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Abstract
The discrete element method (DEM) is the most dominant method for the numerical prediction of dynamic behaviour at
grain or particle scale. Nevertheless, due to its discontinuous nature, the DEM is inherently unable to describe microscopic
features of individual bodies which can be considered as continuous bodies. To incorporate microscopic features, efficient
numerical coupling of the DEM with a continuous method is generally necessary. Thus, a generalised multi-scale PD–DEM
framework is developed in this work. In the developed framework, meshfree discretised Peridynamics (PD) is used to describe
intra-particle forces within bodies to capture microscopic features. The inter-particle forces of rigid bodies are defined by the
DEM whereas a hybrid approach is applied at the PD–DEM interface. In addition, a staggered multi-scale time integration
scheme is formulated to allow for an efficient numerical treatment of both methods. Validation examples are presented and the
applicability of the developed framework to capture the characteristics mixtures with rigid and deformable bodies is shown.

Keywords Peridynamics (PD) · Discrete element method (DEM) · Contact coupling · Multi-scale modelling · Deformable
particles

1 Introduction

In the last decades, the computational mechanics commu-
nity has gradually grown and various numerical methods
have been developed. Thanks to the significant increase in
computational resources and efficiency it is now possible to
tackle highly complex problems. This involves the coupling
of different numericalmethods to overcome the drawbacks of
individual methods, allowing to capture more complex phe-
nomena. In this work a three-dimensional framework for the
efficient numerical treatment of coupled continuous and dis-
continuous material behaviour is developed. The motivation
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behind this is the ability to describe the discontinuous dynam-
ics of a particle system, whilst capturing the microscopic
features of individual particles by a continuous description.
A possible application is the simulation of grain collisions,
in which microscopic phenomena of individual grains such
as deformability or fragmentation are considered. Real-life
examples include the compaction of powders [1], the com-
paction of powder mixtures [2], the identification of fracture
origins in ceramics [3] and the characterisation of particle
mixtures with hard and soft grains [4].

In the following, suitable numerical methods have to be
picked to develop the desired coupling framework. The most
widespread and well-established method applied in com-
putational mechanics is the Finite Element Method (FEM)
(e.g. [5–7]), which is based on the consideration of con-
tinuous media. Within the method, the media is discretised
by finite elements and associated nodal points. The degrees
of freedom, e.g. displacements or temperature, are only
defined and solved for these discrete points within the con-
tinua. Up to now, the FEM is the method of choice for
most standard solid mechanics applications. However, there
are various problems for which the FEM is not applica-
ble. One crucial shortcoming of the classical FEM is its
inability to capture fracture and crack propagation. To con-
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sider this phenomenon the so-called eXtendedFiniteElement
Method (XFEM) (cf. [8,9]), can be applied. It is based
on the enrichment of ansatzfunctions with discontinuous
functions within the FEM. Besides the additional numeri-
cal cost, the main disadvantage is that discontinuities are
not naturally considered within the method. To overcome
this problem Peridynamics (PD) was introduced as an alter-
native total Lagrangian formulation to classical continuum
mechanics [10]. In contrast to classical methods, the under-
lying equations are integro-differential equations without
spatial derivatives. Consequently, discontinuities in space are
naturally considered within the non-local framework, even
though the underlying integral equations describe continu-
ousmedia.Moreover, the integro-differential equations allow
for a direct meshfree discretisation using nodal integration.
Up to now, a major shortcoming in PD is the treatment of
contact. Initially, short-range force were applied to account
for the contact between peridynamic bodies [11]. In [12] an
overview of various possibilities to tread contact within PD is
given. Additionally, a complex peridynamic specific contact
model is introduced, conserving angular momentum during
collision.

When it comes to the description of the dynamics of soil
and granular materials the Discrete ElementMethod (DEM),
introduced in [13], is commonly applied. Within the DEM,
the underlying dynamics are captured on grain level on the
basis of contact forces, formulated with respect to micro-
mechanical parameters. Generally, the solid or granular
material is represented by rigid particles with an associ-
ated particle size distribution. It is also possible to capture
microscopic effects on grain level using the DEM. Examples
are the modelling of progressive failure in fractured rock
masses [14], the approximation of grain deformations under
the consideration of compressible effects using the implic-
itly formulated deformable DEM [15] and the bonded sphere
approach in which the microscopic behaviour of a rubber
grain is described by a deformable agglomerate of rigid par-
ticles being able to move relative to each other [4]. Note
that to describe the microscopic behaviour, these approaches
are still based on discontinuous approaches relying on
micro-mechanical parameters. Generally, it is numerically
advantageous to describe grains as continua to capture their
microscopic behaviour. The reason behind this is that the
associated material models of continuum methods are for-
mulated with respect to measurable material parameters,
having a real physical meaning. In contrast to macroscopic
material parameters, the micro-mechanical parameters rep-
resent fitting parameters which are not size independent and
can depend on particle size distribution and particle shapes.
Consequently, a problem-dependent complex numerical cal-
ibration on the basis of experimental measurements, e.g.
triaxial compression tests, is always necessary (see e.g. [16]).
In contrast, classical macroscopic material parameters, e.g.

elastic, viscous and plastic properties, can be directly deter-
mined by standard experimental tests without the necessity
of complex calibrations.

The most promising combination to capture the dis-
continuous dynamics of grains, whilst taking into account
microscopic effects on the grain level, is the combination of
DEMandPD.Firstly, theDEMis perfectly capable to capture
the dynamics on the grain level and various contact mod-
els have been developed in the last decades. Secondly, PD
allows to describe individual grains as continua and to capture
their microscopic behaviour by applying peridynamic mate-
rial models. Besides elasticity models, this includes fracture
models as shown in [17–19], amongst others. An applica-
tion of peridynamic fracture models for grain crushing is
further considered in [20,21]. Thus, a PD–DEM coupling
framework is superior to FEM–DEM coupling frameworks
(see e.g. [22,23]) and to the ‘meshfree numerical tool’ devel-
oped for the simulation of mixtures of hard and soft grains
(see e.g. [24,25]). The reason behind is that fracture is natu-
rally included in the PD formulation and has been intensively
studied (see e.g. [18,26]). Consequently, the discontinuous–
continuous approach is applicable for a wider range of
applications. A different continuum approach is presented in
[27], considering flexible DEM particles of arbitrary polyhe-
dral shapes on the basis of the Virtual Element Method.

