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Abstract: In this paper, we present a new reference model that approximates the actual shape of
the Earth, based on the concept of the deformed spheres with the deformation parameter λ. These
surfaces, which are called λ-spheres, were introduced in another setting by Faridi and Schucking as
an alternative to the spheroids (i.e., ellipsoids of revolution). Using their explicit parametrizations
that we have derived in our previous papers, here we have defined the corresponding isothermal
(conformal) coordinates as well as obtained and solved the differential equation describing the
loxodromes (or rhumb lines) on such surfaces. Next, the direct and inverse problems for loxodromes
have been formulated and the explicit solutions for azimuths and arc lengths have been presented.
Using these explicit solutions, we have assessed the value of the deformation parameter λ for our
reference model on the basis of the values for the semi-major axis of the Earth a and the quarter-
meridian mp (i.e., the distance between the Equator and the North or South Pole) for the current best
ellipsoidal reference model for the geoid, i.e., WGS 84 (World Geodetic System 1984). The latter is
designed for use as the reference system for the GPS (Global Positioning System). Finally, we have
compared the results obtained with the use of the newly proposed reference model for the geoid
with the corresponding results for the ellipsoidal (WGS 84) and spherical reference models used in
the literature.

Keywords: deformed spheres; incomplete elliptic integrals; geoid’s reference models; loxodromes or
rhumb lines; azimuths and arc lengths; geodesy and navigation problems

MSC: 33E05; 53A05; 53A35; 53C22; 86A30

1. Introduction

So-called deformed spheres with deformation parameter λ < 1/3 were introduced
in [1] as an alternative to spheroids (ellipsoids of revolution) in a dynamical context for
the easy description of geodesics on these surfaces. It turns out that they can also serve
as an alternative for the actual shape of the Earth that is defined through the geoid (the
equipotential surface that has the same sum of gravitational and centrifugal potential
energies which would coincide with the mean sea level over the oceans if only gravity and
rotational acceleration were at work [2]).

The main difference between the proposed new reference model for the geoid and
the traditional ellipsoidal one is that the geodesics on the λ-spheres are expressed through
well-known analytical functions (see, e.g., [3]), whereas the geodesics on the rotational
ellipsoids are described through the complete set of the incomplete elliptic integrals (see,
e.g., [4]). In the present article, we show that the same is true for the calculation of azimuths
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and arc lengths for the loxodromes (or rhumb lines) on the λ-spheres. From the other side,
for the λ-spheres, the incomplete elliptic integrals (of all three kinds) will only appear when
we must embed these surfaces (or the corresponding solutions for geodesics or loxodromes
on them) into the three-dimensional Euclidean space (see Section 2 for details).

The above-described features of the newly proposed reference model for the geoid
simplify all the calculations that have to be done in local coordinates in geodesy and
navigation (see Sections 3 and 4), even though the geometrical definition of the λ-spheres is
more complicated in comparison to the rotational ellipsoids. Finally, in Section 5, we have
compared the results obtained with the use of the newly proposed reference model for
the geoid with the corresponding results for the ellipsoidal (WGS 84 [5]) reference model,
which is used currently and is the simplest possible spherical one [6].

2. Geometrical Description of λ-Spheres

Let us consider a deformed sphere with a deformation parameter λ ∈ (0, 1/3) (the
case when λ = 0 corresponds to the usual, non-deformed sphere). The chosen range of
the deformation parameter ensures that the Gaussian curvature K for λ-spheres under
consideration is strictly positive, and simultaneously the shape of the corresponding surface
of revolution is oblate (i.e., it is slightly flattened in the direction of its axis of symmetry,
as it should be for the reference model for the geoid describing the actual shape of the
Earth). Then, the parametrization of the λ-sphere’s surface, which is embedded into the
three-dimensional Euclidean space, can be written as [3,7]

x(u, v) = κru cos v, y(u, v) = κru sin v, z±(u) = ±
κ√
λk

((k− 1)F(θ, k) + E(θ, k)− λk Π((1− λ)k, θ, k)), (1)

where u ∈ [0, 1], v ∈ [−π, π] are the latitude and longitude local variables, r = 1/
√

