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Abstract

Nucleosomes are recognized as key regulators of transcription. However, the relationship

between slow nucleosome unwrapping dynamics and bulk transcriptional properties has

not been thoroughly explored. Here, an agent-based model that we call the dynamic defect

Totally Asymmetric Simple Exclusion Process (ddTASEP) was constructed to investigate

the effects of nucleosome-induced pausing on transcriptional dynamics. Pausing due to

slow nucleosome dynamics induced RNAPII convoy formation, which would cooperatively

prevent nucleosome rebinding leading to bursts of transcription. The mean first passage

time (MFPT) and the variance of first passage time (VFPT) were analytically expressed in

terms of the nucleosome rate constants, allowing for the direct quantification of the effects

of nucleosome-induced pausing on pioneering polymerase dynamics. The mean first pas-

sage elongation rate γ(hc, ho) is inversely proportional to the MFPT and can be considered

to be a new axis of the ddTASEP phase diagram, orthogonal to the classical αβ-plane

(where α and β are the initiation and termination rates). Subsequently, we showed that, for

β = 1, there is a novel jamming transition in the αγ-plane that separates the ddTASEP

dynamics into initiation-limited and nucleosome pausing-limited regions. We propose ana-

lytical estimates for the RNAPII density ρ, average elongation rate v, and transcription flux

J and verified them numerically. We demonstrate that the intra-burst RNAPII waiting times

tin follow the time-headway distribution of a max flux TASEP and that the average inter-

burst interval tIBI correlates with the index of dispersion De. In the limit γ!0, the average

burst size reaches a maximum set by the closing rate hc. When α�1, the burst sizes are

geometrically distributed, allowing large bursts even while the average burst size NB is

small. Last, preliminary results on the relative effects of static and dynamic defects are pre-

sented to show that dynamic defects can induce equal or greater pausing than static bottle

necks.
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Author summary

To perform specific functions, cells must express specific genes by copying the infor-

mation in DNA into RNA via transcription. Structural proteins called nucleosomes

are spaced every 200 base pairs along the length of a strand of DNA and play a crucial

function in the regulation of gene activity by tightly binding DNA strands and con-

densing them into heterochromatin, preventing transcription by RNA polymerase II

(RNAPII). Even on active genes where nucleosomes are loosely attached to DNA

strands, the wrapping and unwrapping of nucleosomes pause transcription as RNAPII

passes by. Previous mathematical models of transcription have compared this biologi-

cal process to traffic on a one lane highway without obstructions. In contrast, our pro-

posed model simulates transcription like traffic in a grid system where nucleosomes

can be thought of as pedestrians or other vehicles crossing the road at regularly spaced

intersections. Just as side street traffic and pedestrian crossings can cause cars to form

convoys and cause jams limiting the max speed in an area, nucleosomes can cause

RNAPII to form convoys that lead to bursts of mRNA production and limit the aver-

age polymerase flux through the gene.

Introduction

Over the last 20 years, there has been a significant effort to explain stochasticity in molecu-

lar pathways focusing especially on the regulation of transcription and translation [1–6].

Most of the theoretical studies were concentrated on regulation of gene activity by means

of binding and dissociation of transcription factors. However, a wide variety of assays have

been developed to investigate epigenetic features that affect transcription by means of

chromatin accessibility (ATAC-seq [7], DNASE-seq [8], FAIRE-seq [9]), histone modifi-

cations (Mint-ChIP [10] and ChIP-mentation [11]), or DNA methylation (bisulfite

sequencing [12]). All of these epigenetic features exert their influence on transcription

through the dynamics of nucleosomes, the histone octamers on which DNA is wrapped.

Further, these epigenetic features exert measurable kinetic effects on the wrapping and

unwrapping of DNA from the nucleosomes that may provide unexplored regulatory mech-

anisms for eukaryotic transcription [3,13].

At the molecular level, the process of transcription past a nucleosome is complex, but it

has several key features: stalling of RNAPII on approach to a bound nucleosome, tempo-

rary nucleosome unwrapping/dissociation, and rebinding of the nucleosome if the site is

not occupied by a polymerase. Histone modifications alter the duration and frequency of

transcriptional pausing by influencing the fluctuation of nucleosomes between wrapped

and unwrapped states (commonly referred to as “nucleosome breathing”) [14,15]. The

nucleosome’s wrapping equilibrium and the absolute time scale of this process can poten-

tially shape the transcriptional dynamics. Bintu et al. showed that transcription of bare

DNA had an average of 4 pausing events per kbp with an average pause length of 4.4 sec-

onds while transcription passing an unmodified nucleosome had an average of 14 pausing

events per kbp with an average pause length of 10.2 seconds [16]. However, histone modi-

fication via acetylation significantly reduced the stalling to an average of 11 pausing events

per kbp with an average pause length of 9.6 seconds [16]. In cases where the DNA is

completely depleted of histones (as occurs with loss of stem-loop-binding protein), cells

show a global increase in transcriptional elongation rates, loss of almost all transcriptional

pausing as if the polymerase were transcribing bare DNA, and altered patterns of co-
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transcriptional splicing [17]. Taken together, this data suggests that nucleosomes are the

primary regulator of transcriptional elongation.

However, nucleosomes are also part of a large array of genetic and epigenetic features that

control transcriptional elongation rates and the overall transcriptional flux [18,19]. In contrast

to the dynamic nature of nucleosomes, there are also static defects associated with transcrip-

tional pausing. The most critical static features that predict elongation slowdowns are high GC

content, high exon density, and highly methylated CpG islands [18,19]. It is unintuitive

whether these genetic and epigenetic features can best be described as static site defects or if

they modify the dynamics of nucleosomes. Wang, Stein, and Ware demonstrated that nucleo-

somes have higher occupancy on regions of higher GC content and on exons [20]. Jonkers,

Kwak, and Lis demonstrated that increased exon density increased RNAPII pausing due to co-

transcriptional splicing at intron-exon junctions [18]. Collings, Waddel, and Anderson

showed that methylated CpG sites (associated with transcriptional silencing) are more highly

occupied by nucleosomes while unmethylated CpG islands are associated with polymerase

recruitment and nucleosome depletion [21,22]. Therefore, these pausing events may be con-

sidered the result of either a static or dynamic defects.

While nucleosomes stall polymerases, polymerases also exert an effect on nucleosomes. At

low rates, each polymerase must move past the nucleosome which rebinds between polymerase

crossings. However, at high transcription rates, the lead polymerase pioneers its way through

the nucleosomes, while holding the DNA open for its followers. This process keeps the nucleo-

some in the destabilized state longer, making it more likely to be totally displaced from the

chromatin [23,24]. Thus, the nucleosomes induce convoy formation through pausing, but the

resulting convoys obstruct nucleosome rebinding. In spite of the numerous simulations and

extensive modeling of initiation-rate limited transcription and transcriptional bursting due to

multi-state promoter dynamics, few computational and mathematical modeling studies have

been performed to investigate the possibility of a transcriptional regime limited by nucleo-

some-induced pausing or the unique pattern of transcriptional bursting that this would induce

[25–28]. Therefore, we developed a stochastic, agent-based model of transcription through

nucleosomes arranged in the canonical beads on a string geometry. The nucleosomes undergo

stochastic transitions from the wrapped to unwrapped state consistent with the thermody-

namic equilibrium set by the microscopic rate constants. Encountering a nucleosome in the

closed state causes polymerases to stall until the nucleosome reopens. In turn, the presence of

polymerases prevents nucleosomes from closing.

From a theoretical perspective, the proposed model is an extension of a classical model in

stochastic transport theory known as the Totally Asymmetric Simple Exclusion Process

(TASEP) [29,30]. In the open boundary TASEP, particles can be injected through the first

boundary (if the first lattice site is unoccupied) with propensity α, removed through the other

boundary (if the last lattice site is occupied) with propensity β, and advance with propensity q
(typically set to one to define the time scale) if there is no particle obstructing it on the next,

non-boundary lattice site as shown in Fig 1A. Even though the TASEP only has nearest neigh-

bor interactions, the TASEP exhibits a non-trivial kinetic phase diagram (Fig 1B) with the bulk

density ρ, average hop rate v, and total particle flux J = v×ρ on the lattice completely defined by

the initiation and termination propensities as shown in Eqs 1–3 [31–33].

v ¼
1 � a; a < b and a < 1=

2

b; b < a and b < 1=2

1=2
; a; b � 1=2

ð1Þ

8
><

>:
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Fig 1. Extension of the canonical TASEP to include nucleosomes as dynamic defects. (A) Depiction of the

canonical TASEP. Particles are injected into the first lattice site at rate α and advance with rate q = 1 when

unobstructed by other particles. Particles are removed from the final lattice site at rate ß. (B) The canonical TASEP

phase diagram in the αß-plane with the fundamental relationships for J, ρ, and v summarized for each phase. (C)

Simulated density profiles for each phase are shown by black lines, and dashed red lines indicate the mean-field theory

prediction obtained for an infinitely long lattice. (D) Depiction of the proposed dynamic defect TASEP (ddTASEP)

where periodically spaced nucleosomes function as extended-body dynamic defects. RNAPII bind the first lattice site

(transcription start site, TSS) at rate α, RNAPII advances at rate q when unobstructed by other polymerases or

nucleosomes. RNAPII is then released from the gene at the end of transcription at rate ß, which is set equal to q (ß = q).

DNA in the nucleosome associated regions (containing 3 subsequent sites) unwraps from the nucleosome to the open

conformation at rate ho and returns to the wrapped/closed state at rate hc when there are no polymerase present on the

nucleosome associated sites. All lattice sites are 50 bp long.

https://doi.org/10.1371/journal.pcbi.1009811.g001
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r ¼

a; a < b and a < 1=2

1 � b; b < a and b < 1=
2

1=2
; a;b � 1=2

ð2Þ

8
><

>:

J ¼
að1 � aÞ; a < b and a < 1=2

bð1 � bÞ; b < a and b < 1=
2

1=
4
; a;b � 1=

2
ð3Þ

8
><

>:

Additionally, the boundary defects give rise to a variety of density profiles as shown in Fig 1C.

The theory of the dynamic defect TASEP (ddTASEP), which is relevant to transcription, has

not been fully developed. Van den Berg and Depken constructed a ddTASEP of transcription

through single-site nucleosomes that would automatically be displaced from the gene after direct

contact with polymerases [25]. Their model showed the first proof of concept of polymerase con-

voy organization and nucleosome depletion. However, their model treated polymerase advance-

ment past nucleosomes as a single concerted step (i.e. RNAPII automatically moves through

nucleosomes at a manually specified, slower rate rather than letting the wrapping dynamics dic-

tate the advancement), the representative cases focused on low nucleosome density with slow

rebinding, and they interpreted the results by mapping them on to a hypothetical two state model

[25]. Waclaw et al. investigated a general dynamic defect TASEP with single site hopping particles

and single site defects focusing primarily on closed loop cases with soft exclusion effects that allow

nucleosome and polymerase co-occupancy with some coverage of the open boundary case [34].

Previous studies investigating the flux-density-hop rate (J-ρ-v) relationship of TASEPs with

dynamic defects have focused primarily on weak or fast fluctuating perturbations and have uti-

lized mean field approaches that cannot account for the long range particle-particle and particle-

defect correlations [25,34,35–36]. Most notably, Waclaw et al. studied a variety of single site

dynamic defect TASEPs with periodic and open boundaries with constrained and unconstrained

defect binding [34]. However, most of their theoretical results were derived for the mathematically

simpler case with periodic boundaries in which the bulk particle density remains constant.

In this study, we propose a transcription-dedicated, TASEP model with elongated, dynamic

defects, and hard polymerase-nucleosome exclusion constraints (Fig 1D) that accounts for key

features of RNAPII transcription through nucleosomes including nucleosome depletion, poly-

merase convoy organization, and transcriptional bursting. Additionally, we abandon the mean

field approximation to focus on the regime in which transcription proceeds via propagation of

polymerase convoys of arbitrary length. We derive the mean first passage time (MFPT) and vari-

ance of the first passage time (VFPT) of the pioneering polymerases that lead the convoys using a

Markov Chain approach [37–39]. We quantified the strength of the nucleosome perturbation via

the mean first passage rate γ, which is inversely proportional to the MFPT and depends on the

microscopic nucleosome wrapping and unwrapping rate constants. The initiation rate α and the

mean first passage rate γ were then used to construct the ddTASEP phase diagram (orthogonal to

the canonical TASEP αβ-phase diagram at β = 1) and to calculate the location of the nucleosome-

induced jamming phase transition [29,31,32]. We identified two regimes in the novel αγ-plane:

initiation limited and nucleosome pausing (defect) limited. In both regions, we postulated

approximate expressions for the elongation rate v, the bulk density ρ, and the bulk transcription

flux J. Additionally, the inter-burst intervals and burst sizes generated by the slow nucleosome

dynamics were investigated over a wide range of conditions spanning the initiation-limited and

nucleosome-limited regimes. Finally, preliminary results on the effects of variability in the
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RNAPII advance rate and in the nucleosome dynamic rate constants along DNA (e.g. caused by

presence of exons or DNA methylation on CpG islands) are presented.