Recently a PD–DEMframework for the prediction of frac-
ture of colliding grains in two-dimensional space has been
implemented [28]. In the framework, the intra-particle forces
within the arbitrarily shaped grains are computed on the basis
of a peridynamic formulation. The inter-particle interactions,
i.e. the forces between two grains coming into contact, are
computedbyDEM-like contact lawsbetweenparticles of dis-
tinct discretised bodies.Moreover, in [29] the coupling of PD
and DEM is considered from a computational point of view
with respect to the software library ParticLS, in which mesh-
free methods and the DEM are considered. A shortcoming of
the existing framework in [28], which is tackled in this work,
is that all grains are treated as peridynamic bodies. However,
it is not necessary to consider all grains on the microscopic
scale for various applications. An example are deformable–
rigid mixtures of soft and hard grains, where all rigid grains
can be treated asDEMgrains, i.e. as a single discrete particle.
Incorporating rigid DEM grains as well as microscopic phe-
nomena in PD grains within the same framework constitutes
a multi-scale approach. Consequently, it is desirable to have
the possibility of a multi-scale time integration scheme. In
the following, the term grain is replaced by body to allow the
description of arbitrary objects in a generalised framework.
Moreover, in discretised form bodies consists of particles.

This contribution targets an efficient numerical cou-
pling of discontinuous and continuous material behaviour
by developing a generalised multi-scale PD–DEM coupling
framework. The fundamentals of the PD–DEM framework,
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i.e. conservation principles, PD and DEM, are recapitulated
in Sect. 2. The proposed generalised multi-scale PD–DEM
coupling framework is then introduced inSect. 3. It is focused
on the generalised force coupling as well as on the stag-
gered solution scheme for the multi-scale time integration.
In Sect. 4.1, the PD–DEM coupling is verified using a 3D
Hertzian contact problem and the multi-scale time integra-
tion is verified in Sect. 4.2. Furthermore, numerical examples
of coupled discontinuous–continuous material behaviour are
presented in Sect. 5 in terms of simultaneous consideration
of deformable and rigid bodies. Finally, the main findings are
summarised and possible extensions of the current work are
discussed in Sect. 6.

2 Fundamentals of methodology

2.1 Conservation principles in mechanics

In numerical frameworks, it is crucial to obey fundamental
laws of physics with respect to associated physical values to
allow reliable predictions. In the case of dynamic systems, the
fundamental laws are the conservation of linear and angular
momentum.

To conserve linearmomentum it is necessary to fulfilNew-
ton’s second law

f = dp
dt

= m dv
dt

= mü = ma (1)

as well as Newton’s third law fA = −fB . Newton’s second
law states that the resulting force f is directly proportional
to the change of linear momentum p, i.e for a system with
constant massm, proportional to the change of velocity v and
thus proportional to the second time derivative of the posi-
tional vectoruwhich is the acceleration a. Newton’s third law
states that the force between two points A and B in contact is
equal in magnitude with opposed direction. When fulfilling
Newton’s third law, the accumulated point-wise intra-particle
forceswithin a generalised bodyBwith volume v and bound-
ary ∂Bwith area a vanish. Consequently, only traction forces
t with associated normal direction n on ∂B have to be con-
sidered for the fulfillment of Eq. (1). Thus, including body
forces mibi , where b is the specific body force, it yields

∑
f =

∑
ma =

∑

i∈∂B
ti ai +

∑

i∈B
mib (2)

for a discontinuous particle system. For continuous bodies
with infinitesimal particle volumes it yields

∫

B
ρa dv =

∫

∂B
t da +

∫

B
ρb dv =

∫

B
divσ + ρb dv (3)

and locally

ρa = divσ + ρb, (4)

where ρ is the density in the current configuration and divσ
the divergence of the Cauchy stress tensor.

To conserve angular momentum L , it is necessary to fulfil

L̇ = I ω̇ = Mact , (5)

where I is the moment of inertia and ω̇ the rate of angu-
lar velocity. Moreover, Mact is the sum of acting moments,
either directly applied as external moments or generated by
interaction forces (e.g. contact forces or rolling resistance).
Thus, Eq. (5) states that acting moments lead to a change of
angular momentum.

In the case of the classical continuum description (Eq.
4), angular momentum is automatically conserved when the
stress tensor is symmetric, i.e. σ = σ T . In contrast, for
discontinuous particle systems it is required to consider the
angular velocities in the degrees of freedom and to solve Eq.
(5) with respect to the acting moments.

2.2 Peridynamics

In the theory of Peridynamics (PD), firstly introduced in [10],
non-local particle interactions over a specific radius within
the family H are considered. Considering a master particle
I , its family represents the domain of influence and contains
all neighbouring particles J whose distances are less equal
than the horizon size δ, as depicted in Fig. 1.

In contrast to the updated Lagrangian type smoothed-
particle hydrodynamics (SPH)method (cf. [30]), the original
framework of PD is of total Lagrangian type. As a con-
sequence, the neighbourhoods of particles do not change
during the computation. Thus, scalars corresponding tomate-
rial properties in the governing equations are defined with
respect to the reference configuration and vectorial quanti-
ties are defined with respect to initial positions X and time
t .

I
δ

J

ξ
IJ

H

Fig. 1 Family H of particle I with interacting neighbouring particles
J
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Compared to classical continuum mechanics, the result-
ing equations in PDare integro-differential equationswithout
spatial derivatives. In the context of the preservation of lin-
ear momentum, this leads to the replacement of the classical
divergence of the stress tensor divσ , cf. Eq. (4), by its peri-
dynamic counterpart L. Thus, the operator L represents the
resulting force density from a peridynamic material model
and the associated equation of motion is defined by

ρa(X, t) = L + ρb(X, t). (6)

Consequently, the peridynamic force is defined with respect
to the volume V of the initial configuration by

fPD = LV . (7)

Similar to classical continuum mechanics, the conservation
of angular momentum is directly handled via the material
model. Thus, a fundamental requirement for peridynamic
material models is that no angular momentum is generated
due to deformation. To define peridynamic material mod-
els, the deformations of bonds ξ = X′ − X, defined as
the vectors between the initial position of master particle X
and all initial positions X′ of particles within its family HX,
are considered. Generally, it is distinguished between bond-
based and state-based PD, whereby the difference lays in
the bond-force computation, cf. [31]. In bond-based models,
the bond-force between two particles depends on the defor-
mation of the associated bond only, whereas the bond-force
between two particles depends on the collective deforma-
tion of bonds within the family for state-based peridynamic
models.

In the following, the force density computation for bond-
based as well as state-based models is explained and specific
elastic material models are introduced. Bond-based models
are derived from a central potential and the force densities
are computed with respect to a pairwise force function t,
which generally depends on the relative displacement (dis-
placement field w) and the bond vector itself. Thus, it yields

L =
∫

HX

t
(
w(X′, t) − w(X, t),X′ − X

)
dVX′ . (8)

Note, that bond-based models are automatically restricted to
aPoisson’s ratio of 0.25within three-dimensional approaches
due to the derivation from a central potential. Thus, there are
generally not applicable for the modelling of nearly incom-
pressible materials like rubber. The force vector between two
particles is always parallel to its deformed bond vector η, i.e.
the bond force densities are represented by

t = ξ + η

‖ξ + η‖ t, (9)

where t is the scalar bond-force. Consequently, angular
momentum is automatically preserved. In the further course,
the micro-elastic brittle material model is utilised and the
scalar bond-force is defined by

t = φcs. (10)

Within Eq. (10) s = ‖ξ+η‖−‖ξ‖
‖ξ‖ is the bond stretch, c = 18K

πδ4

a spring constant and φ a damage function. The spring con-
stant can be defined with respect to the classical compression
modulus K and is obtained by postulating the same stress
power for the linear elastic continuum mechanical material
model and the presented peridynamic model. Note that the
correspondence between micro and macro material parame-
ters is formulated with the assumption of compact support.
Thus, the assumption is violated for particles whose initial
distances to the surface are smaller than δ. In the scope of
this work, no surface correction is applied. However, a study
about different surface correction procedures is conducted in
[32]. Moreover, in this work bond breakage is not considered
and φ = 1 is used.