1− λ ∈(
1,
√

3/2
)

and κ is the scaling factor such that the value κr corresponds to the equato-
rial radius of the geoid (which is taken in WGS 84 as the semi-major axis of the Earth:
a = 6,378,137.0 m). In the above expression F(θ, k), E(θ, k), and Π(n, θ, k) denote the incom-
plete elliptic integrals of the first, second, and third kind, respectively, which are defined as
follows [8]:

F(θ, k) =
∫ θ

0

dϑ√
1− k2 sin2 ϑ

, E(θ, k) =
∫ θ

0

√
1− k2 sin2 ϑ dϑ, Π(n, θ, k) =

∫ θ

0

dϑ

(1− n sin2 ϑ)
√

1− k2 sin2 ϑ
· (2)

In this notation, θ is the so-called Jacobian amplitude, k is the elliptic modulus, n is the
characteristic and they are given by the expressions

θ = arcsin

√
λ(1− u2)

(1− λ)k
, k =

√
1 + r2 −

√
(r2 − 1)(r2 + 3)

1 + r2 +
√
(r2 − 1)(r2 + 3)

, n = (1− λ)k. (3)

The signs ± in (1) correspond to the Northern and Southern Hemisphere of the λ-sphere,
respectively. The first fundamental form (the line element) for the λ-spheres can be easily
written as [3,7]

ds2 = κ2r2
( du2

β2(u)
+ u2dv2

)
= κ2r2u2(dq2 + dv2), dq =

du
β(u)u

, (4)

where the auxiliary function β(u) is defined as β(u) =
(
1 +

(
r2 − 1

)
u2)√1− u2. In the

above expression, the isometric latitude q(u) on the λ-spheres ranges from −∞ at the South
Pole (u = 0) through 0 at the level of the Equator (u = 1) to ∞ at the North Pole (u = 0). Its
analytical dependency on the local latitude variable u is given as

q±(u) = ±arctanh
(√

1− u2
)
∓
√

λ arctanh
(√

λ
√

1− u2
)
∈ (−∞, ∞). (5)
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The dependency of q+(u) calculated for the Northern Hemisphere is shown in Figure 1 (left).
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Figure 1. Dependencies q+(u) given by (5) calculated for the Northern Hemisphere and s(α, u) given
by (13) with κ = 1 and λgeoid = 0.003348595 calculated for the chosen values of the azimuth α, i.e.,
α = 0 (blue line), α = π/8 (green line), α = π/4 (red line), and α = 3π/8 (orange line).



Mathematics 2022, 10, 3356 4 of 10

Apart from the isometric latitude q(uP) defined by (5), we can also introduce the
geocentric latitude ψP (i.e., the angle between the radius-vector to the point P(uP, vP) and
the equatorial plane) for the λ-sphere’s reference model for the geoid. It is expressed
through the incomplete elliptic integrals of the first, second, and third kind, i.e.,

ψP = arctan
z(uP)

κrup
(6)

since z(u) is given by (1). Contrary to this, the geodetic latitude φP (i.e., the angle between
the normal vector to the surface at the point P(uP, vP) and the equatorial plane) for the
λ-sphere’s reference model for the geoid is expressed through the composition of simple
analytical functions, i.e.,

φP = − arctan
κr

z′(uP)
, (7)

where the derivative of z(u) with respect to the local variable u is given by the expression
(see Figure 2)

z′(u) = − κru√
1− u2

√
k√

(1− λ)k− λ(1− u2)

(
1− λ− λ

(
1− u2))2 − λ2(1− u2)

(1− λ(1− u2))
√

1− λ− λk(1− u2)
· (8)

0.2 0.4 0.6 0.8 1.0 u

z'(u)

– 3.5

– 3.0

– 2.5

– 2.0

– 1.5

– 1.0

– 0.5

Figure 2. Dependency of z′(u) given by (8) with κ = 1 and λgeoid = 0.003348595.

Therefore, when the geodetic latitude φP is known, to find the corresponding local
latitude uP on the λ-sphere’s reference model for the geoid, we need only to solve the
algebraic equation

F(u) = z′(u) +
κr

tan φP
= 0 (9)

with respect to the variable u. From Figure 2 we can see that the function F(u) given by
(9) and (8) is a monotonically decreasing analytical function, and therefore, for any given
constant term κr/ tan φP, it has a unique real root uP that can be quite easily found with
high precision using well-known numerical algorithms.