Methods

Numerical simulations

The model is simulated using a Gillespie algorithm with a variable number of reaction channels

based on the set of all possible legal moves [40]. During each Monte Carlo step, the list of all legal

polymerase and nucleosome moves is compiled. The propensities for each possible move are used

to construct a categorical distribution, and a legal move is randomly selected from this distribu-

tion with probability proportional to its propensity. Next, the waiting time to the selected move is

drawn from an exponential distribution with a mean waiting time given by the total propensity

(sum of all legal propensities). The move is performed, and the system time is updated.

Determination of ddTASEP properties from the simulation output

The canonical properties of the TASEP are the flux J, average hop rate v, and the average site occu-

pancy/density ρ [31,32]. The considered ddTASEP is ergodic and converges to a steady state

probability density. For each Monte Carlo step, the state of the system is described by two vectors

s! and h
!

composed of binary variables si and hm indicating the polymerase occupancy of the ith

site and the nucleosome occupancy of themth nucleosome associated region, respectively. The

averages of v, ρ, and J are estimated within the time interval between the first passage time tFP
(Monte Carlo stepNFP) and final time point tMCS (at least eight times greater than tFP). All simula-

tions were run for a fixed number of Monte Carlo steps (NMCS = 1.2×106 for qualitative trends or

NMCS = 2×106 for quantitative results). The time averaged density profile ρi is estimated in Eq 4.

ri ¼
1

tMCS � tFP

PNMCS
j¼NFP

siðtjÞDtj ð4Þ

As Derrida proved for the classic TASEP, far from the boundaries, the three primary properties

of the TASEP converge exactly to values set by the microscopic rate constants for the initiation

and termination rates (α, ß) [31,32]. For an infinitely long lattice, the boundary effects become

negligible. For genes of 20 kbp (400 lattice sites) or longer, the boundary effects are weak, allow-

ing the system to be characterized in terms of these three non-spatial, non-temporal metrics.

Taking NmRNA to be the total number of mRNA produced, NSites to be the number of lattice

sites on the gene, and Dtkpass to be the time between the kth RNAPII binding and terminating its

transcription, the bulk averages of the three primary properties are defined in Eqs 5–7.

r ¼
1

Nsites

PNsites
i¼1 ri ð5Þ

v ¼
1

NmRNA

PNmRNA
k¼1

Nsites

Dtkpass
ð6Þ

J ¼
NmRNA

tMCS � tFP
ð7Þ

The bulk nucleosome densities ρN and bulk nucleosome density profiles ρN,i are calculated

analogously to ρ in Eq 1 and in Eq 2. However, the bulk nucleosome density ρN is scaled by a

factor of ¾ or more generally
kN

kLþkN
to account for the linker regions.
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Classifying burst events and measuring burst properties

When the pioneering polymerase reaches the end of the gene, the subsequent polymerases in the

convoy exit with the flux predicted by the classical TASEP since a sufficiently long convoy func-

tions as a shorter TASEP within the larger ddTASEP lattice. Given that the advance rate into the

convoy and the termination rate are both greater than ½ (i.e. q = 1), polymerases exit with the

highest flux predicted by the classical TASEP Jmax = ¼. This implies that the average intra-burst

waiting time (tin) is equal to 4 time units. However, there is no way to systematically predict what

set of parameters (α, ho, hc) will give rise to bursting or what the optimal threshold is to classify an

unknown waiting time tw as either an intra-burst waiting time tin or an inter-burst interval tIBI.
Therefore, we take the following probabilistic approach. First, kernel density estimation is

performed on the set of log-transformed waiting times (log10 tw) weighted by (log10 tw) so that

the rare bursting events are more prominent. Next, an additional smoothing step is performed

to reduce the noise from the probability density function estimation of the rare burst events. A

local maxima search is performed to attempt to identify the intra-burst interval peak and the

inter-burst interval peak. If only one peak is found, the ddTASEP is considered initiation lim-

ited, and no burst properties are recorded. If the system is bimodal, a threshold T is calculated

by taking the geometric mean of the peaks (which is also the arithmetic mean of the log trans-

formed values). Burst events are defined by tw>T. This threshold might filter out some inter-

mediate cases, but it guarantees that those parameter sets (α, ho, hc) that generate robust bursts

will be accurately classified while systematically eliminating false positives due to intrinsic sto-

chasticity. The burst size NB is defined as the number of mRNA produced between these two

breaks in transcription. Burst size and inter-burst intervals are averaged across simulations

since they constitute rare events.

Using correlations to quantify defect perturbation strength

The inter-site Pearson rij correlation is defined below as

rij ¼

PNMCS

k¼N sat
½siðtkÞ � ri�½sjðtkÞ � rj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN MCS

k¼N sat
½siðtkÞ � ri�

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNMCS

k¼N sat
½sjðtkÞ � rj �

2
q ð8Þ

Eq 8 can be used to define a matrix R = [rij] that contains the inter-site correlations for all

site pairs (i,j). Each row or column of the matrix R is a vector of Pearson correlations that we

denote as ri
!¼ ½ri1; � � � ; rii; � � � ; riNsites �. Given the periodic nature of the lattice when a site is far

from the boundaries, the inter-site correlations rij should only be a function of the relative dis-

tance between the sites (Δ = j−i). Further, each central row vector ri
! should exhibit the same

qualitative features around the ith site as some hypothetical bulk correlation vector r (defined

only in terms of inter-site distance) would around its central site at Δ = 0. To construct the

bulk correlation profile r , we first chose a maximum distance (Δmax = d) to evaluate the corre-

lations over. Then, for each i2{d, Nsites−d}, a new vector r0i ¼ ½rði� dÞi � � � rii � � � rðiþdÞi� can be con-

structed that truncates each ri
! and centers it around the ith site. Finally, we defined the bulk

correlation profile r as the sliding window average over the vectors r0i as shown in Eq 9.

r ¼ ½r� d � � � r� Δ � � � r0 � � � rΔ � � � rd� ¼
1

2dþ 1

PNsites � d
i¼d r!0i ¼

1

2dþ 1

PNsite � d
i¼d ½rði� dÞi � � � rii � � � rðiþdÞi� ð9Þ

Each entry rΔ of the vector r gives the average inter-site correlation based on relative dis-

tance Δ. This metric allows for direct assessment of the strength and length scale of polymerase
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cooperativity and also allows for more direct, visual comparison of the correlation strengths

from different parameter sets than can be obtained from the correlation matrices themselves.

Code implementation and code/data availability

Code was written in MATLAB R2018a (Math Works, Natick MA). High throughput parallel sim-

ulations were performed on a remote server (HARDAC at Duke Center for Genomic and

Computational Biology) utilizing a SLURM job handler and an Lmod Environmental Module

System that provided MATLAB R2017b. Given that MATLAB’s internal parallelization could not be

used due to conflict between it and the job scheduler, each instance of the parameter sweep

was evaluated on a separate node initialized into the same environment. Since the environ-

mental handler initialized with the same default random number seed for each iteration, ran-

dom number seeds were specified manually.

Code for the core algorithms and the calculation of simulation observables is available at

SimTK (https://simtk.org/projects/histone_ddtasep) along with the associated data sets.

Data sets are provided both in a.mat format that can be directly loaded into the MATLAB work-

space. Alternatively, the files can be downloaded as Excel files in a.xlsx format and reprocessed

by the reader.

Results

ddTASEP transcription model formulation

In the proposed model (Fig 1D), the ddTASEP lattice is segmented into 50 base pair (bp) sites.

A single nucleosome occupies three sites, and there is one linker site between each nucleo-

some-associated region. This discretization was chosen since the RNAPII footprint on DNA is

generally estimated to be roughly 40 bp [41,42]. Further, the nucleosome linkers range in size

from 10–70 bp [43]. Additionally, DNA wrapped around nucleosomes is known to be exactly

145–147 bp [43]. Last, assays such as BruDRB-seq have suggested that the maximum velocity

of polymerases is roughly 50 bp/s even for extreme outliers across multiple cells types [19], and

other more common assays such as MS2-tagging have suggested transcription speeds of 26–86

bp/s [44]. Thus, 50 bp sites will be occupied by one RNAPII enzyme which will take on average

one second to clear the site on bare DNA at 50 bp/s.

There are three possible actions for polymerases: initiation, advancement, and termination.

If the transcription start site (TSS) is open, polymerases can be initiated with propensity α.

Once on the gene, RNAPII advances with propensity q while it is not obstructed by another

RNAPII or a nucleosome in the wrapped/closed state. It must pause until the nucleosome or

other polymerase moves out of its way. Nucleosomes transition from the open (unwrapped) to

the closed (wrapped) position with propensity hc when all three nucleosome associated sites

are empty. The nucleosome unwraps to the open position with propensity ho. At the end of the

gene, the RNAPII will terminate with propensity ß = q.

Since the lattice is segmented into 50 bp sites and the characteristic RNAPII velocity is of

order of 50 bp/s, the RNAPII advance rate (from one 50 bp site to the next) q is on the order of

1 site/s. For the sake of simplicity, we will use time units such that q = 1 in the figures. How-

ever, q is left in the equations associated with the figures for generality. In the last section of

this manuscript, the role of non-uniformity of DNA (due to the presence of exons, methylated

CpG islands, and high GC content) will be incorporated by assigning each lattice site a new

nominal advance rate qi or by assigning each nucleosome a unique set of rate constants hc,m
and ho,m.

The model can be described formally as follows. Let si be a binary variable representing the

polymerase occupancy of the ith lattice site and let hm be the nucleosome occupancy of the
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nucleosome associated with sites i, (i+1), (i+2), and (i+3). Site i is a linker site, and the others

are the nucleosome associated sites. When any of (i+1), (i+2), and (i+3) are occupied, nucleo-

somem cannot rebind. These rules are summarized as follows:

Initiation : s1 ¼ 0!
a s1 ¼ 1 ð10Þ

Nucleosome Entry : ðsi ¼ 1; siþ1 ¼ 0; hm ¼ 0Þ!
qi
ðsi ¼ 0; siþ1 ¼ 1; hm ¼ 0Þ ð11Þ

Normal Advancement : ðsiþ1 ¼ 1; siþ2 ¼ 0Þ!
qiþ1
ðsiþ1 ¼ 0; siþ2 ¼ 1Þ ð12Þ

Termination : sN ¼ 1!
b sN ¼ 0 ð13Þ

Wrapping : ðsiþ1 ¼ 0; siþ2 ¼ 0; siþ3 ¼ 0; hm ¼ 0Þ!
hc;m
ðsiþ1 ¼ 0; siþ2 ¼ 0; siþ3 ¼ 0; hm ¼ 1Þ ð14Þ

Unwrapping : hm ¼ 1!
ho;mhm ¼ 0 ð15Þ

Nucleosome dynamics control polymerase convoy formation and

transcriptional bursting

The dynamical defect TASEP exhibits a wider array of dynamical behavior than the classical

TASEP [31,32] or static defect TASEP [45–48]. The pausing induced by nucleosome binding

leads to organization of RNAPII into convoys. In Fig 2, we analyze the behavior of the consid-

ered ddTASEP.

The mRNA accumulation curves shown in Fig 2A all exhibit characteristic features. First,

there is a delay due to the first passage time for the first RNAPII to clear the length of the

gene as it interacts with the nucleosomes. Second, there is an approximately linear increase

in the number of transcriptional events after this initial period. In the weakly perturbed cases

(bottom row), the polymerases advance quasi-deterministically giving rise to uninterrupted,

linear in time mRNA synthesis. As the nucleosome dynamics slow down (top row), two pat-

terns of nucleosome-induced pausing are observed. In the slow opening and closing case (ho
= hc = 0.001, top left), periods of sustained transcription are disrupted by nucleosome bind-

ing resulting in large transcriptional pauses. Therefore, the nearly vertical sections of mRNA

production in these cases represent mRNA bursts observed when a convoy of RNAPII

reaches end of the gene. In the fast closing and slow opening cases (ho = 0.001, hc = 0.1, top

right), fast nucleosome re-wrapping leads to the formation of smaller, tight burst groups

without the long, uninterrupted periods of continuous transcription seen in the previous

case.