Similar to [33,34], Eq. (6) is discretised in a meshfree
fashion. Neglecting the body force term, it yields on particle
level

ρIaI =
∑

J∈HXI

tI J VJ . (11)

Thus, the peridynamic forces exerted on particle I due to its
interactions within its family are defined by

fPDI = LI VI =
∑

J∈HXI

tI J VJ VI . (12)

Note that the result of themeshfree discretisedPD is a particle
system. However, the system is describing a continuum body
in a non-local manner.

As the name indicates, state-based PD are formulatedwith
respect to states. From a mathematical point of view, states
are generalised second-order tensors representing the map-
ping of bond vectors ξ ∈ HX to either a scalar or a vector.
In the following, states are indicated by an underscore. The
equation of motion in state-based PD is formulated with
respect to force state densities T. This leads to the general
state-based expression of

L =
∫

HX

T[X, t]〈X′ − X〉 − T[X′, t]〈X − X′〉dVX′ (13)

for the non-local operator L. Applying nodal integration and
multiplying byvolume leads to the force definition onparticle
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level

fPDI = LI VI =
∑

J∈HXI

(TI 〈ξ I J 〉 − TJ 〈ξ J I 〉)VJ VI . (14)

Within the discretised version the force state density TI con-
tains the collective information about forces exerted on/from
particle I within its family. Consequently, TI 〈ξ I J 〉 maps the
bond vector ξ I J into a force vector per unit volume square. In
the formulation of associated material laws the deformation
state, which maps the bond vector into the deformed bond
vector, is defined by Y[X, t]〈X′ − X〉 = η.

In the following, Linear Peridynamic Solid (LPS) [31]
will be used. In order to define the force state density, the
scalar reference state

‖X‖ = ‖ξ‖, (15)

the scalar deformation state

‖Y‖ = ‖Y‖ (16)

as well as the deformed direction state

M(Y) = Y
‖Y‖ (17)

are introduced. In this way, the bond extensions are defined
with respect to the scalar extension state by

e = ‖Y‖ − ‖X‖. (18)

Moreover, the extension state is split into an isotropic ei and
a deviatoric part ed . For their definitions it is necessary to
define the scalar weighted volume

m = (w‖X‖) • ‖X‖ (19)

and the peridynamic dilatation

θ = 3

m
(w‖X‖) • e (20)

with respect to the the weighting influence functionw, which
is further assumed to be 1. Note that the peridynamic dot
product between two states is a scalar and is defined by

A • B =
∫

HX

A〈X′ − X〉 · B〈X′ − X〉dVX′ . (21)

Using Eqs. (18) and (20), the deviatoric scalar extension state
is defined by

ed = e − ei = e − θ‖X‖
3

= ‖Y‖ − ‖X‖ − θ‖X‖
3

. (22)

Finally, the force state densities are defined with respect to
the deformed direction state (Eq. 17) and the scalar force
state t(Y) by

T(Y) = t(Y)M(Y). (23)

Note that angular momentum is automatically conserved
using the LPS formulation. The scalar force state in Eq.
(23) consists of a co-isotropic and co-deviatoric part, i.e.
t = t i + td , whereby the parts are defined with respect to the
peridynamic free energy function

�(ei (θ), ed) = K

2
θ2 + α

2
(w ed) • ed (24)

by

t i = ∂�

∂ei
= ∂�

∂θ

∂θ

∂ei
= 3

m
w‖X‖∂�

∂θ
= 3K θ

m
w‖X‖

td = ∂�

∂ei
= αwed .

(25)

The material parameter α is the micro shear modulus which
can be related to the macroscopic shear modulus G by
α = 15G

m . Note that similar to the bond-based approach, the
missing compact support leads to inaccurate α’s near the sur-
face. An extension of the describedmodel to elasto-plasticity
with von Mises plasticity is shown in [35].

In this work, fractions of the so-called PD correspondence
formulation, which is based on a non-local stress tensor, is
used. Based on the discretised shape tensor

KI =
∑

J∈HXI

w〈ξ I J 〉ξ I J ⊗ ξ I J (26)

the non-local deformation gradient is defined by

FI =
⎛

⎝
∑

J∈HXI

w〈ξ I J 〉uI J ⊗ ξ I J VJ

⎞

⎠K−1
I . (27)

Based on this non-local deformation gradient, a classical
material model can be utilised for the stress computa-
tion. The only requirement is the application of the same
macro-mechanical material parameters. Thus, the material
parameters of the bond-based as well as state-based elas-
tic model needs to be transformed into the Lame constants λ

andG. Applying the compressible Neo-Hookean free energy
function with the compressible part of Ciarlet [36]

W (IC , J ) = 1

2
G (IC − 3) + λ

4
(J 2 − 1)

−λ
ln J

2
− G ln J , (28)
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the second Piola-Kirchhoff stress tensor is computed by [37]

S = G(1 − C−1) + λ

2
(J 2 − 1)C−1 (29)

where C = FTF is the right Cauchy-Green tensor, IC its
first invariant and J = detF the Jacobean. As a result, the
mechanically more meaningful non-local Cauchy-stresses
are obtained by

σ = 1

J
FSFT . (30)

Moreover, in engineering practise the Green-Lagrange strain
tensor E = 1

2 (C − 1) is commonly used for the evaluation
of finite strains.

2.3 Discrete element method

The second method considered within the developed cou-
pling scheme is the Discrete Element Method (DEM). In
contrast to the continuum based PD, in the DEM discrete
bodies are considered and thus, no discretisation is neces-
sary.

In the following, spherical bodies are considered, whilst
generally arbitrary shaped discrete elements can be used.
Their equation of motion is defined with respect to Eq. (1)
by

ma = fDEM + mb, (31)

where mb are body forces and fDEM inter-particle DEM
forces. The DEM forces are classically composed of nor-
mal and shear forces of adjacent discrete elements being in
contact via

fDEM = fDEMn + fDEMs , (32)

whilst the direct neighbours of bodies are progressively
updated.