3. Loxodromes (Rhumb Lines) on λ-Spheres

Although the loxodromes and rhumb lines are basically synonyms (loxodrome is a Latin
word for rhumb), in the literature they are mainly used in different contexts, i.e., loxodrome
describes a geometrical curve on the corresponding surface of revolution that intersects all
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the meridians at the same angle, whereas rhumb describes a practically realized course on
the Earth of constant bearing (see, e.g., [9]). Although such a course of constant bearing
is not generally the shortest route between two points on the Earth (see, e.g., Figure 3
(right), where the loxodrome connecting two points on the λ-sphere is compared to the
corresponding geodesic), it is extremely easy to realize during the navigation, even for the
beginner sailors or airplane pilots.

Figure 3. Loxodromes (green lines) of the azimuths α = 15π/32 (left), α = π/4 (middle) on the
λ-sphere with the deformation parameter λgeoid = 0.003348595 together with the meridians (red
lines) and the Equator (blue lines). On the right, the comparison between the loxodrome and geodesic
solving the corresponding inverse problems is shown when u1 = 0.99, u2 = 0.75, v1 = 5◦, v2 = 85◦.

Relying on the metric specified in (4), the differential equation defining the loxodromes
can be written in the form (see, e.g., [10,11])

dv = tan α dq, (10)

where α is the azimuth of the loxodrome. Therefore, the azimuth of the loxodrome that
connects two points with the isothermal coordinates (q1, v1) and (q2, v2) can be expressed as

α12 = arctan
v2 − v1

q2 − q1
· (11)

Similarly, the differential distance dm along the meridian is equal to

dm = κru dq =
κr

β(u)
du. (12)

Then from (4) we obtain that the arc length, i.e., the distance along the loxodrome with
azimuth α between two points when one of them is placed on the Equator (u = 1) and
another has the latitude equal to ui, is given as

s
(
α, ui

)
=

m(ui)

cos α
=

κr
cos α

1∫
ui

du
β(u)

=
κ

cos α

(π

2
− arctan

rui√
1− u2

i

)
. (13)

For instance, in Figure 1 (right) the dependencies s(α, u) are shown for the chosen values
of the azimuth α, i.e., α = 0 (blue line), α = π/8 (green line), α = π/4 (red line), and
α = 3π/8 (orange line). Let us note that for the North Pole (u = 0), in all cases we obtain
the highest but finite values in the range, despite the fact that any loxodrome, with the
exception of the parallels, is winding infinitely many times around the poles (see, e.g.,
Figure 3) and resembles closely the Seifert’s spirals on the spheres [12].

Finally, for any two points with the local latitudes u1 and u2 (or equivalently, the
isometric latitudes q1 and q2) in the same hemisphere (Northern or Southern) and longi-
tudes v1 and v2, the distance s12 along the loxodrome with the azimuth α12 given by (11) is
expressed as
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s12 = s(α12, u2)− s(α12, u1) =
m(u2)−m(u1)

cos α12
=

κ

cos α12

(
arctan

ru1√
1− u2

1

− arctan
ru2√
1− u2

2

)
. (14)

On the other side, for the points which belong to different hemispheres, we have

s12 = s(α12, u1) + s(α12, u2) =
m(u1) + m(u2)

cos α12
=

κ

cos α12

(
π − arctan

ru1√
1− u2

1

− arctan
ru2√
1− u2

2

)
. (15)

4. Direct and Inverse Problems for Loxodromes on λ-Spheres

The direct geodetic problem is defined as follows (cf., e.g., [6,13]). Given the latitude
u1 and the longitude v1 of the starting point P1 on the λ-sphere, the azimuth α12 of the lox-
odrome passing through P1, and the arc length s12 along it, we need to find out the latitude
u2 and the longitude v2 of the destination point P2 as well as the reverse azimuth α21.

To solve this problem we need to perform the following computational steps (for illus-
tration purposes, let us suppose that the point P1 is taken from the Northern Hemisphere,
i.e., the isometric latitude q(u1) ≥ 0, the azimuth α12 ∈ [−π/2, π/2], and the meridional
distance between the points P1 and P2 is such that s12 cos α12 + m(u1) ≤ π/2):

(1) Using (13) we can obtain the meridional distance from the starting point P1(u1, v1) to
the Equator, i.e.,

m(u1) = κ
(π

2
− arctan

ru1√
1− u2

1

)
. (16)