The self-organization of polymerases into convoys that give rise to the bursts in Fig 2A is

also readily apparent in the kymographs in Fig 2B. In the less nucleosome perturbed cases

(bottom row), the kymographs show the polymerases moving quasi-deterministically along

the length of the gene with few collisions and limited convoy formation as would be expected

in a canonical TASEP. As the nucleosome-induced pausing becomes stronger in the upper

subplots of Fig 2B, the polymerases organize into well separated convoys, most notably in the

fast binding and slow opening case (ho = 0.001, hc = 0.1, top right). Finally, in the extremely

slow opening and closing case (ho = hc = 0.001, top left), both the completely empty gene and

completely polymerase-occupied configurations of the lattice are observed.
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Fig 2. Qualitative behavior of the ddTASEP over a range of representative parameters. All sub-figures are

composed of 9 subplots. For all plots, the transcription initiation rate α was set to 0.05, while ho is held constant along

rows (increasing from 0.001!0.01!0.1 from top to bottom) and while hc is held constant along columns (increasing

from 0.001!0.01!0.1 from left to right). The top right subplot deviates the furthest from the canonical TASEP

behavior while the bottom left most closely resembles ideal TASEP behavior. Simulations shown in panels A, C, D and

F utilized 4.5×105 Monte Carlo Steps with 50 replicates. (A) Number of completed mRNAs as a function of time.

Notice that the simulation times for the top, middle, and bottom rows are 60, 8, and 2 hours, respectively. (B)

Kymographs plotting the position of each RNAPII on the gene (x-axis) as time advances (y-axis). (C) Time averaged

RNAPII site density ρi as a function of position. The wavy density profiles are caused by the fact that the linker sites

have a higher average RNAPII occupancy than the neighboring nucleosome sites. (D) Time averaged nucleosome site

density ρN,i (black line) as a function of position (ignoring linker sites). The bulk nucleosome density is anti-correlated

with the polymerase density, reaching a maximum at the end points where polymerases are rapidly ejected. The dotted

red lines indicate the resting-state nucleosome density prior to transcriptional initiation. (E) Inter-site correlation

heatmaps with colors bars ranging from -0.2 to 1. (F) Average inter-site correlation profile (rΔ, black line) as a function

of relative inter-site distance Δ with the dotted red line indicating zero.

https://doi.org/10.1371/journal.pcbi.1009811.g002
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Based on Eq 2, a canonical TASEP with α = 0.05 would be in the initiation limited

region and accordingly have ρ = 0.05. However, while all the ddTASEP density profiles

shown in Fig 2C resemble the initiation limited region from Fig 1C, the values for the bulk

density ρ are always equal or larger than those of the classical TASEP. Further, the density

profiles ρi showed a sawtooth wave pattern along the spatial axis since the linker sites

always had higher polymerase occupancy due to nucleosome induced pausing. As

expected, higher levels of polymerase occupancy lead to noticeable nucleosome depletion

as demonstrated by the difference between resting probabilities of nucleosome occupancy

(dotted red line) and the steady state nucleosome density profiles in Fig 2D. The nucleo-

some occupancy profiles presented here look like inverted versions of the polymerase den-

sity profiles consistent with the hard exclusion constraint that allows polymerases to hold

nucleosomes in the open conformation.

Last, the central sites in the inter-site correlation heatmap Fig 2E confirm our expectation

that the inter-site correlations only depend on the relative distance between sites. Using Eq 9,

for inter-site correlation rΔ in Fig 2F we directly quantify the strength of cooperativity between

polymerases at distance Δ. In the highly nucleosome perturbed case (with slow opening and

closing, ho = hc = 0.001, top left), the positive correlation spans over a distance comparable

with the gene length suggesting that polymerase convoys for a given set of hc and ho could be

longer than the length of the gene. The intermediate cases (most notably the central case

where ho = hc = 0.01) exhibit both a short range positive correlation associated with RNAPII

convoys and a longer range negative correlation showing that convoys are separated by regions

of rebinding nucleosomes. In the case of the weak nucleosome binding (ho = 0.1, hc = 0.001

and ho = hc = 0.1), no inter-site correlation is observed showing that bursts are not formed.

Mean and variance of first passage time

As demonstrated in Fig 2A and 2B, our model implies that the time needed to produce first

complete mRNA depends on the nucleosome-induced pausing. Using Markov chain theory,

the expected passage time through a nucleosome unit (consisting of one linker site and three

nucleosome sites) for the first polymerase can be calculated [49,50]. Due to the periodic spac-

ing of nucleosome binding sites, the MFPT to produce an mRNA after gene reactivation is

simply the sum of the expected times for the first polymerase to clear each nucleosome unit.

The interaction between a polymerase on a linker site and a nucleosome can be treated as a

three state Markov Chain (Fig 3A), where State 1 (polymerase on linker with nucleosome open)

and State 2 (polymerase on linker with nucleosome closed) can reversibly communicate until the

absorbing State 3 (polymerase enters the first nucleosome site) is reached as shown in Fig 3A.

The evolution of the state probability distribution of this Markov Chain p!¼ ½p1 p2 p3� can be

described as a system of Forward Kolmogorov Equations with generator matrix Q [37,39,49]:

d p!

dt
¼ p!Q ¼ p1 p2 p3½ �

� ðqþ hcÞ hc q

ho � ho 0

0 0 0

2

6
4

3

7
5 ð16Þ

All of the moments of the first passage time of any absorbing Markov chain are uniquely

determined by the submatrix of transient states in Q which will be referred to as R.

R ¼
� ðqþ hcÞ hc

ho � ho

" #

ð17Þ
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Fig 3. Deriving and validating the mean and variance of first passage time equations. (A) A state transition

diagram utilized to calculate the mean (Ee) and variance (Ve) of first passage time to enter a nucleosome. Each arrow is

labeled with the rate constant for the transition between the neighboring states. (B) Log-log plot of simulated mean

first passage time (Eq 22) against the predicted analytical expression for mean first passage time. The black line

represents the theoretical prediction. The dashed red line represents the Bare DNA limit obtained by simulations with

hc = 0. (C) Log-log plot of simulated variance of first passage time against the predicted analytical expression for VFPT

(Eq 26) with the Bare DNA limit represented by the dashed red line. (D) Plot of index of dispersion of the waiting time

to enter a nucleosomeDe = Ve/Ee against the resting state binding probability of the nucleosomes (rN ¼
hc

hoþhc
). hc is set

to be 0.001 (blue), 0.01 (green), 0.1 (orange), and 1 (red). ho was adjusted to achieve γ2{0.002, 0.005, 0.01, 0.02, 0.05,

0.1, 0.2, 0.5, 0.99}. Solid lines indicate the theoretical prediction given by Eq 27. (E) Log-log plot of the analytical

expression for the index of dispersion of the waiting time to enter a nucleosome De (Eq 27, analytical) as a function of

the expected waiting time for nucleosome opening (1/ho). The dashed black line shows the index of dispersion in the

limit of ho!0.

https://doi.org/10.1371/journal.pcbi.1009811.g003
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The fundamental Matrix N is then given by [38,49]

N ¼ � R� 1 ¼

1

q
1

q
hc
ho

� �

1

q
1

ho
þ

1

q
hc
ho

� �

2

6
6
6
4

3

7
7
7
5

ð18Þ

The expected waiting times for the polymerase to enter the nucleosome site from the open

state (Eo, State 1) and closed state (Ec, State 2) can be expressed in terms of the fundamental

matrix N as

Eo
Ec

" #

¼ N 1
!
¼

1

q
1

q
hc
ho

� �

1

q
1

ho
þ

1

q
hc
ho

� �

2

6
6
6
4

3

7
7
7
5

1

1

" #

¼

1

q
1þ

hc
ho

� �

1

ho
þ

1

q
1þ

hc
ho

� �

2

6
6
6
4

3

7
7
7
5

ð19Þ

The overall expected waiting time to enter the nucleosome associated site (Ee) is given by

the weighted average of Eo and Ec with respect to the probability of finding the nucleosome in

the open or closed state upon the polymerase’s initial approach p0

!
¼

ho
ho þ hc

hc
ho þ hc

� �� �

.

Ee ¼ p0

!N 1
!
¼

ho
ho þ hc

hc
ho þ hc

� � Eo
Ec

" #

¼
1

q
þ
hc
ho

1

q
þ

1

hc þ ho

� �

ð20Þ

The expected passage time to transcribe past a nucleosome and its three associated sites

(Eh) is the sum of Ee and the expected time to pass through 3 empty sites (3/q)

Eh ¼
3

q
þ Ee ¼

4

q
þ
hc
ho

1

q
þ

1

hc þ ho

� �

ð21Þ

Consequently, the overall MFPT to transcribe the gene is given by

MFPT ¼
1

a
þ NhEh þ

1

b
ð22Þ

where α, β and Nh are the initiation rate, termination rate, and the number of nucleosome

units, respectively. Fig 3B shows that MFPT formula (Eq 22) accurately predicts the simulated

MFPTs (R2 = 0.99995), generated by varying ho to attain various values of γ across a log scale

from 0.001 to 1 while holding hc constant.

We use Eh also to construct a new parameter γ called the mean first passage elongation rate.

g ¼
4

Eh
ð23Þ

By definition γ = 1 when the nucleosomes are constantly open hc = 0. The reader should

note the distinction between the bulk elongation rate v (the average velocity of all polymerases

to transcribe a gene) and the mean first passage rate γ (the expected/ensemble-averaged veloc-

ity of the first polymerase to transcribe a gene).

Another useful metric to understand the effects of the nucleosomes on transcription is the

variance of the first passage time (VFPT). The variance of the nucleosome entrance waiting
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time (Ve) was calculated with the following equation from [38].

Ve ¼ 2po
! N2ð Þ 1

!
� E2

e ¼
1

q2
�

1

ðho þ hcÞ
2
þ
ðqþ hcÞ

2
þ 2hcho

q2h2
o

ð24Þ

As with the mean first passage time, the variance of the time to pass through a nucleosome

unit (Vh) and the overall variance of the first passage time (VFPT) are obtained from Ve.

Vh ¼
3

q2
þ Ve ¼

4

q2
�

1

ðho þ hcÞ
2
þ
ðqþ hcÞ

2
þ 2hcho

q2h2
o

ð25Þ

VFPT ¼
1

a2
þ NhVh þ

1

b
2

ð26Þ

Fig 3C demonstrates that the analytical expression for VFPT (Eq 26) accurately predicts the

simulated VFPTs (R2 = 0.991), over three orders of magnitude of ho and hc. When nucleosome

binding was turned completely off (hc = 0), the analytical expression and simulation both pro-

vided the expected result for bare, nucleosome-free DNA (i.e. a canonical TASEP).

Finally, we introduce the index of dispersion De ¼
Ve
Ee

, that can be used to measure the devia-

tion of the ddTASEP’s behavior from a classical TASEP on nucleosome-free DNA for which

De ¼
1

q. The index of dispersion of the time to enter a single nucleosome De was found to be

De ¼
Ve

Ee
¼

1

q
þ
qþ hc
qho

þ
1

ho þ hc
�

2ðho þ hcÞ
h2
o þ h2

c þ hcðqþ 2hoÞ
�

1

q
; hc ¼ 0 or ho!1

qþ hc
qho

; ho! 0

ð27Þ

8
>>><

>>>:

In the limits as hc = 0 or ho!1, the index of dispersion converges to (1/q) which is consis-

tent with the canonical TASEP limit since this is simply the index of dispersion for an expo-

nential distribution or a Poisson process [49]. In contrast, when ho�hc, the index of

dispersion becomes dominated by the expected waiting time for the nucleosome to reopen.

Fig 3D and 3E investigate whether the index of dispersion is more strongly controlled by the

resting nucleosome density (Fig 3D) or the absolute time scale of the reopening time 1

ho
(Fig 3E).