The used rheological model for the DEM-force compu-
tation between two spherical bodies is depicted in Fig. 3. It
consists of a divider, a spring in normal direction with nor-
mal stiffness kn , a spring in tangential direction with shear
stiffness ks and a slider. In contrast to other numerical meth-
ods, the interpenetration of bodies is not prohibited within
the DEM and the resulting overlap represents the basis for
the force computation. The resulting forces of two overlap-
ping spherical bodies A and B is visualised in Fig. 2. The
normal forces

fDEMn = kndn (33)

are defined with respect to the overlap in normal direction
dn and normal stiffness kn . The incremental shear forces
between two colliding bodies A and B are defined by

�fDEMs = ks ḋs�t, (34)

where u̇s is the relative shear velocity and ks the shear stiff-
ness. Note that the normal and shear stiffness can both be
a function of the overlap in normal direction dn . The total
shear force is limited by a Coulomb-like slip model, i.e.

fDEM
s ≤ μfDEM

n (35)

where μ is the friction coefficient. The divider in Fig. 3 indi-
cates the absence of forces when two adjunct particles do not
overlap.

The no slip non-linear Hertz-Mindlin (HM) contact
model, cf. [38], is used in this work where contact stiffnesses
are defined as:

kn = 4

3
Ēc

√
R̄dn

ks = 8Ḡc

√
R̄dn,

(36)

with respect to the equivalent sphere radius R̄ = (1/RA +
1/RB)−1, the equivalent Young’s modulus Ēc

=
[(

1 − νA2

c

)
/E A

c +
(
1 − νB2

c

)
EB
c

]−1
and the equivalent

shear modulus Ḡc = [(
2 − νA

c

)
/GA

c + (
1 − νB

c

)
/GB

c

]−1
.

The associated shear moduli GA
c and GB

c are computed by
G∗

c = E∗
c /

[
2

(
1 + ν∗

c

)]
with ∗ = A, B.

Besides contacts between two spherical bodies, contacts
between spheres and kinematically constraint rigid walls are
considered. The associated contact forces are defined analo-
gously to the sphere–sphere interaction. Since walls do not
possess a radius, their radii are assumed to be equivalent to
the radii of their spherical contacts for the computation of
the equivalent sphere radius R̄.

As mentioned in Sect. 2.1, the conservation of angular
momentum is not automatically fulfilled in the DEM and it
is required to consider the angular velocities as degrees of
freedom. In this work no external moments are considered
and thus, the acting moments Mact result solely from inter-
action forces, cf. Fig. 2. As a result, it yields with respect to
Eq. (5)

L̇ = I ω̇ = Mact = Rc × fDEMn︸ ︷︷ ︸
=0

+Rc × fDEMs , (37)

where Rc represents the radial vector from spheres origin
to the contact point. Consequently, besides the equation of
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Fig. 2 Resulting forces and moments from two spherical bodies A and
B in contact

Fig. 3 Rheological model of two overlapping spherical bodies within
the DEM

motion, the first-order differential equation

I ω̇ = Rc × fDEMs (38)

has to be solved for all DEM bodies as well.

3 Generalisedmulti-scale PD–DEM
formulation

3.1 Generalised force coupling

Ageneralised PD–DEMforce coupling scheme is introduced
based on the framework discussed in Sect. 2. All possi-
ble contact variations on the basis of three PD and three
DEM bodies are depicted in Fig. 4. The associated bod-
ies are colour-coded in green (DEM) and grey (PD), whilst
the centers of discrete elements are depicted by squares and
the discretised peridynamic particles by crosses. Moreover,
hybrid particles acting as peridynamic particle as well as
DEM body are highlighted in red. In the following, DEM
bodies are also denoted by discrete particles.

DEM-DEM PD-PD

PD-DEM

PD

Fig. 4 Illustration of generalised contact treatment between PD and
DEM bodies. DEM bodies are colour coded in green and PD bodies in
grey. Hybrid particles acting as peridynamic particle as well as DEM
body are highlighted in red. (Color figure online)

The inter-particle forces between two discrete elements
(DEM–DEM) are obtained by theDEM (Eq. 32). Themacro-
scopic intra-particle forces within a peridynamic body fPD

are defined by Eqs. (12) and (14) for a bond-based and state-
based peridynamic model, respectively.

The key of the developed formulation is the introduc-
tion of hybrid particles at the interface of PD and DEM.
Indeed, all surface particles of the peridynamic bodies are
also treated as discrete elements. This allows the computa-
tion of inter-particle forces between discrete elements and
the surface of peridynamic bodies (PD–DEM), inter-particle
forces between two peridynamic bodies (PD–PD), as well as
self-contact of peridynamic bodies by DEM contact forces.
An example where self-contact of a peridynamic body can
take place is the compression of a highly deformable hollow
sphere under compression when the top and bottom bound-
ary of the hollow sphere come into contact. The resulting
forces are further denoted by fCoupling and are computed by
Eq. (32). A problem in the definition of hybrid particles is that
the underlying peridynamic particles do not inherently have
a radius. They represent integration points with associated
volumes as integration weights accounting for the fraction
of continuous volume they are representing. Therefore, the
quasi radii R of the hybrid particles required for contact
detection and force computation are defined on the basis of
the associated volumes V of the integration points via

R =
(
3V

4π

) 1
3

. (39)

Hence, the requiredDEMpart of hybrid particles (i.e. contact
forces) can be calculated. Note that the DEM contact model
for fDEM and fCoupling can be different.

Since hybrid particles only represent integration points
with their volume as weighting within the peridynamic
framework, they do not possess the rotational degree of
freedom of DEM bodies. Thus, the quasi radii R of hybrid
particles are only used for contact detection and contact force
computation,whereby the resulting contact forces are applied
on the associated peridynamic integration points. Moreover,
self-contact in peridynamic bodies is not considered for par-
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ticles within the same family. In the proposed formulation the
drawback of the lacking kronecker-delta property resulting
from the meshfree peridynamic discretisation diminished.
Due to the hybrid approach at the surface of peridynamic
bodies, boundaries are indirectly applied by the resulting
coupling forces.

Summarising, the forces of the particle system are defined
as the superposition of intra-particle peridynamic, inter-
particle DEM, inter-particle coupling and body forces by

f = fPD︸︷︷︸
Intra-particle

+ fDEM︸ ︷︷ ︸
Inter-particle

+ fCoupling︸ ︷︷ ︸
Inter-particle

+ mb︸︷︷︸
body forces

. (40)

3.2 Multi-scale time integration

The state-of-the-art for PD as well as DEM is to perform an
inherently conditionally stable explicit time integration for
the equation of motion. A detailed investigation of different
stability criteria for classical peridynamic models is done in
[39]. In this work, the CFL-criterion (cf. [40])

�tPDcrit = h

c
, (41)

where h is the characteristic length and c the wave speed,
defined by

c =
√

K

ρ
, (42)

is applied. As discussed in [41], it is not obvious what the
characteristic length within the peridynamic framework is.
However, it is said that the time step estimation by the CFL-
criterion is conservativewhen the particle spacing is assumed
to be the characteristic length.