(2) Relying on (14), we can obtain the meridional distance from the ending point P2(u2, v2)
to the Equator, i.e.,

m(u2) = s12 cos α12 + m(u1) = s12 cos α12 + κ
(π

2
− arctan

ru1√
1− u2

1

)
. (17)

(3) By solving (13) with respect to the local latitude u2 of the ending point P2, we ob-
tain that

u2 =
tan δ√

r2 + tan2 δ
, δ =

π

2
− m(u2)

κ
= arctan

ru1√
1− u2

1

− s12 cos α12

κ
· (18)

(4) Then, by means of Equations (5) and (18), we can find the difference between the
isometric latitudes of the ending and starting points, i.e.,

q(u2)− q(u1) = arctanh
(√

1− u2
2
)
− arctanh

(√
1− u2

1
)
−
√

λ
(

arctanh
(√

λ
√

1− u2
2
)
− arctanh

(√
λ
√

1− u2
1
))

. (19)

(5) Next, using Equation (11), we can obtain the local longitude v2 of the destination point
P2, i.e.,

v2 = v1 + tan(α12(q(u2)− q(u1))) = v1 +
tan(α12q(u2))− tan(α12q(u1))

1 + tan(α12q(u1)) tan(α12q(u2))
· (20)

(6) Finally, the reverse azimuth α21 is given as

α21 = α12 ± π. (21)

Analogously, the inverse problem is defined as follows. Given the latitudes u1, u2
and the longitudes v1, v2 of the starting and ending points P1, P2 on the λ-sphere, we need
to find out the azimuth α12 of the shortest loxodrome that connects these two points, the
arc length s12 along it as well as the reverse azimuth α21 (see, e.g., Figure 3 (right) for the
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exemplary solution of the inverse problem for loxodromes on the λ-sphere in comparison
to the corresponding geodesic).

To solve the inverse problem, we need to perform the following computational steps
(the same assumptions):

(1) Using Equation (5), we obtain the difference between the isometric latitudes of the
destination and starting points, i.e.,

q(u2)− q(u1) = arctanh
(√

1− u2
2
)
− arctanh

(√
1− u2

1
)
−
√

λ
(

arctanh
(√

λ
√

1− u2
2
)
− arctanh

(√
λ
√

1− u2
1
))

. (22)

(2) Using Equations (11) and (14), we obtain the azimuth α12 and the arc length s12 of the
loxodrome connecting the points P1 and P2, i.e.,

α12 = arctan
v2 − v1

q(u2)− q(u1)
, s12 =

κ

cos α12

(
arctan

ru1√
1− u2

1

− arctan
ru2√
1− u2

2

)
. (23)

(3) As before, the reverse azimuth α21 is given by the formula

α21 = α12 ± π. (24)

Let us also note that inverse problems are generally considered more difficult because
they start with the results (observations) and then calculate the causes that produced those
results (observations), in contrast to the direct problems that start with the causes and
then calculate the results (observations) using some models. We can distinguish two main
reasons for the above-mentioned difficulties: (1) non-uniqueness, i.e., different causes
(values of the model parameters) may be consistent with the observations, (2) lack of
stability, i.e., small noise or uncertainty in observations may be tremendously amplified in
the calculated causes. This means that the second and/or third of three conditions for well-
posed problems in mathematical modeling suggested by Jacques Hadamard (i.e., existence,
uniqueness, and stability of the solution) are most often violated in the inverse problems
(as in calculating images in X-ray computed tomography or reconstructing parameters in
heat conduction models with fractional derivatives).

In the case considered in this paper, the solution of the inverse problem for loxodromes
on λ-spheres given by the formulas (22)–(24) is unique due to the fact that it is described
through the one-to-one elementary functions arctan and arctanh (see, e.g., Figure 1). How-
ever, in the above formulas, we suppose that the input data are perfect (i.e., there is no
noise or uncertainty in them), and further analysis of the stability of the obtained solution
of the inverse problem can be performed, e.g., making some assumptions about the specific
form of the noise (Gaussian, non-Gaussian, etc.).