As shown in Fig 3D, there is a linear increase in index of dispersion with respect to increasing rest-

ing nucleosome density (
hc

hoþhc
) followed by an abrupt increase as the resting density goes to one. It

is also possible that this change in the index of dispersion likely arises from the associated decrease

in ho needed to achieve the desired initial nucleosome density for fixed hc. Fig 3E shows a smooth

transition from the quasi-deterministic random walk of the classical TASEP (De�1/q in the limit

hc = 0) to the nucleosome limited cases where the unwrapping waiting time associated with nucle-

osome breathing dominates the index of dispersionDe�(1+hc)/ho in the limit ho!0. Thus, these

large deviations from canonical TASEP behavior leading to polymerase self-organization and

bursting are driven primarily by infrequent interactions with nucleosomes with slow re-opening

(low ho) but can be marginally enhanced by more frequent interactions with nucleosomes (higher

resting nucleosome density) due to higher rates of re-wrapping (high hc).

Validity of Coarse-Graining the Lattice

A core assumption of this model is that the lattice can be treated in terms of 50 bp sites instead

of at 1 bp resolution (consistent with the fact that RNAPII advance one nucleotide at a time).

It is a well-known result that, for fixed lattice size, a TASEP with particles of length L>1 will
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have reduced flux through the lattice relative to a TASEP with particles of length L = 1 [51,52].

However, the effect of simultaneously changing both particle length and lattice size on tran-

scription flux is not intuitive.

Therefore, we considered the possibility of using non-exponential waiting times. The true

waiting time distribution for this system is likely an Erlang(k = n, λ = n) distribution with n2
[1, 50]. Two special cases of this exist: When n = 1, the canonical exponential waiting time dis-

tribution is reobtained. When n = 50, the interpretation is that all 50 nucleotide polymeriza-

tion steps occur with waiting times given by independent and identically distributed

exponential variables with a uniform rate of 50 bp/s. (Both cases represent extremes that are

not likely to be biologically realistic.) The variance of the advancement waiting time under the

exponential distribution is 1s2 while it is 0.02s2 under the Erlang(k = 50, λ = 50) distribution.

In a non-Markovian TASEP without defects, the reduced variance in the hop time leads to

fewer collisions allowing the average (bulk) particle hop rate v to approach the nominal hop

rate q. This leads to substantially enhanced flux J relative to a Markovian TASEP with expo-

nentially distributed waiting times [53].

However, in the proposed ddTASEP model, we hypothesize that the contribution from paus-

ing induced by the slow nucleosome dynamics will dominate the first passage time eliminating

the entrainment effect that is observed on bare DNA allowing us to coarse-grain the system and

use a simpler, exponential waiting time distribution without introducing significant error. To

demonstrate this, we first prove that the entry waiting time statistics are not affected by consider-

ing a larger number of intermediate entry steps. Second, we then demonstrate that the nucleo-

some induced pausing dominates the mean and the variance of the first passage time relative to

the time to transcribe the bare DNA after entry into the nucleosome associated region.

First, we consider a more general transient state matrix R0 (analogous to Eq 17) which consid-

ers the entry of a polymerase of length L that travels at rate Lq (between subsequent base-pairs)

into the nucleosome associated region that can be temporarily arrested by nucleosome rebinding

at rate hc at any step of the process. The transient states of the new Markov Chain R0 will have a

block structure with each two rows indicating an open (unarrested) and closed (arrested) state for

each step of the extended polymerase’s entry into the nucleosome associated region as given by

R0 ¼

� ho ho 0 0 0 � � �

hc � ðhc þ LqÞ 0 Lq 0 � � �

0 0 � ho ho 0 � � �

0 0 hc � ðhc þ LqÞ
. .

. . .
.

0 0 0 0 . .
. . .

.

..

. ..
. ..
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. . .

. . .
.

2
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6
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6
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ð28Þ

As a representative example, we can consider the two-site case where the advance rate is 2q.

Interestingly, the nucleosome entry time for the two-site case Ee,2 was identical to that the of

the one-site case (Ee,2 = Ee). Additionally, the variance of the entry waiting time Ve,2 was found

to be

Ve;2 ¼
ðhc þ hoÞ

2

2h2
oq2

þ
2hc
h2
oq
þ
hcðhc þ 2hoÞ
h2
oðhc þ hoÞ

2
ð29Þ

PLOS COMPUTATIONAL BIOLOGY Slow nucleosome dynamics in a stochastic traffic model of transcription

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009811 February 10, 2022 15 / 35

https://doi.org/10.1371/journal.pcbi.1009811


Further, we expect that Ve,2�Ve. Evaluating the ratio of the two gives

Ve;2

Ve
¼
ðhc þ hoÞ

4
þ 4hcðhc þ hoÞ

2
þ 2hcðhc þ 2hoÞq2

2ðhc þ hoÞ
4
þ 4hcðhc þ hoÞ

2
þ 2hcðhc þ 2hoÞq2

� 1 for hc; ho � 1 ð30Þ

While analytical results become unwieldy as L!50, this approach can be performed

numerically in MATLAB. The numerical values of Ee,50 and Ve,50 are plotted against the analyt-

ical results for Ee and Ve in S1 Fig for the same parameter sets shown in Fig 3. As hypothesized,

S1A Fig shows that the expected entry waiting times are equal to each other. Likewise, S1B Fig

shows that the variance of this waiting time for the fifty-step model is approximately equal to

the variance for a single-entry step except for the data series when hc = 1 (since the highest

power term of (hc+ho) can no longer vanish) and in cases where hc�ho, which correspond to

effectively bare DNA (as demonstrated by the final data points of the hc = 0.001 and hc = 0.01

data series).

Next, in S1C Fig, we establish that the nucleosome entry time dominates the first passage

time through a nucleosome associated region. From S1C Fig (left), for biologically interesting

conditions when ho<hc, the bare DNA passage time contributes roughly 10% of the mean first

passage time to clear a nucleosome in both models. With respect to the variance (S1C Fig,

right), the bare DNA passage time becomes even less significant. In the exponentially distrib-

uted waiting time/single site case, the bare DNA passage time contributes less than 10% of the

variance to the overall passage time (excluding cases with ho�hc which constitute effectively

bare DNA). While the single site model has a higher bare DNA contribution to the variance of

first passage time relative to the fifty site model, the dominant source of variance (and thus

pausing that disrupts the flux) is the nucleosome entry process for both cases.

Therefore, while a more accurate waiting time distribution would be critical in the absence

of nucleosomes, the nucleosome induced pausing and subsequent polymerase-polymerase col-

lisions within a burst group likely cancel out any of the entrainment effects that would be

observed on bare DNA if a more realistic waiting time distribution were used. Thus, we believe

that the use of a single site polymerase with 50 bp lattice sites and exponentially distributed

waiting times is still an appropriate simplification to model the system.

Constructing the ddTASEP αγ-plane

The canonical TASEP phase diagram exhibits three jamming transitions in the αβ-plane when

the initiation rate becomes limiting (α<β and α<½), the termination rate becomes limiting

(ß<α and ß<½), or when the channel capacity is reached in the max flux limit (α, ß�1/2) as

shown in Fig 1B. Analogously, the ddTASEP should exhibit a jamming transition due to the

limitation on the maximum transcription flux imposed by the nucleosome-induced pausing.

Therefore, we expected that the transcription efficiency γ could be used to define a third axis

of the phase diagram orthogonal to the canonical αß-plane. By assuming ß = q = 1, we restrict

our analysis to the αγ-plane as shown in Fig 4. The reader should note that, by the selection of

q = 1, we are implicitly rescaling the values of α and γ with respect to the advance rate q.

Classically, the ideal method to determine the value of the transcription observables J, ρ,

and v and to locate the phase transitions in parameter space would be to utilize a mean field

approach [31,32]. However, this approach has significant limitations. Based on the model for-

mulation in Eqs 1–6, it is clear that the system’s chemical master equation would involve the

products of up to four site occupancies. Therefore, when taking the ensemble average of the

site occupancies, quadratic (e.g. hsisi+1i) and cubic mixed moments (e.g. hsi+1si+2si+3i) appear

in the master equation. (Note that quartic moments such as hhmsi+1si+2si+3i vanish due to the

exclusionary binding constraint.) Under the mean-field approximation (also referred to as the
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random phase approximation for the TASEP), these mixed moments can be factored as

hsið1 � siþ1Þi � hsiih1 � siþ1i ¼ rið1 � riþ1Þ ð31Þ

which implies that each site of the classical TASEP comes to a steady state value and that no

site occupancies are correlated with each other. The correlation-free assumption clearly fails

for the proposed ddTASEP with extended dynamic defects and exclusionary defect binding as

shown in Fig 2E and 2F. Therefore, we decided to abandon this approach entirely.

Fig 4. The ddTASEP phase diagram in the αγ-plane. (A) Phase diagram in the αγ-plane (orthogonal to the original

αß-plane in Fig 1B at ß = q = 1). The critical line (Eq 37) divides the phase diagram into two regions: the initiation-

limited and the nucleosome-limited For γ!1, the ddTASEP’s dynamics converge to the classical Max Flux Limit

shown in Fig 1B. (B) The theoretical predictions (top row) for the bulk elongation rate v (Eq 38), bulk density ρ (Eq

39), and bulk transcription flux J (Eq 40) are qualitatively compared to simulated results for hc = 0.1, 0.01, and 0.001

(2nd through 4th rows) Mean first passage rate, γ was varied from between 0 and 1 by specifying hc (for given ho) to

achieve the desired value. 1.2 million simulation steps were used for each heat map point.

https://doi.org/10.1371/journal.pcbi.1009811.g004
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In order to derive approximate expressions for J, ρ, and v, we propose a phenomenological

model inspired by saturation kinetics [54,55] that will interpolate between the canonical

TASEP regime (γ = 1, α2[0, 1]) and the strongly perturbed ddTASEP regime with low initia-

tion rates (γ<1, α�1). Specifically, appropriate functional forms for v and ρ were selected to

satisfy the assumed asymptotic behavior. The bulk elongation rate v and the bulk density ρ
were then used to calculate J, and all three expressions were then compared against the simu-

lated results.

First, we identified an appropriate functional form for the bulk polymerase hop rate v in the

regime with a < 1

2
. In the canonical TASEP limit γ!1, the bulk hop rate v is equal to (1−ρ) =

(1−α) for α<½ as shown in Eqs 1 and 2. Since the density in the initiation limited regime is ρ
= α (Eq 2), the bulk hop rate vmust equal (1−α). As the initiation rate α!0, the gene effec-

tively resets to its resting state between each passing polymerase. Therefore, the bulk hop rate v
should approach γ. To satisfy both limits, we propose that

v≔qg 1 � að Þ for a <
1

2
ð32Þ

In order to estimate the bulk density ρ, we noticed that, in the limit γ!1, the bulk density ρ
must also converge to the classical TASEP bulk density in Eq 2. Additionally, in the limit γ!0

with a sufficiently large initiation rate α, ρ should be close to one in this limit since a whole

gene spanning convoy may form (Fig 2B). Gene spanning convoys are able to form because

the most likely binding site for nucleosomes is at the end of the gene (Fig 2D, top left), where

the polymerase density drops to nearly zero. Last, in the highly perturbed cases, switching

from an almost completely full gene to an almost empty gene is observed as shown in Fig 2B

(top left). Under these conditions, the limit ρ!1 is not reached even though the gene may

transiently be fully occupied.

From the canonical TASEP model, the density has a linear relationship with the initiation

rate in the low-density region. For sufficiently high first passage elongation rates γ, the density

should increase almost linearly with the initiation rate for small values of α. However, the den-

sity will eventually saturate to some limit influenced by γ since convoys will back up on the

transcription start site preventing new initiation. We postulate that ρ has a linear dependence

on the initiation rate α (in the limit γ!1) and tends to one as γ!0. Therefore, we propose that

r≔
a

aþ ð1 � aÞg
for a <

1

2
ð33Þ

Finally, we obtain the transcription flux J as

J ¼ r� v ¼
qað1 � aÞg
aþ ð1 � aÞg

for a <
1

2
ð34Þ

In the limit γ!1, the value of J converges to the unperturbed TASEP flux for the initiation

limited regime (Eq 3) scaled by the advance rate q.

limg!1 J ¼ qað1 � aÞ for a <
1

2
ð35Þ

In the unperturbed TASEP, when a � min 1

2
; b

� �
, the flux (as well as the density and the

hop rate) become independent of the injection rate, and the flux J reaches its maximum value

for a given β equal to max 1

4
; bð1 � bÞ

� �
: By analogy, it is reasonable to expect that, for a given

γ, the flux of the ddTASEP will also become independent of the initiation rate α after some sat-

urating condition is reached since the nucleosomes will cause the polymerases to back up onto
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the TSS. We propose that for a given γ the jamming transition will occur when J(α,γ) reaches

its maximum value with respect the initiation rate α, as given by

dJ
da
¼
qg½gð1 � aÞ2 � a2�

½aþ ð1 � aÞg�
2
¼ 0 ð36Þ

Therefore, the critical value of the initiation rate α� is

a� ¼

ffiffiffi
g
p

1þ
ffiffiffi
g
p ð37Þ

For α<α�(γ), both α and γ limit the rate of transcription. In the nucleosome-limited regime

where α�α�(γ), the density, flux, and hop rate no longer depend on the initiation rate but now

depend exclusively on nucleosome-induced pausing. Substituting α� into Eqs 32, 33 and 34

gives the proposed estimates for v, ρ, and J.

v ¼
qgð1 � aÞ; a < a�

vminðgÞ ¼
qg

1þ
ffiffiffi
g
p ; a � a�

ð38Þ

8
<

:

r ¼

a

aþ ð1 � aÞg
; a < a�

rmaxðgÞ ¼
1

1þ
ffiffiffi
g
p ; a � a�

ð39Þ

8
>><

>>:

J ¼

qað1 � aÞg
aþ ð1 � aÞg

; a < a�

JmaxðgÞ ¼
qg

ð1þ
ffiffiffi
g
p
Þ

2
; a � a�

ð40Þ

8
>>><

>>>:

These results are summarized in the phase diagram for the αγ-plane as shown in Fig 4A.

