper script I/III was neglected to simplify the derivation of the M-K model.

f =
tb
ta

, f0 =
tb0
ta0

(23)

where ta and tb were the instantaneous thicknesses of Zones a and b, while ta0 and tb0 were
the initial thickness of Zones a and b. The relationship between the imperfection factor and
the initial imperfection factor was derived as:

ε3a = ln(
ta

ta0
)⇒ ta = ta0 exp(ε3a) (24)
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ε3b = ln(
tb
tb0

)⇒ tb = tb0 exp(ε3b) (25)

f = f0 exp(ε3b − ε3a) (26)
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The application of the external loading on Zone a led to a constant stress ratio αa and
strain ratio βa. ε1a was assumed to grow by dε at any step, ε2a could be calculated based on
the linear loading assumption and ε3a could be derived considering the volume constancy:

ε1a,i = ε1a,i−1 + dε (27)

ε2a,i = βaε1a,i (28)

ε3a,i = −(ε1a,i + ε2a,i) = −(1 + βa)ε1a,i (29)

The first principal stress could be calculated from the modified power law in
Equation (17):

σia,i =
K[ R2(βa+2)l+R1(2βa+1)l+R1R2(βa−1)l

R2(R1+1) ]
n/l

[ R2+R1αl+R1R2(α−1)l

R2(R1+1) ]
1/l · εn

1a,i (30)

Subsequently, σ2a could be expressed by using the stress ratio in Equation (31), and
σ3a was assumed to be 0 for metal sheets.

σ2a,i = αaσ1a,i (31)

The stress and strain states on Zone b were predicted considering the compatibility of
strain and equilibrium of stress between the two zones:

ε2b,i = ε2a,i (32)

σ1b,i =
1
f

σ1a,i = −
σ1a,i

f0 exp(ε2b,i/βb,i + ε2b,i + ε3a,i)
(33)

Note that the loading path of Zone b was not linear but followed the compatibility
relationship with Zone a; thus, βb,i was changed for a different step i.

The plastic deformation of Zone b could be modelled based on the modified power
law of Equation (17):

[
R2+R1αl

b,i+R1R2(αb,i−1)l

R2(R1+1) ]
1/l

· σ1a,i
f0 exp(ε2b,i/βb,i+ε2b,i+ε3a,i)

+K[ R2(βb,i+2)l+R1(2βb,i+1)l+R1R2(βb,i−1)l

R2(R1+1) ]
n/l
· ( ε2b,i

βb,i
)

n
= 0

(34)
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From Equation (8), the strain ratio on Zone b was expressed as:

βb,i =
R1αb,i − R1R2(1− αb,i)

l−1

R2 + R1R2(1− αb,i)
l−1 (35)

By substituting Equation (35) into Equation (34), αb,i remained the only unknown in
Equation (34). After solving for αb,i from Equation (34), all the stress and strain components
on Zone b could be derived accordingly. In order to numerically solve the model constants,
it was necessary to define εI/I I/I I I

1c as the limit major strain of each layer. Specifically, ε1c
and ε2c had to be defined as the limit major and minor strain of the sandwich panel. The
flow chart of the analytical model is shown in Figure 5.
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Figure 5. Flow chart of the model.

3. Case Study

In the case study that follows, the model was applied to a sandwich panel, which was
produced by combining two skin layers of AA5754 aluminium alloy with a thickness of
1 mm and one core layer of polyvinylidene difluoride (PVDF) with a thickness of 0.1 mm.
The properties of AA5754 and PVDF are presented in Table 1 [32,33]. The imperfection
factor of AA5754 was set to 0.95. The failure prediction was conducted at a punch radius
range between 80 to 180 mm.

Table 1. Mechanical properties of AA5754 and PVDF.

Material R1 R2 σ0 [MPa] K [MPa] n l

AA5754 0.73 0.69 0 474 0.317 8
PVDF 1 1 0 6.51 0.465 2
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Figure 6 shows the FLCs of PVDF and AA5754 under different punch radii. The blue
curves represent the critical failure of the AA5754 layers (since the properties of the two
aluminium layers were the same and thus the results coincided) and followed a typical
V-shape, indicating that the loading path was linear and independent of the punch radius.
The green curves represent the critical failure of the PVDF layer, which was significantly
dependent on the punch radius. Specifically, when the punch radius was small (R = 80 or
100 mm), the FLC of PVDF was much lower than that of AA5754. However, the FLC of
PVDF increased with an increasing radius. When the radius reached 120 mm, a part of the
FLC was greater than that of AA5754, suggesting that the PVDF layer would not fail before
the AA5754 layer. Meanwhile, the critical failure of PVDF was not solved by the model
at some low strain-ratio values, indicating that the polymer would not fail under those
conditions. When the radius increased to 180 mm, no critical failure of PVDF was predicted
at all, suggesting that the entire layer was safe regardless of the strain state. The FLCs of
PVDF and AA5754 under different punch radii were combined, as shown in Figure 7, to
generate a curvature-radius-dependent FLD. As can be seen, it was found that the risk for
failure of PVDF increased with a decreasing radius and an increasing strain ratio.
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Figure 7. Curvature-radius-dependent FLD for the sandwich panel.

It should be noted that each FLC in Figure 6 could be used to determine the formability
of a sandwich panel in a Nakajima test under certain punch radii and strain ratios. However,
different regions of a complex-shaped component may withstand various punch radii and
strain ratios, which may even vary during forming. Therefore, it is necessary to combine
the developed model and a finite element method to predict the evolutionary formability
of each element when forming complex-shaped sandwich panels [24,25]. In addition, the
developed model has the potential capability of predicting the formability of sandwich
panels made from other composite materials with multiple layers by using the proposed
compatibility relationship of the failure criteria between polymers and metals.

4. Conclusions

In the present research, an analytical formability model for the sandwich panel has
been developed and its capability has been demonstrated by predicting the critical failure
of a sandwich panel consisting of two skin AA5754 layers and a core PVDF layer as a case
study. The main conclusions from the work were summarised as follows:

• The failure of the polymer layer was curvature-radius dependent. At a small radius,
the polymer layer readily failed, while at a large radius, the sandwich panel would be
more formable. This feature contributed to the curvature-radius-dependent FLD of
the sandwich panel.

• Under the same punch radius/curvature, the polymer layer always failed rapidly at a
larger strain ratio. The worst case was the equi-biaxial (β = 1) loading path.

• The developed FLD model overcame the limitation of traditional FLD models and was
capable of predicting the formability of sandwich panels made from composite materials.

The work in this study provided a safety evaluation and theoretical guidance on the
plastic forming and critical failure of composite sandwich panels for lightweight sealing
and insulating component applications. It is recommended that subsequent studies con-
duct Nakajima tests and forming trials of complex-shaped components to experimentally
verify the formability of the applied composite material and validate the developed model
proposed in this study.
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