5. Comparison with the Ellipsoidal and Spherical Reference Models

To compare our reference model for the geoid with the best ellipsoidal reference
model for the current moment (i.e., WGS 84), we need to assess the possible value of the
deformation parameter for the λ-sphere’s reference model. Elsewhere [3], we have obtained
that the deformation parameter λ should take values in the interval [0.003335, 0.003385].
To further assess its value, let us use formula (13) and calculate the quarter-meridian (the
distance between the Equator and the North or South Pole) of the λ-sphere’s, i.e.,

mp = s(α = 0, u = 0) =
πκ

2
=

πa
2r

=
πa
2

√
1− λ, (25)

where a is the equatorial radius of the geoid. In the WGS 84 model, we find that a cor-
responds to the semi-major axis of the Earth, i.e., a = 6,378,137.0 m, and the quarter-
meridian’s length is mp = 10,001,965.729 m (cf., e.g., [14]).

Therefore, relationship (25) provides us with a quite simple analytic formula for
assessing the value of the deformation parameter for the λ-sphere’s reference model for the
geoid based on the data for the ellipsoidal reference model WGS 84, i.e.,
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λgeoid = 1−
(

2mp

πa

)2
= 1− 4

π2

(
10001965.729

6378137.0

)2
≈ 0.003348595 . . . (26)

Next, using the above value of the deformation parameter λgeoid, we have solved the
inverse problems for loxodromes (described in Section 4) to obtain the azimuths α12 and arc
lengths s12 given by (22) and (23) for several selected cities on important air routes on the
Earth’s surface. Their geodetic longitudes v and latitudes φ (that were taken from [6]) are
presented in Table 1. Additionally, we have numerically solved relationship (9) to obtain
the corresponding local latitudes u (see the last column in Table 1).

Table 1. Geodetic and local coordinates of cities on the important air routes on the Earth’s surface.

City Geodetic Longitude v Geodetic Latitude φ Local Latitude u

Buenos Aires −58◦22′54′′ −34◦36′12′′ 0.823993607 (S)
Hong Kong 114◦09′32′′ 22◦16′42′′ 0.925798380 (N)

London −7◦29′00′′ 51◦30′29′′ 0.623687130 (N)
Los Angeles −118◦15′00′′ 34◦03′00′′ 0.829420362 (N)
New York −74◦00′00′′ 40◦43′00′′ 0.759027413 (N)

Seattle −122◦19′59′′ 47◦36′35′′ 0.675413323 (N)
Sydney 151◦12′40′′ −33◦51′36′′ 0.831265919 (S)
Taipei 121◦38′00′′ 25◦02′00′′ 0.906605078 (N)

For the selected routes (presented in Tables 2 and 3), we have calculated azimuths
αλ and arc lengths sλ connecting the chosen cities using the newly proposed λ-sphere’s
reference model for the geoid. Next, we have compared them with the corresponding
values obtained using the current best WGS 84 ellipsoidal reference model and the simplest
possible spherical one (see [6]).

Table 2. Comparison of values for azimuths calculated from the inverse problems for loxodromes
based on the λ-sphere’s, WGS 84 ellipsoidal, and spherical reference models for the geoid.

From To αλ (λ-Sphere) δαλ−ell αell (WGS 84) δαell−sph αsph (Sphere)

Hong Kong Taipei 68◦11′20.65′′ −0.35′′ 68◦11′21′′ 6′42′′ 68◦04′39′′

New York Los Angeles −100◦42′16.20′′ 0.80′′ −100◦42′17′′ 2′40′′ −100◦44′56′′

New York London 76◦48′34.89′′ 0.89′′ 76◦48′34′′ 2′27′′ 76◦46′07′′

London Seattle −92◦59′20.66′′ 0.34′′ −92◦59′21′′ 30′′ −92◦59′51′′

Buenos Aires London 27◦45′41.35′′ 0.35′′ 27◦45′41′′ 7′34′′ 27◦38′07′′

Sydney Los Angeles 51◦34′00.60′′ −0.40′′ 51◦34′01′′ 9′58′′ 51◦24′03′′

Buenos Aires Sydney 89◦45′19.25′′ 0.25′′ 89◦45′19′′ 4′′ 89◦45′15′′

Buenos Aires Hong Kong 70◦59′49.47′′ −0.53′′ 70◦59′50′′ 6′28′′ 70◦53′21′′

Los Angeles Sydney 104◦55′45.47′′ 0.47′′ 104◦55′45′′ −5′06′′ 105◦00′52′′

Table 3. Comparison of values for arc lengths calculated from the inverse problems for loxodromes
based on the λ-sphere’s, WGS 84 ellipsoidal, and spherical reference models for the geoid.