The phase diagram is divided into initiation-limited and nucleosome-limited or jammed

regions at the critical line defined Eq 37. The simulations shown in Fig 4B provide evidence

that the analytical estimates (Eqs 38–40) reproduce qualitatively dependence of v, ρ, and J on

the model parameters.

The initiation rate α and the mean first passage rate γ control transcription

dynamics

The results shown in Fig 4B suggest that Eqs 38–40 predict the transcriptional dynamics of the

system regardless of the particular values of ho and hc. This is confirmed by Fig 5A–5C which

show the dependence of the bulk elongation rate v (Fig 5A), bulk density ρ (Fig 5B), and the

transcription flux J (Fig 5C) on the mean first passage rate γ (which was obtained by varying ho
while holding hc fixed across multiple orders of magnitude). The plots confirm that the values

of ho and hc typically have relatively small effect on the transcription dynamics, which is nearly

fully governed by γ.

The highest deviations exist for the lowest and highest values hc = 0.001 (blue) and hc =

1 (red). However, the predictions for the bulk elongation rate v (Fig 5A), bulk density ρ
(Fig 5B), and transcription flux J (Fig 5C) are the most accurate for the biologically rele-

vant cases with hc = 0.01 (green) and hc = 0.1 (orange) across all three metrics. As a point

of reference, if q ¼ 50
bp
s ¼ 1 site

s , then the nucleosome dynamics associated with
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0.01�hc<0.1 s−1 would be on the order of 10–100 seconds, which is biologically relevant as

shown by Bintu et al [13].

Fig 5D–5F show the dependence of the bulk elongation rate v (Fig 5D), bulk density ρ (Fig

5E), and transcription flux J (Fig 5F) on α. Because Fig 5A–5C show that α and γ control the tran-

scription dynamics with minimal effects from ho and hc under biologically relevant conditions,

we decided to omit explicitly varying hc in Fig 5D–5F. However, the reader should note that hc =

ho that the nucleosome rate constants vary from 0.0143 to 0.7 to achieve values of γ from 0.1 to

Fig 5. Dependence of the elongation rate v, polymerase density ρ, and transcription flux J on the initiation rate α
and the mean first passage rate γ. The left panels A, B and C show the dependence of v (Eq 38), ρ (Eq 39), and J (Eq

40) on γ. γ is varied from 0.001 to 0.99 by adjusting ho for fixed values of hc equal to 0.001 (blue), 0.01 (green), 0.1

(orange), and 1 (red). For each subpanel of A, B, and C, a different α values is assumed: 0.1 (top left), 0.25 (top right),

0.5 (bottom left), 1 (bottom right). The right panels D, E and F show the dependence of v (Eq 38), ρ (Eq 39), and J (Eq

40) on α. α is varied from 0.001 to 1 for fixed values of γ equal to 0.1 (blue), 0.2 (green), 0.4 (orange), and 0.7 (red)

under the constraint that ho = hc. Data points represent the average simulation results from 50 simulations with 2×106

Monte Carlo steps each, and solid lines represent theoretical estimates.

https://doi.org/10.1371/journal.pcbi.1009811.g005
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0.7 in Fig 5D–5F. The sharp jamming transition that arises when initiation rate passes the critical

value α�(γ) is readily visible in these figures. Fig 5F shows that, as predicted by the model, the

transcription flux increases linearly with α until α reaches the critical value α�(γ) at which J(α,γ)

reaches its maximum value Jmax(γ) (Eq 40). Similarly, the bulk density ρ(α,γ) reaches its maxi-

mum value ρmax(γ) (Eq 39) in Fig 5E while the bulk elongation rate v(α,γ) reaches its minimum

value vmin(γ) (Eq 38) in Fig 5D. It is worth nothing that our theoretical predictions slightly overes-

timate the bulk elongation rate and slightly underestimate the bulk density. However, since the

transcription flux is the product of these two quantities, the errors nearly cancel out leading to

quantitative agreement between the simulated results and theoretical estimate for J(α,γ) as shown

in Fig 5F. For J(α,γ) the transition between the initiation-limited and nucleosome-limited regimes

is smooth (in contrast to the sharp transitions for ρ and v) in agreement with assumption that J(α,

γ) has zero derivative with respect to α at α�(γ) (Eq 37).

ddTASEP transcription dynamics are not affected by gene length or

geometry for short convoy lengths

Fig 6 investigates the effects of varying gene length and the length of linker regions between

nucleosomes. Fig 6A–6C show the dependence of elongation rate, bulk density, and transcrip-

tion flux on the length of the gene, ranging from 2,000 to 20,000 base pairs. On short genes,

the convoys start to span the length of the gene, giving rise to some interesting effects. Most

notably, the observed transcription flux is higher than that predicted by our proposed model,

and the observed density is lower than our proposed model on short genes. We hypothesize

that this is connected to the existence of gene spanning convoys. When convoys span the

length of the gene, nucleosomes can only infrequently re-bind, and the gene transiently

approximates classical TASEP behavior. In the initiation limited regime, the transcription flux

of a classical TASEP is the upper-bound of transcription flux for all other related ddTASEPs

(with γ<1), and the density of a classical TASEP is the lower-bound of density for all other

analogous ddTASEPs. Therefore, the previously mentioned elevated transcription flux and

decreased bulk density are consistent with more classical TASEP behavior that may occur in a

gene-spanning convoy. Accordingly, when the gene length increased to over 10,000 base pairs,

the transcription flux, density, and elongation rate converge to the theoretical predictions for

the ddTASEP since the formation of a gene-spanning convoy (that would induce quasi-classi-

cal TASEP dynamics) becomes too unlikely for the given rate of nucleosome dynamics.

Fig 6D–6F show the dependence of the bulk ddTASEP properties on the linker spacing

between nucleosomes on a 20,000 base pair gene. The reader should note that the number of

nucleosomes decrease in the simulation as the number of linker sites increase. Even when γ
must be calculated assuming different linker geometries, the analytical results for the bulk

elongation rate (Fig 6D) and transcription flux (Fig 6F) adapt almost perfectly to the new

geometry and perform reasonably well for the bulk density (Fig 6E).

Features of nucleosome-induced convoy formation and transcriptional

bursting

While classical models of transcription attribute bursting to promoter dynamics where the

promoter switches between an ON and OFF state [26,27,56–59], the ddTASEP model exhibits

bursting even with a constitutively active promoter because of nucleosome-induced pausing.

In order to identify bursts, we utilized the difference in time scales between the average intra-

convoy waiting time tin and the average inter-burst interval tIBI . As can be seen in Fig 2A and

2B, nucleosome induced pausing introduces non-trivial time delays between the last polymer-

ase of a convoy and the pioneering polymerase of the convoy following it. To briefly
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summarize our approach (described in full in the methods), we utilized a kernel density esti-

mate of log10 tw weighted by itself to determine whether the system exhibited bursting and (in

the presence of bursts) to identify the approximate location of the average inter- and intra-

burst intervals. The threshold for a burst waiting time was set as the geometric average of the

two peaks of the kernel density estimate. Representative kernel density estimates for the

parameter sets used in Fig 2 are shown in Fig 7A. Excluding the cases without strong

Fig 6. Evaluation of the effects of gene length and nucleosome spacing on bulk transcriptional properties. Panels

A (v), B (ρ), and C (J) show the results of a parameter sweep with respect to gene length from 2,000 to 20,000 bp with α
= 0.1 (top left), 0.25 (top right), 0.5 (bottom left), and 1 (bottom right), and γ = 0.1 (blue), 0.2, (green), 0.4 (orange),

and 0.75 (red). Panels D (v), E (ρ), and F (J) show the results of a parameter sweep with respect to the number of evenly

spaced nucleosomes (by varying number of linker sites) givingNNuc2{1, 4, 8, 16, 20, 25, 40, 50, 80, 100} with α = 0.1

(top left), 0.25 (top right), 0.5 (bottom left), and 1 (bottom right). Since γ depends on geometry, ho and hc were set

equal to 1 (blue), 0.1 (green), and 0.01 (orange). Both sweeps were performed with 2×106 Monte Carlo steps and 50

replicates.

https://doi.org/10.1371/journal.pcbi.1009811.g006
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correlations (Fig 2F, bottom left and bottom middle), all of the remaining cases were strongly

bimodal indicating that non-trivial bursting is occurring.

Next, we investigated the internal transcription dynamics of bursting ddTASEPs versus

non-bursting ddTASEPs in Fig 7B. In the classic TASEP, the waiting time between particles is

Fig 7. Investigation of the ddTASEP Inter-Burst Interval and Average Burst Size. (A) Representative smoothed

kernel density estimates of log10(tw) weighted by log10(tw) using same parameter sets as Fig 2. (B) Empirical cumulative

distribution functions of waiting times (black line) from ddTASEPs with the same parameters as in Fig 2. The time-

headway cumulative distribution function is overlaid for each plot (Eq 42). The red dashed time headway distributions

have robust bursting with an effective density ρeff = 0.5. In contrast, the green dashed lines indicate initiation limited

cases where unimodality was observed in Fig 7A, and ρ is given by Eq 39. (C) shows the average inter-burst interval tIBI
plotted as a function of Eh = 4/γ. (D) shows the average inter-burst interval tIBI plotted as a function of index of

dispersion of the first passage time to enter a nucleosomeDe. (E) shows burst sizeNB plotted as a function of mean first

passage rate γ with the solid lines proportional to 1ffiffiffi
hc
p . Panels (C), (D), and (E) were generated with Fig 5A–5C. γ is

varied from 0.001 to 0.99 by adjusting ho for fixed values of hc equal to 0.001 (blue), 0.01 (green), and 0.1 (orange)

omitting cases that failed to show bimodality.

https://doi.org/10.1371/journal.pcbi.1009811.g007
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given by the time headway distribution f(t;ρ). The probability density function f(t;ρ) of this dis-

tribution is given by [60]

f t; rð Þ ¼
r

1 � r
eð1� rÞt � 1
� �

e� t þ
1 � r

r
ert � 1½ �e� t � te� t ð41Þ

and its cumulative distribution function F(t;ρ) is given by

F t; rð Þ ¼
1

1 � r
1 � e� rtð Þ �

r

1 � r
1 � e� tð Þ þ

1

r
1 � e� ð1� rÞt
� �

�
1 � r

r
1 � e� tð Þ þ e� t 1þ tð Þ � 1

The mean of this distribution is known to be 1

rð1� rÞ
¼ 1

J ¼ 4. For a burst group at the end of

a gene, we hypothesized that it would exhibit max flux limit TASEP dynamics since the entry

rate into the burst group is given by q and the termination rate is given by β = q. Therefore, the

effective density of a burst group would be ρ = 0.5. In contrast, for a case without bursting, the

density of the system would be given by our initiation limited estimate in Eq 39. The empirical

cumulative distribution functions in Fig 7B directly confirm this result.