The critical time step �tDEMcrit of the DEM is defined on
the basis of the equivalent per-particle stiffness k̄ which is
composed of the associated stiffnesses of all contacts (see
e.g. [42]). Thus, each particle has an individual critical time
step and the global critical time step is generally defined as
the minimum of local critical time steps, i.e.

�tDEMcrit = min
i

√
mi

k̄i
. (43)

The reader is referred to [42] for the computation of the
equivalent per-particle stiffness k̄. An extension to include
rotational degrees of freedom is presented in [43].

The leapfrog time integration algorithm is applied to dis-
cretise the equation of motion, Eq. (1) or with generalised
forces Eq. (40), in time. Thus, the velocities and positions

are updated as follows

vn+ 1
2

= vn− 1
2

+ an�t

un+1 = un + vn+ 1
2
�t + an�t2.

(44)

Moreover, the rotational accelerations of pure DEM bod-
ies, cf. Eq. (38), have to be integrated to fulfil the conservation
of angular momentum. Thus, the same time integration as
for the translational kinematics, cf. Eq. (44), is applied and
it yields

ωDEM
n+ 1

2
= ωDEM

n− 1
2

+
Rc

n+ 1
2

× fDEMs
n+ 1

2

I
�t . (45)

Based on the simultaneous use of PD and DEM with
associated critical time steps defined in Eq. (41) and Eq.
(43), two distinct critical time steps have to be consid-
ered within simulations. The straightforward approach is to
define the critical time step as the minimum of both, i.e.
�tcrit = min(�tPDcrit,�tDEMcrit ), compute all forces and update
the kinematics monolithically using Eq. (44). However, the
use of a single time step is computationally highly ineffi-
cient. The main issue is that the length scales of PD and
DEM may vary in magnitudes due to the targeted multi-
scale approach. This may result in a significantly smaller
critical time step �tPDcrit . This is why a staggered integra-
tion scheme is developed. Based on Eqs. (41) and (43), the
maximal integral multiple m between �tPDcrit and �tDEMcrit or
vise versa is determined. Even though �tPDcrit < �tDEMcrit is
expected, both possibilities are considered to formulate the
generalised multi-scale time integration scheme.

The key idea of the implemented staggered solution
scheme is the successive update of kinematics resulting from
peridynamic and DEM forces with respect to their associated
critical time steps. The simplified update scheme for equiv-
alent critical time steps is illustrated in Eq. (46):

un
fDEMn+1 ,fCouplingn+1−−−−−−−−→ uDEM,Coupling

n+1

fPDn+1−−→ un+1 . (46)

Based on the updated kinematics of the last time step un , the
inter-particle forces fDEMn+1 and fCouplingn+1 are computed. The
kinematics of the associated particles are then updated, lead-
ing to new positions uDEM,Coupling

n+1 for discrete and hybrid
particles. Afterwards, the peridynamic forces fPDn+1 are com-
puted and the associated kinematics are updated. Thus, the
hybrid particles are updated a second time, but now with
respect to the intra-particle forces. Note, that it is essential
to consider body forces of hybrid particles only once during
the staggered time integration. Thus, they are always taken
into account at the same time as the coupling forces. Conse-
quently, body forces of peridynamic surface particles being in
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contact, i.e. they are hybrid particles, are always considered
during the DEM time integration step. In order to simplify
the treatment of body forces within the staggered time inte-
gration, the body forces of peridynamic particles are also
considered in the first step.

For the staggered time integration of hybrid particles and
�tDEM = �tPD this yields to

vCoupling
n+ 1

2
= vn− 1

2︸ ︷︷ ︸
Nv

+aCouplingn �tDEM

xCouplingn+1 = xn + �tDEMvCoupling
n+ 1

2

vn+ 1
2

= vCoupling
n+ 1

2︸ ︷︷ ︸
Nv

+aPDn �tPD

xn+1 = xCouplingn+1 + �tPDvn+ 1
2
.

(47)

Note that the mean velocities V̄ in the velocity updates are
always defined with respect to their values of the last incre-
mental update. Thus, for varying peridynamic andDEM time
step sizes the symplecticity of the leapfrog integration is
violated for the kinematic update of hybrid particles. The
implementation of the generalised multi-scale time integra-
tion algorithm is explained in detail in Sect. 3.3.

3.3 Implementation

The open-source DEM framework Yade [44] is chosen as a
basis for the implementation. This comes with a high vari-
ety of already implemented DEMmodels to choose from for
DEM and hybrid force computation. In this paper, only the
simplemodel introduced inSect. 2.3will be applied.An addi-
tional advantage of using Yade is that an optimised collider
for contact detection as well as time integration schemes are
already available. Model generation including definitions of
DEM and peridynamic bodies with related discretisation are
further handled via the available Python interface.

The peridynamic framework and the peridynamic mate-
rial models described in Sect. 2.2 are implemented based on
the pre-existing software architecture. Moreover, a coupling
engine is implemented to account for the PD–DEM cou-
pling formulation and the applied staggered time integration
scheme outlined in Sect. 3.2. In the following, the extended
simulation loop within Yade, cf. Algorithm 1, is explained
first before focusing on the implementation of the multi-
scale time integration. Yade is run via a Python-interface
and its classical simulation loop consists of the resetting of
forces and the actionof fundamentalDEMengines.Note, that
the fundamental DEM engines have to be defined in a spe-
cific order: approximate collision detection, exact collision
detection with overlap computation, definition of physical
properties of new interactions, DEM force computation via

constitutive laws and time integration. The highlighted step
Coupling Engine is the required extension for the generalised
multi-scale PD–DEM coupling time integration.

Algorithm 1 Yade simulation loop for the PD–DEM cou-
pling formulation. Extensions are highlighted in italics.
1: Reset forces
2: Collision detection pass 1
3: Collision detection pass 2 with overlap computation
4: Get physical properties of new interactions
5: Compute DEM forces via constitutive law
6: Time integration (tn → tn+1)
7: Call Coupling Engine

Since Yade is a DEM based framework, the global time
step is set to�tDEMcrit and the iteration numbern is incremented
with respect to this time step. As described in Sect. 3.2,
the maximum integral multiple m between both critical time
steps is computed in the beginning and is further used in the
simulation. Before the coupling engine is called, the classical
DEM steps of neighbouring search and DEM force computa-
tion are performed. The kinematics of the associated particles
are then updated, leading to new positions uDEM,Coupling

n+1 for
discrete and hybrid particles.

The pseudo code of the coupling engine is shown in
Algorithm 2. It is distinguished between the two possible
cases �tPDcrit >= �tDEMcrit and �tPDcrit < �tDEMcrit . In case of
�tPDcrit >= �tDEMcrit it is checked if the current time tn is
a m-mulitple of �tPDcrit . If this is the case, the peridynamic
forces fPDn+1 are computed and the kinematics of correspond-
ing particles are updated. The associated time integration is
performed with respect to �tPDcrit = m�tDEMcrit . Otherwise, no
time integration of peridynamic particles is performed.