From To sλ (λ-Sphere) [m] δsλ−ell [m] sell (WGS 84) [m] δsell−sph [m] ssph (Sphere) [m]

Hong Kong Taipei 821,233.078 −0.422 821,233.500 718.621 820,514.879
New York Los Angeles 3,983,411.962 1.644 3,983,410.318 8762.716 3,974,647.602
New York London 5,256,617.288 9.235 5,256,608.053 14,021.855 5,242,586.198
London Seattle 8,314,623.581 26.420 8,314,597.161 25,319.959 8,289,277.202

Buenos Aires London 10,780,030.649 −5.301 10,780,035.950 −28,146.992 10,808,182.940
Sydney Los Angeles 12,093,524.956 8.346 12,093,516.610 −10,394.085 12,103,910.700

Buenos Aires Sydney 19,310,381.480 6.700 19,310,374.780 42,020.901 19,268,353.880
Buenos Aires Hong Kong 19,333,257.364 8.044 19,333,249.320 14,157.606 19,319,091.720
Los Angeles Sydney 29,179,218.956 8.116 29,179,210.840 30,658.195 29,148,552.650

In Tables 2 and 3, we have also added the columns that describe the differences
δαλ−ell = αλ − αell and δsλ−ell = sλ − sell between the λ-sphere’s and WGS 84 ellipsoidal
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reference models. The largest (by absolute value) difference in azimuths |δαλ−ell| is equal
to 0.89′′ which corresponds to the route from New York to London, whereas the smallest
(by absolute value) difference is equal to 0.25′′ which corresponds to the route from Buenos
Aires to Sydney. Similarly, the largest (by absolute value) difference in arc lengths |δsλ−ell|
is equal to 26.420 m which corresponds to the route from London to Seattle (of the total
length of about 8314.6 km), whereas the smallest (by absolute value) difference is equal to
0.422 m which corresponds to the route from Hong Kong to Taipei (of the total length of
around 821.2 km).

Let us end with an interesting observation: it appears that the smallest (by absolute
values) differences in azimuths and arc lengths between the λ-spheres and WGS 84 ellip-
soidal reference models are realized for the same routes as the smallest (by absolute values)
differences in azimuths and arc lengths between the WGS 84 ellipsoidal and spherical
reference models, i.e., δαell−sph = αell − αsph = 4′′ for the route from Buenos Aires to
Sydney and δsell−sph = sell − ssph = 718.621 m (0.09%) for the route from Hong Kong to
Taipei (see [6]).

6. Conclusions

It is well known that spheres are among the most perfect forms in nature. The book
by Hilbert and Cohn-Vossen [15] highlights the 11 properties that are responsible for
the uniqueness of this shape. In geometrical terms, this can be spelled out by saying
that spheres can be described by elementary functions and that this applies also to their
geodesics. Nevertheless, when a small deviation from this form is taken to obtain spheroids
(i.e., rotational ellipsoids), the new surfaces do not share these nice properties, since for
the description of their geodesics (orthodromes), one needs to employ elliptic functions
and elliptic integrals. On the other hand, the λ-spheres that are considered here can
be viewed as mirror objects to ellipsoids of revolution in the sense that their extrinsic
geometry is described by the elliptic functions and elliptic integrals, but their intrinsic
geometry (geodesics) relies entirely on the elementary analytical functions. This is extremely
important for navigation purposes, where the shape is clear in advance but parametric
lines (e.g., geodesics or loxodromes) on the surface must be found and described in the
easiest possible way. Hence, we really hope that the new reference model for the geoid
presented here will receive due attention from the navigation community.

Apart from the above-described obvious application in geodesy and navigation areas,
some applications are also possible in material science and engineering, e.g., for description
of the twisting behavior of spindle-shaped polymer liquid crystalline microparticles (see,
e.g., [16,17]). Those polymeric particles are considered to be candidates for designing
artificial materials capable of emulating the complex twisting-based functionality observed
in biological systems. Using geometrical modeling, the bulk-twisting structures in such
polymer nematic systems can be approximated on general surfaces of revolution by twisted
loxodromes whose twist angle is determined by the corresponding length-constraint con-
dition. We expect that the use of λ-spheres with deformation parameter λ < 0 (which
corresponds to the spindle-like shapes) together with the description of the loxodromes on
them presented in the current article will also be quite advantageous for the geometrical
description of the above-mentioned chiral polymer nematics.
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