In Fig 7C, the relationship between the average inter-burst interval tIBI and the first passage

time to clear a nucleosome Eh = 4/γ was considered. While there is a clear correlation between

Eh and tIBI ðr ¼ 0:68Þ, there is clearly dependence on the magnitude of hc that is not appropri-

ately accounted for here. Therefore, we investigated the hypothesis that the inter-burst interval

should scale with index of dispersion of the time to enter a nucleosome since De quantifies the

deviation from classical TASEP behavior. The variance Ve will be directly related to the

observed inter-burst intervals tIBI since these contribute most strongly to the variance out of all

of the observed waiting times tw since the intra-burst intervals are always approximately

tin � 4. However, a system with a long MFPT with frequent, short inter-burst intervals tIBI and

a system with a short MFPT with infrequent, long inter-burst intervals tIBI could have compa-

rable variances. Therefore, to better account for the relative perturbation strength and to main-

tain dimensional consistency, the index of dispersion De is preferable to the variance Ve.
Fig 7D shows that all three data series collapse onto a single curve and that the average inter-

burst intervals exhibit a power law scaling with De that could be slightly improved with addi-

tional correction for α and hc. However, the correlation is still strong with r = 0.82 even though

the relationship is not completely linear.

Fig 7E investigates the limiting values of burst size. Under saturation conditions, the maxi-

mum average burst size is approximately

NB;max �
3:3
ffiffiffiffi
hc

p ; for a � a� gð Þ ð43Þ

This result is surprising since it initially seems like burst size should be controlled by the

flux and the absolute time scale of the nucleosome unwrapping (1/ho) because this should be

connected to the number of polymerases that can accumulate behind a closed nucleosome.

However, when the gene is saturated, a constant number of polymerases accumulate behind

each closed nucleosome. The limiting factor under these conditions is how fast the nucleosome

can close in such a way that it splits burst groups to finite size as shown in the anti-correlated

regions observed in the Fig 2F.

The existence of bursts under initiation limited conditions

While robust bursting is clearly evident in the nucleosome-limited (saturated) region, it is

unintuitive whether or not robust bursting occurs in the initiation limited region. In Fig 8A,

we investigate the average inter-burst interval tIBI as α!0. The predictions given by the time

(42)
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headway distributions (1/J) are given by the dashed lines. Remarkably, the inter-burst intervals

are substantially longer than the waiting times between randomly initiated polymerases. In

other words, the tIBI now represents the sum of the waiting time between rare initiation events

plus the sum of the time to clear the nucleosomes which have all returned to resting nucleo-

some occupancy since the polymerase density is approaching zero. Fig 8B directly confirms

Fig 8. Bursting in the low initiation rate regime. (A) shows the average inter-burst interval tIBI as a function of α with

the headway distribution prediction for the average waiting time tw given by a dashed line. (B) shows the average burst

sizeNB plotted as a function of α. Panels (A) and (B) were generated with Fig 5D–5F with α2[0.001, 1] with hc =

ho2{0.0143, 0.033} to achieve γ2{0.1, 0.2}. (C) shows that the variance of burst size s2
NB

(simulated) is equal to the

variance of a geometric distribution given by Eq 46 and is colored by −log10 α. (D) compares the mean inter-burst

interval and the variance of the inter-burst intervals to establish that the waiting time distribution is exponentially

distributed using the data from Fig 5A–5C and is colored by −log10 γ. (E) and (F) show representative burst size

probability mass functions generated from geometric distributions with means given by NB = 3.62 and 1.49 associated

with the parameter sets (α = 0.01, γ = 0.2) and (α = 0.002, γ = 0.2).

https://doi.org/10.1371/journal.pcbi.1009811.g008
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the existence of burst groups. In the limit α!1, the max burst size converges to the value given

by Eq 43. In contrast, in the limit as α!0, the burst size approaches one. However, our pro-

posed burst identification procedure still identifies bursts for these parameter sets. We hypoth-

esize that the burst sizes are geometrically distributed and that most “apparent bursts” under

extreme initiation limited conditions are single polymerases while a smaller subset constitute

non-trivial polymerase convoys/burst events.

We hypothesize that the burst sizes are geometrically distributed [27] such that

PðNB ¼ kÞ ¼ ð1 � pÞ
k� 1p ð44Þ

where k is the number of polymerases in the burst, and p is defined by

p ¼ 1=NB ð45Þ

The variance of the burst size geometric distribution s2
NB

is given by

s2

NB
¼

1 � p
p2
¼ NB NB � 1

� �
ð46Þ

Fig 8C verifies that this relationship holds for the data set plotted in Fig 8A and 8B, so the

assumption that the burst sizes are geometrically distributed is reasonable. Additionally, Fig

8D shows that the variance of the inter-burst intervals is equal to their mean squared,

(s2
IBI ¼ tIBI

2) indicating that burst waiting times are exponentially distributed.

Interestingly, these findings bare some similarity to that of a two-state random telegraph

model. In this classical model, mRNA are produced continuously for brief periods of time

while the promoter of a gene is active, and then, mRNA production stops when the promoter

is inactivated [61,62]. This model can be interpreted through the framework of the classical

TASEP (without nucleosomes) by considering the association and dissociation of a transcrip-

tion factor with rates fa and fd respectively. In this new framework, the promoter would be

active for a time period of 1/fd (i.e. when the transcription factor dissociates) and the inter-

burst interval would be exponentially distributed with mean 1/fa (i.e. the waiting time for tran-

scription factor association). Burst groups would move deterministically along the length of

the gene with the same bulk velocity, but the density and flux would be scaled by the fraction

of time the promoter was active
fa

faþfd

� �
. The burst size distribution would then be geometri-

cally distributed with a burst termination probability of
fd
Jþfd

and a mean of J
fd

(i.e. the flux times

the expected time the promoter will remain active).

As in the two-state telegraph model, the burst sizes of our proposed ddTASEP also follow a

geometric distribution, and the inter-burst intervals are exponentially distributed [27]. How-

ever, there are a few key distinctions. First, the burst sizes in our proposed model have an

upper bound given by Eq 43 that is proportional to 1=
ffiffiffiffi
hc

p
and is completely independent of

the flux. Second, if J<fd in a two-state telegraph model, polymerases will never form burst

groups since the average number of polymerases initiated per active period is less than one. In

contrast, in the ddTASEP, polymerases merge into convoys along the length of the gene due to

repeated nucleosome induced pausing and arrive in rapid succession with waiting times dis-

tributed according to the time headway distribution of a classical TASEP in rapid succession,

even for extremely small initiation rates.

Last, we will verify the ddTASEP’s capacity to induce bursting for two cases in the extreme

initiation limited regime for the parameter sets (α = 0.01, γ = 0.2) and (α = 0.002, γ = 0.2)

which produced average burst sizes NB of 3.62 and 1.49, respectively. The probability mass

functions given by Eq 44 are plotted for both cases in Fig 8D and 8E. For the case with the
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higher initiation rate (α = 0.01) in Fig 8D, bursts of up to 15 polymerases can be observed in

some rare events. More interestingly for the case with (α = 0.002) in Fig 8E, the convoys can

regularly include up to six polymerases even though the bulk density ρ for this case is 0.01 and

the flux J is 0.002 (which would correspond to a 500 second average waiting time in a classical

TASEP). In short, non-trivial bursting is still possible in the extreme initiation limited region.

From a biological standpoint, these parameter sets are obtainable. In Fig 8, cases with γ equal

to 0.1 and 0.2 are considered. Veloso et al. utilized BruDRB-seq to demonstrate that the range of

first passage elongation rates γ in K562 Leukemia cells ranged from 0.0083 to 1 site/s [19]. Bintu

et al. showed via optical trap experiments that nucleosome unwrapping took between 10–100 sec-

onds [13], and the cases presented here assume ho = hc = 0.0143 or 0.0333 which correspond to

roughly 30–70 seconds. Tantale et al.’s study of HIV1 gene transcription (under high initiation

rates) via MS2-tagging suggested that polymerases could move in convoys of 10–25 with an intra-

burst waiting time of 4.3 seconds which is consistent with the predictions from the proposed geo-

metric distribution for burst size and the TASEP time headway distribution [63]. Therefore,

nucleosome-induced pausing serves a viable mechanism for transcriptional bursting on its own.

Comparing the biological effects of static and dynamic defects

In this section, we numerically analyze RNAPII elongation on non-uniform DNA where the

advance rate q or the nucleosome rate constants ho and hc may vary along the gene. We assume

that the gene contains a 1600 bp (8 nucleosomes/32 site), partially methylated CpG Island at

the promoter and seven 400 bp (2 nucleosomes/8 site) regions that correspond to exons and

the adjacent intron-exon boundary regions where co-transcriptional splicing occurs [18,64].

(The reader should note most genes contain one long exon of median length 1,000–1,500 bp

and many smaller exons of median length 150–200 bp [65]).

For the cases where we treated these features as static defects, we assigned a unique value of

qi to each site i. First, the effect of variable GC content was incorporated into each site’s

advance rate by the following equation

qi ¼ q
½0:5NGC þ 1:5ð50 � NGCÞ�

50
where NGC � Binom N ¼ 50; p ¼ 0:5ð Þ ð47Þ

where the average advance rate is set by q, and NGC represents a binomial-distributed sample

of the number of guanine and cytosine base-pairs present in the 50 bp interval. Then, the val-

ues of qi (obtained from Eq 47) were reduced by an additional 50% on the sites corresponding

to the CpG Island and the exons. The minimum advancement rate obtained from this proce-

dure (i.e. static defect slowdown of qi = 0.5q plus additional GC content penalty) used to gener-

ate the lattice for the gene in Fig 9A and 9B was qs = 0.43.

For the cases where the pause inducing features were assumed to modulate the nucleosome

dynamics, we assigned a unique pair of rate constants hc,m and ho,m to themth nucleosome.

The effect of variable GC content was incorporated into each pair of rate constants as follows

hc;m ¼ hc
½1:25NGC þ 0:75ð150 � NGCÞ�

150
where NGC � Binom N ¼ 150; p ¼ 0:5ð Þ ð48Þ

ho;m ¼ ho
½0:75NGC þ 1:25ð150 � NGCÞ�

150
where NGC � Binom N ¼ 150; p ¼ 0:5ð Þ ð49Þ

where hc and ho represent the average wrapping and unwrapping rate and NGC now considers

150 base pairs instead of 50 to reflect the size of the nucleosome associated region. On the CpG

island and on the exons, the values of hc,m were increased by an additional 25% while the values
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of ho,m were decreased an additional 25% from the values obtained from Eqs 48 and 49. Our

random sampling procedure (i.e. hc,m = 1.25hm + additional GC content enhancement and ho,

m + GC content penalty) used to generate the gene in Fig 9C and 9D led to the max close rate

being 27% higher than the average hc and the minimum open rate being 26% lower than the

average ho.
In Fig 9A and 9B, the effects of static defects on advance rate parameter variability is consid-

ered under initiation limited (α = 0.05, 9A) and saturating conditions (α = 0.25, 9B). The

reader should note that all of our prior definitions for v, ρ, and J given in Eqs 39–41 assume

that α and γ are scaled relative to q. Therefore, while α = 0.25 is not saturating for q = 1, the

rescaled a0 ¼ a

qs
¼ 0:25

0:43
¼ 0:58 is saturating for the slow sites. A few features become

Fig 9. Effects of static defects and nucleosome rate constant variability on RNAPII density profiles. All subpanels have hc
increasing from 0.001 to 0.1 from left to right and ho increasing from 0.001 to 1 from top to bottom as in Fig 2. 50 replicates of

NMCS = 2×106 Monte Carlo steps are performed for all cases. All plots list the simulated flux J, the theory prediction for the

unperturbed system JNorm, and the theory prediction based on the slowest site Jslow. The left column (A, C) contains simulations

at a low initiation rate of α = 0.05 while the right column (B, D) contains simulations at α = 0.25 which is saturating for the slow

sites. The top row (A, B) shows density profiles from a gene with static defects representing a CpG Island (32 sites) on the

promoter and 7 exons (8 sites) with a static defect advance rate of qi = 0.5q on these sites with additional GC content

heterogeneity given by Eq 48 leading to a minimum advance rate qs = 0.43. The bottom row (C, D) shows density profiles from

the same gene, but the variability is introduced through the rate constants ho,m and hc,m. GC content heterogeneity is

introduced via Eqs 49 and 50. On the CpG Island and exon sites, hc,m is increased by 25%, and ho,m is decreased by 25%. With

the addition of GC content heterogeneity, the maximum observed max(hc,m) was 27% higher than the average, and the

minimum observed min(ho,m) was 26% lower than the average.

https://doi.org/10.1371/journal.pcbi.1009811.g009
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immediately obvious. First, regions of elevated polymerase density have appeared at the sites

of the static defects due to the increased dwell time on these sites, and the reduced flux through

these sites has non-trivially reduced the transcription flux through the system (which must be

constant across all sites). As the nucleosome dynamics slow down, the localized regions of ele-

vated polymerase density smear out until the density profiles begin to qualitatively look like

those in Fig 2C in the absence of perturbations.