The second and most probable case is �tPDcrit < �tDEMcrit .
Similar to the first case, the time integration of peridynamic
particles takes place in the coupling engine. However, an
incremental time integration with �tinc = �tPDcrit = �tDEM

m is
necessary to account for the smaller peridynamic time step.
Thus, the peridynamic forces and corresponding kinematic
quantities are m times updated incrementally. After the last
incremental update, tn+1 is reached.

4 Verification of implementations

4.1 PD–DEM coupling

In order to verify the implemented PD–DEM coupling
scheme, the solution for the contact of a rigid sphere with
an elastic half space obtained by Hertzian contact theory (cf.
[45]) is considered. Dependent on the penetration depth d,
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Algorithm 2 Pseudo code of the functionality of the Cou-
pling Engine

1: if �tPDcrit >= �tDEMcrit then
2: if n mod m = 0 then
3: Compute peridynamic forces fPDn+1
4: Time Integration with �tPDcrit
5: end if
6: else if �tPDcrit < �tDEMcrit then

7: �tinc = �tDEMcrit
m

8: for i = 1 to m do
9: Compute peridynamic forces fPD

n+ i
m

10: Incremental time integration (n → n + i
m )

11: end for
12: else
13: Error
14: end if

Fig. 5 Visualisation of 3DHertzian contact problemwith a solid sphere
on an elastic half-space

the corresponding analytical normal force is defined by

Fn = 4

3
Ē R1/2d3/2, (48)

where Ē is the effective Young’s modulus and R the radius
of the sphere.

Within the numerical PD–DEMapproach, the rigid sphere
is represented by a discrete DEM particle of radius RDEM =
5 cm while the elastic half-space is approximated by a peri-
dynamic body of dimensions 45 cm × 45 cm × 22.5 cm, as
illustrated in Fig. 5. The peridynamic body is discretised
by 30 × 30 × 15 = 13500 particles based on a regular
particle spacing of �x = 1.5 cm. Using Eq. (39), the rep-
resentative radius of the hybrid particles is RPD = 0.93 cm.
The kinematics of surface/hybrid particles are constrained in
associated normal directions whilst all internal peridynamic
particles are unconstrained for the purpose of representing
the elastic half space. An exception are the hybrid particles
in the plane of the initial contact surface which are uncon-
strained as well.

To obtain the numerical force response, the described
Hertz-Mindlin contact model with normal force definition in
Eq. (33) is used for the DEM-like coupling forces between
two bodies. Both the bond-based (Eq. 12) and state-based
(Eq. 14) peridynamic models are used. The applied material
parameters are listed in Table 1, whilst friction is not consid-

ered in this example, i.e. μ = 0. In contrast to the analytical
approach, the resulting coupling forces are DEM-like forces
which generally depend on the micro-mechanical contact
parameters between DEM bodies. When applying the Hertz-
Mindlin contactmodel, themicroscopicDEMparameters are
represented by their macroscopic counterpart and the analyt-
ical Hertzian contact force is obtained for the contact of two
single DEM bodies with associated radii RDEM

A and RDEM
B .

Thus, the numerical contact forces are computed locally
between spherical particles, whereas the analytical solution
describes the global behaviour between a rigid sphere and an
elastic half space. For this reason, a perfect match between
predicted and analytical results is not expected. Nevertheless,
the overall trend of the analytical result should be captured.
It should be mentioned that a perfect match can be obtained
by calibration, e.g. [16,46], however, this is not the aim of
the current study.

In the simulations a prescribed velocity of vz = −1 cm
s

is applied for the discrete particle in the z-direction using
a fixed time step of �t = 10−4 s . Thus, the penetration
depth is indirectly used as control parameter and the act-
ing normal forces are measured. The measurement is done
incrementally by setting the velocity to zero at certain times,
iterating until quasi-static conditions are reached andmeasur-
ing the resulting normal force. This procedure is performed
with an incremental penetration depth of�d = 0.05 cm until
d = 1 cm is reached.

The comparison of analytical (green), PD bond-based
(blue) and PD state-based (orange) normal force response
with respect to the penetration depth is depicted in Fig. 6.
Overall, the trend of the analytical Hertzian solution is cap-
turedwell by the PD–DEMcoupling framework applying the
bond-based aswell as state-basedmaterialmodel. In compar-
ison to the analytical solution, the numerical contact force is
underestimated for both the bond-based and the state-based
PD material model. Moreover, the state-based solution is
approaching the analytical solution with increasing penetra-
tion depth. Based on the fact that no calibration is performed
for the micro-mechanical contact parameters, Hertzian con-
tact is properly represented within the developed framework.
Since the focus and goal of this contribution is the efficient
numerical coupling of discontinuous and continuousmaterial
behaviour using the example of grain mixtures, it is relin-
quished to perform a calibration for the micro-mechanical
contact parameters. Thus, a successful verification of the
PD–DEM coupling framework has been performed and it
is meaningful to use the framework for more complex appli-
cations.

4.2 Multi-scale time integration

In a next step the verification of the multi-scale time inte-
gration is performed. The verification example consists of
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Table 1 DEM and PD material
parameters for the computation
of Hertzian contact

DEM PD
Ec [Pa] νc [−] ρ

[
kg/m3

]
E [Pa] ν [−] δ [cm] ρ

[
kg/m3

]

108 0.25 1100 108 0.25 2�x 1100

Fig. 6 Comparison of analytic (green), PD bond-based (blue) and PD
state-based (orange) normal force response with respect to the pene-
tration depth of a solid sphere on an elastic half-space. (Color figure
online)

Fig. 7 Dimensions for multi-scale time integration example consisting
of 81 discrete particles, a peridynamic body and a wall

a peridynamic body of dimensions 40 cm × 40 cm × 10 cm
sitting on a static wall below. The peridynamic body is dis-
cretised by 2000 particles. On top of the peridynamic body
are 9 × 9 = 81 discrete DEM particles with RDEM = 2 cm
(Fig. 7). A velocity of vz = −1 cm

s is continuously applied to
all discrete particles until a compression of 0.2 cm is reached.
Moreover, the displacements in the x–y plane are constraint
for all peridynamic particles at the bottom. The material
parameters listed in Table 1 are applied and the state-based
PD formulation is used. Measured are the resulting normal
forces on the wall with respect to the norm of applied dis-
placements, u, of discrete particles in the z-direction. The
normal forces are measurements under fully dynamic condi-
tions (nodamping) in order to investigate possible differences
between monolithic and staggered time integration for the
developed coupling approach.

In the following, all three different possibilities arising
from the developed and implemented multi-scale time inte-
gration (Sects. 3.2 and 3.3) are considered. The first one is
the classical monolithic solution of DEM and PD. The sec-
ond possibility is the application of the staggered integration

Fig. 8 Comparison of resulting normal forces using monolithic, stag-
gered and staggered multi-scale (MS) time integration

scheme using the same time step for both methods. The last
one is the staggered solution with different time steps. For
the sake of comparability, a time step of �t = 10−4 s is
used in the first two options whereas �tDEM = 10−4 s and
�tPD = 2×10−5 s are used for the multi-scale time integra-
tion.