In Fig 9A (barring the top left two plots), the flux through the gene is roughly equal to or

slightly less than the flux predicted by the slowest bottleneck. The most significant discrepan-

cies arise for cases with hc�ho (top and middle right) where the simulated flux is significantly

lower than the predicted flux through the slow sites. We hypothesize that this results from a

synergistic effect where slow downs on the static defects increase the likelihood of nucleosome

rebinding immediately after them. In contrast, for Fig 9B (barring the top left two cases), the

fluxes mostly lie between the upper and lower bounds set by the unperturbed and most per-

turbed predictions. However, in the case of fast nucleosome dynamics in Fig 9B (bottom row),

the simulated values converge to the predictions for the slowest site. Last, the discrepancies

between the predicted and simulated fluxes that existed for the cases with hc�ho when α =

0.05 (Fig 9A, top and middle left) have disappeared when the initiation rate was increased to α
= 0.25. We suspect that saturating the gene has led to the formation of robust convoys that

overcome the nucleosome rebinding effect that occurs after slow sites.

While Fig 9A and 9B demonstrate that static defects can throttle the flux, the resulting den-

sity profiles in Fig 9B have sharp discontinuities. Next, in Fig 9C and 9D, we investigate the

alternative hypothesis that these genetic and epigenetic features could be inducing pausing by

causing local variation in the nucleosome rate constants without inducing the same

discontinuities.

In Fig 9C and 9D, it is clear that this alternative mechanism of action produces a similar throt-

tling effect but with a smoother density profile. In Fig 9C, the simulated flux is dramatically reduced

even relative to the fluxes in the analogous subplots in Fig 9A suggesting that small variations in the

nucleosome rate constants can have a substantially stronger effect than even adjusting the nominal

advance rate. Second, in many cases, the observed flux is substantially lower than the prediction for

slow sites. We suspect that this effect is associated with the sharp decay in density at the left-hand

boundaries in Fig 9C that is not observed in the static defect case. We hypothesize that the faster

nucleosome rebinding on the promoter disrupts the initial formation of convoys until later on the

gene causing a reduction in flux due to increased polymerase-nucleosome collisions.

While Fig 9C shows that local modification of the nucleosome dynamics can affect the flux

at low initiation rates, Fig 9D shows the limitations of this hypothesis at higher initiation rates.

For higher initiation rates, the exclusionary binding rule leads to nucleosome unwrapping/

destabilization even on the faster binding sites. Thus, when the system starts to saturate, the

observed fluxes increase from at or slightly below the lower bound set by JSlow to an intermedi-

ate value between the bounds or even the upper bound set by JNorm.

Discussion

In this study, we present a stochastic, agent-based model of transcription with nucleosome

induced pausing that maps onto the ddTASEP. The model reproduces key features of tran-

scription including cooperative nucleosome destabilization [23,24,66], polymerase convoy for-

mation [63], and transcriptional bursting [56]. Further, the model provides significant insight

into the physics of jamming transitions in the presence of dynamic defects [34].

In lieu of a traditional mean-field approach to solving the ddTASEP dynamics, we calcu-

lated the moments of first passage time (MFPT and VFPT) using a Markov chain approach
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[37,39], yielding exact results for both. Our approach allowed us to directly quantify the effects

of the microscopic nucleosome rate constants on the first passage elongation rate γ. Through

our analysis of the index of dispersion of the waiting time to enter a nucleosome (De), we

observed that significant deviation from classical TASEP behavior can occur as the resting

nucleosome density
hc

hoþhc
increases, but these deviations from classical behavior are more dra-

matic as the unwrapping kinetics slow down (ho!0) even at fixed nucleosome density. This is

potentially consistent with observations such as those in Bintu et al. that showed that multiple

mechanisms to reduce transcriptional pausing exist. In acetylation, the thermodynamic equi-

librium of the resting nucleosome density (wrapping state) is altered with minimal effect on

the rates of wrapping and unwrapping [13]. In contrast, tail-less nucleosomes (which are a

minimally explored epigenetic regulatory mechanism [67]) had substantially faster rates of

unwrapping and re-wrapping with no change in the resting nucleosome density (wrapping

state) [13]. Both mechanisms contributed to fewer transcriptional pauses of shorter duration

relative to transcription through unmodified nucleosomes.

Using the mean first passage elongation rate γ, we constructed a new axis to the fundamen-

tal TASEP αβ-phase diagram. Subsequently, we developed analytical approximations for the

core transcriptional properties (transcription flux J, bulk density ρ, and bulk elongation rate v)
based on assumptions about the asymptotic behavior of the system for low initiation rates and

near the max flux limit. We identified a novel jamming transition in the αγ-plane that sepa-

rated the transcriptional dynamics into initiation limited and nucleosome (dynamic defect)

limited regions. Additionally, these estimates were robust to changes in gene length and to

changes in the geometry of nucleosome spacing. Further research is merited into the physical

properties of this system. For instance, the effects of varying β in the αβγ-volume and the

effects of varying the dynamic defect length should be explored.

While the burst size and waiting time distributions shared similarities with two-state mod-

els, the model provided insight into a novel mechanism for transcriptional bursting that does

not intrinsically rely on standard mechanisms at the promoter (such as two-state models)

[25,26,56]. ddTASEP burst groups were shown to be quantitatively (via the time headway dis-

tribution [60]) similar to shorter TASEPs nested within the ddTASEP lattice. Further, the aver-

age inter-burst intervals were shown to correlate strongly with the index of dispersion De, and

the max burst size was observed to be proportional to NB / 1=
ffiffiffiffi
hc

p
. In eukaryotic systems,

many transcriptional initiation rates are slow with most genes showing one RNAPII on a loci

on average at a time [68]. However, even in the extreme low initiation rate region, non-trivial

transcriptional bursts were observed on average. Further, given that the burst sizes were geo-

metrically distributed, non-trivial bursting can occur even in extreme initiation limited region.

While the nucleosome-mediated bursting hypothesis is interesting, our model more impor-

tantly demonstrates both how powerfully and how versatilely nucleosomes dynamics can mod-

ulate transcriptional elongation and flux. An emerging body of evidence is forming in the

literature that implicates the role of enzymes such as BRD4 and DNMT1/DNMT3B as epige-

netic drivers of cancer and epithelial to mesenchymal transition. BRD4 is a histone acetyltrans-

ferase associated with histone displacement, chromatin de-compactification, and cell cycle

progression. BRD4’s upregulation has been associated with EMT in hepatocellular carcinoma

and in salivary adenoid cystic carcinoma [69–71]. DNMT’s are DNA methyltransferases that

maintain gene silencing by hypermethylating CpG islands which encourages tighter nucleo-

some occupancy. Loss of DNMT activity leads to loss of nucleosomes on the promoter of

tumor suppressor genes leading to their transcriptional activation [72]. The phase diagrams of

the proposed ddTASEP confirm that even minor changes of the nucleosome rate constants

will significantly adjust γ giving rise to a large dynamic range of behavior even for fixed
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initiation rates α consistent with these patterns of transcriptional upregulation. Further, unlike

transcription factor dynamics or other shorter time-scale processes traditionally considered in

two state models of transcription regulation, these nucleosome mediated methods of transcrip-

tional control can span timescales from days to weeks giving long term control [73].

Last, in the final section of the manuscript, the proposed ddTASEP was extended to con-

sider both static site defects that introduce variability in the RNAPII nominal advance rate and

localized variability in the nucleosome rate constants that also induced pausing. Our results

demonstrated that the nucleosome dynamics could be tuned individually to induce localized

pausing effects that may occur at genetic points of interest like CpG islands or exons without

introducing discontinuous shock profiles that would arise from treating these as static defects.

Further, the resulting throttling effects on the flux were comparable if not stronger than those

obtained in the static defect case. Additionally, the capacity to modify the nucleosome dynam-

ics along the gene body provides an interesting capability in this model that is not attainable in

a two-state transcription model. Utilizing our model, it may be possible to tune the nucleo-

some dynamics in different regions to serve different functions. For instance, a unique set of

wrapping dynamic rate constants could be assigned to the promoter-proximal region to simu-

late promoter associated histone modifications like H3K9me3 silencing or H3K27ac activation

while the gene body could have a separate set of modifications such as H3K79me3 or

H4K20me1 promoting transcriptional elongation on the gene body leading to locally elevated

polymerase density near the transcription start site with a homogeneous gene body (e.g. see

Akhtar et al.) comparable to our density profiles in Fig 9C [19,74,75].

Supporting information

S1 Fig. Validity of lattice coarse-graining. (A) compares the analytical results for the expected

waiting time to enter a nucleosome between the single site and fifty site model showing that the

results are mathematically identical. (B) compares the analytical results for the variance of the

waiting time to enter a nucleosome between the single site and 50 site models confirming that

they converge to each other in the limit as hc, ho!0. (A) and (B) are log-log plots with hc set to

{0.001, 0.01, 0.1, 1} corresponding to red, blue, yellow, and purple markers respectively with ho
adjusted to achieve the desired values of Ee and Ve. (C) Pseudo-color plots of the percent contri-

bution of the bare DNA passage time to the mean and variance of first passage time to clear a

nucleosome unit Eh (left) and Vh (right) for the single site (top) and 50 site (bottom) models.

(TIF)
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17. Jimeno-González S, Payán-Bravo L, Muñoz-Cabello AM, Guijo M, Gutierrez G, Prado F, et al. Defec-

tive histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-

mRNA splicing. Proc Natl Acad Sci. 2015 Dec 1; 112(48):14840–5. https://doi.org/10.1073/pnas.

1506760112 PMID: 26578803

18. Jonkers I, Kwak H, Lis JT. Genome-wide dynamics of Pol II elongation and its interplay with promoter

proximal pausing, chromatin, and exons. Struhl K, editor. eLife. 2014 Apr 29; 3:e02407. https://doi.org/

10.7554/eLife.02407 PMID: 24843027

19. Veloso A, Kirkconnell KS, Magnuson B, Biewen B, Paulsen MT, Wilson TE, et al. Rate of elongation by

RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome

Res. 2014 Jun 1; 24(6):896–905. https://doi.org/10.1101/gr.171405.113 PMID: 24714810

20. Wang L, Stein L, Ware D. The relationships among GC content, nucleosome occupancy, and exon

size. ArXiv14042487 Q-Bio [Internet]. 2014 May 27 [cited 2021 Nov 5]; Available from: http://arxiv.org/

abs/1404.2487

PLOS COMPUTATIONAL BIOLOGY Slow nucleosome dynamics in a stochastic traffic model of transcription

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009811 February 10, 2022 32 / 35

https://doi.org/10.1126/science.1070919
http://www.ncbi.nlm.nih.gov/pubmed/12183631
https://doi.org/10.1073/pnas.162041399
http://www.ncbi.nlm.nih.gov/pubmed/12237400
https://doi.org/10.1126/science.aab2956
http://www.ncbi.nlm.nih.gov/pubmed/26912859
https://doi.org/10.1016/j.cell.2008.09.050
http://www.ncbi.nlm.nih.gov/pubmed/18957198
https://doi.org/10.1038/nature06965
https://doi.org/10.1038/nature06965
http://www.ncbi.nlm.nih.gov/pubmed/18497826
https://doi.org/10.1371/journal.pbio.2000640
https://doi.org/10.1371/journal.pbio.2000640
http://www.ncbi.nlm.nih.gov/pubmed/28027308
http://onlinelibrary.wiley.com/doi/10.1002/0471142727.mb2129s109/abstract
http://onlinelibrary.wiley.com/doi/10.1002/0471142727.mb2129s109/abstract
https://doi.org/10.1101/pdb.prot5384
http://www.ncbi.nlm.nih.gov/pubmed/20150147
https://doi.org/10.1101/gr.5533506
http://www.ncbi.nlm.nih.gov/pubmed/17179217
https://doi.org/10.1016/j.molcel.2015.11.003
https://doi.org/10.1016/j.molcel.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/26687680
https://doi.org/10.1038/nmeth.3542
https://doi.org/10.1038/nmeth.3542
http://www.ncbi.nlm.nih.gov/pubmed/26280331
https://doi.org/10.1007/978-1-61779-316-5%5F2
http://www.ncbi.nlm.nih.gov/pubmed/21913068
https://doi.org/10.1016/j.cell.2012.10.009
https://doi.org/10.1016/j.cell.2012.10.009
http://www.ncbi.nlm.nih.gov/pubmed/23141536
https://doi.org/10.1140/epje/i2017-11596-2
https://doi.org/10.1140/epje/i2017-11596-2
http://www.ncbi.nlm.nih.gov/pubmed/29185124
https://doi.org/10.1126/science.1172926
https://doi.org/10.1126/science.1172926
http://www.ncbi.nlm.nih.gov/pubmed/19644123
https://doi.org/10.1073/pnas.1506760112
https://doi.org/10.1073/pnas.1506760112
http://www.ncbi.nlm.nih.gov/pubmed/26578803
https://doi.org/10.7554/eLife.02407
https://doi.org/10.7554/eLife.02407
http://www.ncbi.nlm.nih.gov/pubmed/24843027
https://doi.org/10.1101/gr.171405.113
http://www.ncbi.nlm.nih.gov/pubmed/24714810
http://arxiv.org/abs/1404.2487
http://arxiv.org/abs/1404.2487
https://doi.org/10.1371/journal.pcbi.1009811