The resulting normal forces are plotted against the normof
enforced displacement of discrete particles in the z-direction
in Fig. 8. Overall, the normal forces are oscillating due to the
fully dynamic approach, whilst the peak values increase with
respect to increasing displacements. On the one hand, there
are no differences in normal forces between the staggered
scheme with identical time steps compared to the staggered
multi-scale scheme. Thus, even though the symplecticity of
the integrator is violated, no negative effects are observable
in the multi-scale time integration. On the other hand, there
are differences between the results for the monolithic and
the staggered scheme. The period length of the oscillations
is slightly smaller for the staggered scheme and the magni-
tudes in normal forces are also lower. These effects result
solely from the postulated successive integration of motion
for hybrid particles and are expected. By applying the DEM
like coupling forces on hybrid particles and updating their
kinematics before the peridynamic forces are computed, a
higher ’constraint’ is applied on the peridynamic body. The
reason behind is that the updated positions of hybrid parti-
cles are used to compute the peridynamic forces. Thus, the
peridynamic force response is slightly higher than for the
monolithic integration, leading to a reduced wave speed as
well as to a reduced accumulated force within a total time
step. In other words, the dynamic impact of discrete particles
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Table 2 Normalised
computation times t̄C PU with
respect to monolithic solution
time for various time step
factors m

m 1 2 4 6

t̄C PU 1.27 1.00 0.84 0.79

upon peridynamic bodies is slightly reduced in the staggered
time integration scheme.

Finally, the computational efficiency of the implemented
multi-scale time integration is evaluated. Therefore, nor-
malised computation times obtained on a single Intel Core
i7-7560U (2.40 GHz) processor are compared. As a refer-
ence solution the monolithic approach with �t = 10−4 s is
considered. The normalised computation times for the multi-
scale simulationswith�tPD = 10−4 s and�tDEM = m�tPD

with m = 1, 2, 4, 6 are evaluated and listed in Table 2.
Overall, the normalised computation time decreases with
increasing m. In case of equal time steps the staggered com-
putation time is 27%higher than themonolithic computation
time. Equal normalised computation times are obtained for
m = 2. A reduction of 16% and 21% is observed for the
staggered multi-scale integration for m = 4 and m = 6,
respectively. This proofs the computational advantage of the
multi-scale time integration over the monolithic one. In the
considered example the number of discrete particles is with
81 significantly smaller than the number of peridynamic
particles (2000). On the one hand, it is obvious that the com-
putational advantage increases with an increasing number of
discrete DEM particles. On the other hand, when only a few
DEM discrete particles are used and the applicable factor m
between critical DEM and PD time step is not sufficiently
high, the computational overhead might be higher than the
gain obtained by the multi-scale integration.

5 Numerical examples

5.1 General set-up

In the following, the potential of the developed multi-scale
PD–DEM coupling formulation is presented on the basis
of deformable–rigid mixture applications. A real-life exam-
ple for this are rubber–sand mixtures. The rigid bodies are
assumed to be perfect spheres and are represented by sin-
gle discrete particles. In contrast, the deformable bodies are
assumed to be of arbitrary shape. In the following, the simu-
lations are performed on the cm scale and not on the length
scale of real grain mixtures to save computational costs. This
is sufficient for the present approach since it is the goal to
reveal the potential of the multi-scale coupling framework
and not to reproduce experimental based observations.

For all numerical examples the inherent body forces
including gravity are neglected and loads are induced by

Fig. 9 Problem definition and dimensions for the compression of a
deformable cube via PD–DEM coupling forces

kinematic boundary conditions. Moreover, the state-based
PD formulation (Eq. 14) is applied to account for incom-
pressible behaviour of deformable bodies which cannot be
covered by the bond-based approach with fixed Poisson’s
ratio of ν = 0.25. In the following, the deformable bodies
are modelled as weakly compressible with ν = 0.48 to avoid
additional kinematic constraints in the material model. The
DEM and PD parameters used for the numerical examples
are listed in Table 3.

5.2 Compression of deformable cube via
generalised force coupling

In the first example, a three body interaction bounded by two
walls, as depicted in Fig. 9, is considered. The centre body
is a cubic rubber body of length 30cm, discretised by 8000
peridynamic particles of volumes 3.375 cm3. The other two
bodies are rigid and represented by discrete particles of radii
RDEM = 15 cm. In this example friction is not considered,
i.e. μ = 0. Both walls have a prescribed velocity of vwall =
±1cm

s in the z-direction to induce an indirect compression of
the peridynamic cube. With a fixed time step of�t = 10−4 s
the simulation is run for t = 12 s.

In this approach all forces of the developed generalised
force coupling scheme, cf. Eq. (40), are coexisting. Inter-
particle DEM forces are acting between the walls and the
adjacent discrete particles whereas intra-particle forces are
acting between the peridynamic particles of the cube. Finally,
PD–DEMcoupling forces exist between the discrete particles
and the surface of the cube (i.e. hybrid particles).

The final results at t = 12 s are depicted in Fig. 10.
Note that particles on the edges are not visualised due to
their missing compact support, cf. Sect. 2.2. As shown in all
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Table 3 DEM and PD material
parameters in the numerical
examples

DEM PD
Ec [Pa] νc [−] ρ

[
kg/m3

]
E [Pa] ν [−] δ [cm] ρ

[
kg/m3

]

108 0.25 2650 108 0.48 2�x 1100
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Fig. 10 Resulting strains a Ezz , b Exx as well as c, d von Mises stresses at t = 12 s for the peridynamic cube

Fig. 11 Dimensions for
numerical example to
investigate the capability of the
developed framework to capture
morphology changes in
deformable–rigid mixtures
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subfigures, the elastic peridynamic cube is deformed due to
the indirectly induced penetration of discrete particles. The
associated strains in loading direction Ezz are depicted in
Fig. 10a. The extrema Ezz = 0.134 are located in the centres
of the free surfaces in the x–y plane, thus, at the centres of
contact between the discrete particles and the peridynamic
cube. In consequence of its penetration from top and bottom
together with a nearly incompressible material, the elastic
cube is squeezed perpendicular to the applied loading direc-
tion. This is reflected by the resulting strains Exx (Fig. 10b).
Based on the introduced non-local deformation gradient in
Eq. (27) and the associated Cauchy stresses Eq. (30), the
von Mises stresses are computed and plotted in Fig. 10c
and Fig. 10d. As expected, the highest von Mises stresses
of σV M = 1.292N /cm2 are obtained at the centre of the
contact between the discrete particles and the peridynamic
cube since it is the point of highest deformation. The capabil-
ity of the developed framework to overcome the shortcoming
of purely DEM based frameworks to predict stresses in soft
particles is proven.