21. Collings CK, Anderson JN. Links between DNA methylation and nucleosome occupancy in the human

genome. Epigenetics Chromatin. 2017 Apr 11; 10(1):18. https://doi.org/10.1186/s13072-017-0125-5

PMID: 28413449

22. Collings CK, Waddell PJ, Anderson JN. Effects of DNA methylation on nucleosome stability. Nucleic

Acids Res. 2013 Mar 1; 41(5):2918–31. https://doi.org/10.1093/nar/gks893 PMID: 23355616

23. Kulaeva OI, Gaykalova D, Studitsky VM. Transcription Through Chromatin by RNA polymerase II: His-

tone Displacement and Exchange. Mutat Res. 2007 May 1; 618(1–2):116–29. https://doi.org/10.1016/j.

mrfmmm.2006.05.040 PMID: 17313961

24. Bintu L, Kopaczynska M, Hodges C, Lubkowska L, Kashlev M, Bustamante C. The elongation rate of

RNA polymerase determines the fate of transcribed nucleosomes. Nat Struct Mol Biol. 2011 Dec; 18

(12):1394–9. https://doi.org/10.1038/nsmb.2164 PMID: 22081017

25. van den Berg AA, Depken M. Crowding-induced transcriptional bursts dictate polymerase and nucleo-

some density profiles along genes. Nucleic Acids Res. 2017 Jul 27; 45(13):7623–32. https://doi.org/10.

1093/nar/gkx513 PMID: 28586463

26. Corrigan AM, Tunnacliffe E, Cannon D, Chubb JR. A continuum model of transcriptional bursting.

Singer RH, editor. eLife. 2016 Feb 20; 5:e13051. https://doi.org/10.7554/eLife.13051 PMID: 26896676

27. Kumar N, Singh A, Kulkarni RV. Transcriptional Bursting in Gene Expression: Analytical Results for

General Stochastic Models. PLOS Comput Biol. 2015 Oct 16; 11(10):e1004292. https://doi.org/10.

1371/journal.pcbi.1004292 PMID: 26474290

28. Mitarai N, Dodd IB, Crooks MT, Sneppen K. The Generation of Promoter-Mediated Transcriptional

Noise in Bacteria. PLoS Comput Biol [Internet]. 2008 Jul 11 [cited 2020 Oct 18]; 4(7). Available from:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442219/

29. Schadschneider A, Debashish C, Nishinari K. Stochastic Transport in Complex Systems: From Mole-

cules to Vehicles [Internet]. Elsevier Science; 2011 [cited 2019 Jun 21]. 582 p. Available from: https://

www.sciencedirect.com/book/9780444528537/stochastic-transport-in-complex-systems

30. Bressloff PC, Newby JM. Stochastic models of intracellular transport. Rev Mod Phys. 2013 Jan 9; 85

(1):135–96.

31. Derrida B, Domany E, Mukamel D. An exact solution of a one-dimensional asymmetric exclusion model

with open boundaries. J Stat Phys. 1992 Nov 1; 69(3):667–87.

32. Derrida B, Evans MR, Hakim V, Pasquier V. Exact solution of a 1D asymmetric exclusion model using a

matrix formulation. J Phys Math Gen. 1993 Apr; 26(7):1493–517.

33. Derrida B, Janowsky SA, Lebowitz JL, Speer ER. Exact solution of the totally asymmetric simple exclu-

sion process: Shock profiles. J Stat Phys. 1993 Dec 1; 73(5):813–42.

34. Waclaw B, Cholewa-Waclaw J, Greulich P. Totally asymmetric exclusion process with site-wise

dynamic disorder. J Phys Math Theor. 2019 Jan; 52(6):065002.

35. Cholewa-Waclaw J, Shah R, Webb S, Chhatbar K, Ramsahoye B, Pusch O, et al. Quantitative model-

ling predicts the impact of DNA methylation on RNA polymerase II traffic. Proc Natl Acad Sci. 2019 Jul

23; 116(30):14995–5000. https://doi.org/10.1073/pnas.1903549116 PMID: 31289233

36. Garg S, Dhiman I. Two-channel totally asymmetric simple exclusion process with site-wise dynamic dis-

order. Phys Stat Mech Its Appl. 2020 May 1; 545:123356.

37. Kemeny JG, Snell JL. Finite Markov Chains: With a New Appendix “Generalization of a Fundamental

Matrix” [Internet]. New York: Springer-Verlag; 1976 [cited 2021 Jun 11]. (Undergraduate Texts in Math-

ematics). Available from: https://www.springer.com/gp/book/9780387901923

38. Rust PF. The Variance of Duration of Stay in an Absorbing Markov Process. J Appl Probab. 1978; 15

(2):420–5.

39. Hernandez-Suarez C. Mean and variance of first passage time in Markov chains with unknown parame-

ters. ArXiv190207789 Q-Bio Stat [Internet]. 2019 Feb 28 [cited 2020 Dec 30]; Available from: http://

arxiv.org/abs/1902.07789

40. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977 Dec 1; 81

(25):2340–61.

41. Revyakin A, Zhang Z, Coleman RA, Li Y, Inouye C, Lucas JK, et al. Transcription initiation by human

RNA polymerase II visualized at single-molecule resolution. Genes Dev. 2012 Aug 1; 26(15):1691–702.

https://doi.org/10.1101/gad.194936.112 PMID: 22810624

42. Selby CP, Drapkin R, Reinberg D, Sancar A. RNA polymerase II stalled at a thymine dimer: footprint

and effect on excision repair. Nucleic Acids Res. 1997 Feb 15; 25(4):787–93. https://doi.org/10.1093/

nar/25.4.787 PMID: 9016630

43. Grigoryev SA. Nucleosome spacing and chromatin higher-order folding. Nucleus. 2012 Nov 1; 3

(6):493–9. https://doi.org/10.4161/nucl.22168 PMID: 22990522

PLOS COMPUTATIONAL BIOLOGY Slow nucleosome dynamics in a stochastic traffic model of transcription

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009811 February 10, 2022 33 / 35

https://doi.org/10.1186/s13072-017-0125-5
http://www.ncbi.nlm.nih.gov/pubmed/28413449
https://doi.org/10.1093/nar/gks893
http://www.ncbi.nlm.nih.gov/pubmed/23355616
https://doi.org/10.1016/j.mrfmmm.2006.05.040
https://doi.org/10.1016/j.mrfmmm.2006.05.040
http://www.ncbi.nlm.nih.gov/pubmed/17313961
https://doi.org/10.1038/nsmb.2164
http://www.ncbi.nlm.nih.gov/pubmed/22081017
https://doi.org/10.1093/nar/gkx513
https://doi.org/10.1093/nar/gkx513
http://www.ncbi.nlm.nih.gov/pubmed/28586463
https://doi.org/10.7554/eLife.13051
http://www.ncbi.nlm.nih.gov/pubmed/26896676
https://doi.org/10.1371/journal.pcbi.1004292
https://doi.org/10.1371/journal.pcbi.1004292
http://www.ncbi.nlm.nih.gov/pubmed/26474290
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442219/
https://www.sciencedirect.com/book/9780444528537/stochastic-transport-in-complex-systems
https://www.sciencedirect.com/book/9780444528537/stochastic-transport-in-complex-systems
https://doi.org/10.1073/pnas.1903549116
http://www.ncbi.nlm.nih.gov/pubmed/31289233
https://www.springer.com/gp/book/9780387901923
http://arxiv.org/abs/1902.07789
http://arxiv.org/abs/1902.07789
https://doi.org/10.1101/gad.194936.112
http://www.ncbi.nlm.nih.gov/pubmed/22810624
https://doi.org/10.1093/nar/25.4.787
https://doi.org/10.1093/nar/25.4.787
http://www.ncbi.nlm.nih.gov/pubmed/9016630
https://doi.org/10.4161/nucl.22168
http://www.ncbi.nlm.nih.gov/pubmed/22990522
https://doi.org/10.1371/journal.pcbi.1009811


44. Maiuri P, Knezevich A, De Marco A, Mazza D, Kula A, McNally JG, et al. Fast transcription rates of RNA

polymerase II in human cells. EMBO Rep. 2011 Dec; 12(12):1280–5. https://doi.org/10.1038/embor.

2011.196 PMID: 22015688

45. Dao Duc K, Saleem ZH, Song YS. Theoretical analysis of the distribution of isolated particles in totally

asymmetric exclusion processes: Application to mRNA translation rate estimation. Phys Rev E. 2018

Jan 9; 97(1):012106. https://doi.org/10.1103/PhysRevE.97.012106 PMID: 29448386

46. Erdmann-Pham DD, Duc KD, Song YS. The Key Parameters that Govern Translation Efficiency. Cell

Syst. 2020 Feb 26; 10(2):183–192.e6. https://doi.org/10.1016/j.cels.2019.12.003 PMID: 31954660

47. Duc KD, Song YS. The impact of ribosomal interference, codon usage, and exit tunnel interactions on

translation elongation rate variation. PLOS Genet. 2018 Jan 16; 14(1):e1007166. https://doi.org/10.

1371/journal.pgen.1007166 PMID: 29337993

48. Duc KD, Saleem ZH, Song YS. Theoretical quantification of interference in the TASEP: application to

mRNA translation shows near-optimality of termination rates. bioRxiv. 2017 Jun 7;147017.

49. Durrett R. Essentials of Stochastic Processes. Springer Science & Business Media; 2012. 269 p.

50. Allen LJS. An Introduction to Stochastic Processes with Applications to Biology. CRC Press; 2010. 486

p.

51. Zia RKP, Dong JJ, Schmittmann B. Modeling Translation in Protein Synthesis with TASEP: A Tutorial

and Recent Developments. J Stat Phys. 2011 Apr 12; 144(2):405.

52. Erdmann-Pham DD, Duc KD, Song YS. Hydrodynamic Limit of the Inhomogeneous L-TASEP with

Open Boundaries: Derivation and Solution. ArXiv180305609 Cond-Mat Physicsmath-Ph [Internet].

2018 Mar 15 [cited 2019 Jun 21]; Available from: http://arxiv.org/abs/1803.05609

53. Khoromskaia D, Harris RJ, Grosskinsky S. Dynamics of non-Markovian exclusion processes. J Stat

Mech Theory Exp. 2014 Dec 16; 2014(12):P12013.

54. Ingalls BP. Mathematical Modeling in Systems Biology: An Introduction. MIT Press; 2013. 423 p.

55. Fogler HS. Elements of chemical reaction engineering / H. Scott Fogler. Upper Saddle River, N.J.:

Prentice Hall PTR, c1999.; 1999. (Prentice-Hall international series in the physical and chemical engi-

neering sciences).

56. Nicolas D, Phillips NE, Naef F. What shapes eukaryotic transcriptional bursting? Mol Biosyst. 2017 Jun

27; 13(7):1280–90. https://doi.org/10.1039/c7mb00154a PMID: 28573295

57. Murugan R. Theory of transcription bursting: Stochasticity in the transcription rates. bioRxiv. 2019 Dec

19;2019.12.18.880435.

58. Klindziuk A, Meadowcroft B, Kolomeisky AB. A Mechanochemical Model of Transcriptional Bursting.

Biophys J. 2020 Mar 10; 118(5):1213–20. https://doi.org/10.1016/j.bpj.2020.01.017 PMID: 32049059

59. Chong S, Chen C, Ge H, Xie XS. Mechanism of Transcriptional Bursting in Bacteria. Cell. 2014 Jul 17;

158(2):314–26. https://doi.org/10.1016/j.cell.2014.05.038 PMID: 25036631
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