Overall, the induced deformations of the peridynamic
cube are well captured using the developed generalised
force coupling scheme. Meaningful elastic deformations and
stresses of the considered deformable block, related to its
weakly compressible material, are observed based on the
penetration. Thus, an application to real life problems where
the penetration of rubber objects by solid objects plays the
superordinate role, is feasible.

5.3 Morphology changes in deformable–rigid
mixtures

In the second example, the capability of the developed
framework to account for major morphology changes in
deformable–rigid mixtures is investigated on the basis of a
simplified problem. Considered is a rectangular deformable
body of dimensions 60 × 15 × 7.5 cm3 sitting on two static
discrete particles of radius RDEM = 5 cm and subjected to
a induced loading by a discrete particle with same radius on
top with a prescribed velocity of v = 1cm

s in the z-direction,
as depicted in Fig. 11. The deformable body is equidistantly
discretised by 2000 peridynamic particles with correspond-
ing volumes of V PD = 3.375 cm3. In contrast to the previous
example, friction is considered with a contact friction coef-
ficient of μ = 0.546.

The aim of this example is to investigate if it is possible to
capture the squeezing of a lengthy deformable body through a
network of rigid bodies thanks to their deformability induced
via the elastic PD formulation. Performed is a completely
dynamic simulation using �t = 10−4 s for t = 22.15 s.
The resulting displacements in the x and z-direction of the
deformable block are shown at three different time instances
in Fig. 12. Over time, i.e. from t = 7.5 s (Fig. 12a and

Fig. 12b), t = 17.5 s (Fig. 12c and Fig. 12d) to t = 22.15 s
(Fig. 12e and Fig. 12f) the initially straight block is gradually
bend until it slips between the two static rigid discrete parti-
cles.Consequently, the block is compressed in the x-direction
over time with maximum absolute values of 4.6 cm, 17.6 cm
and 24.6 cm for the associated displacements. In contrast, the
ends of the block are deflected in the z-direction, taking the
maximum value of 7.6 cm at t = 17.5 s (Fig. 12d) before the
bend block slips through the static kinematic boundary par-
ticles and the displacements in the z-direction continuously
decrease.

Based on the captured dynamics, the capability of the
developed coupling framework to account for major mor-
phology changes in deformable–rigid mixtures is shown.

5.4 Compression of sphere pack

The last and most complex example is the constraint com-
pression of a sphere pack consisting of a mix of 8 deformable
and 8 rigid bodies, as illustrated in Fig. 13. All bodies
have a radius of R = 15 cm, whereby each deformable
body is uniformly discretised by 4166 peridynamic particles
with V PD = 3.375 cm3. Note that by applying the uniform
discretisation, the bodies of volume V = 14137 cm3 are
each represented by an accumulated PD volume of V dis =
4166 · 3.375 cm3 = 14060 cm3. Consequently, a volumetric
discretisation error of 0.55% is induced.

In total, the problem consists of 8 discrete particles,
33328 peridynamic particles and 6 walls surrounding the
deformable–rigid mixture. Similar to the compression of a
single cube in Sect. 5.2, the loading is induced by the appli-
cation of kinematic boundaries in terms of vwall = ±10 cm

s
for the walls in the x-z plane. The surrounding walls are
modelled as static to induce constraints perpendicular to the
compression direction. Similar to the previous example in
Sect. 5.3, friction is considered with a contact friction coef-
ficient of μ = 0.546. A simulation time of t = 3 s with
�t = 10−4 s is considered.

For the evaluation, the displacements of peridynamic par-
ticles in the z-direction aswell as their normof displacements
in the x–y plane are considered at different times. The results
at t = 1, t = 2 and t = 3 s are illustrated in Fig. 14. At the
beginning, at t = 1 s (Fig. 14a, b) the peridynamic parti-
cles start to be compressed and a slight misalignment in the
x–y plane is observable. However, the spherical bodies are
still stacked on top of each other and the maximum norm
of displacement in the x–y plane is 6.07 cm. After t = 2 s
(Fig. 14c, d), a morphology change is observable and the
bodies are not aligned on top of each other any more. On
the one hand, PD bodies are compressed further and start
clinging to the discrete element at the bottom. On the other
hand, a discrete element is now located in the centre of the
compressed packing. The morphology change is reflected in
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Fig. 12 Displacements of lengthy deformable body induced by kinematic constraints of discrete particles at t = 7.5 s in a x-direction, b z-direction,
at t = 17.5 s in c x-direction, d z-direction as well as at t = 22.15 s in e x-direction and f z-direction
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Fig. 13 Problem definition and dimensions for the uniaxial compres-
sion of a deformable–rigid sphere pack consisting of 8 discrete elements
and 8 deformable PD bodies

a significant increase in the maximum norm of displacement
in the x–y plane with 34.26 cm. Due to the further compres-
sion, at the final time t = 3 s the change in morphology
continues and the porosity decreases further. As depicted in
Fig. 14c, d, the sphere pack appears to be a single clump of
material, whereby themaximum norm of displacement in the
x–y plane has slightly decreased to 33.79 cm. The reason for
the slightly decreased maximum norm of displacement is the
ongoingmorphology change of individual bodies in the pack-
ing, i.e. peridynamic bodies are not only further compressed
over time, but are still moving. This can lead to increasing
or decreasing norms of displacement in the x–y plane of the
associated peridynamic particles.

In order to quantify the results further, the mean of the
norm of displacements in the x–y plane from all peridynamic
particles are computed. The value gradually increases from
2.35 at t = 1 and 8.32 at t = 2 to 11.21 cm at t = 3 s.
This increase of values reflects the continuous squeezing
of deformable peridynamic bodies in the x–y plane. The
final result of a more or less single clump of material where
the deformable bodies cling to the discrete rigid particles is
exactly as expected for deformable–rigid mixtures.

The results obtained for the sphere packmixture at t = 3 s
are now compared against sphere packs where all consid-
ered bodies are either rigid (DEM) or deformable (PD). The
associated particle configurations including displacements in
z-direction and the norm of displacements in the x–y plane
are depicted in Fig. 15. In the compression of purely DEM
bodies, none of the spheres is deflected in the x–y plane
as shown in Fig. 15a, b. In contrast, the behaviour with PD
bodies only, cf. Fig. 15c, d, is similar to the behaviour of
the mixture (Fig. 14). Overall, morphology changes in the
sphere pack are observable and the bodies start to form a sin-
gle clump of material. The maximum norm of displacements
in the x–y plane is with 32.21 cm slightly smaller than the
one for themixture (33.79 cm). Similar, themean of the norm
of displacements in the x–y plane is with 8.64 cm smaller in

comparison to 11.21 cm. The reason why the mean deforma-
tions in the x–y plane for the purely deformable sphere pack
are inferior to the mean deformations for the sphere mixture
is related to the impact of the discrete particles in the mix-
ture. Since the DEM bodies are rigid the entire deformation
in the sphere pack mixture is carried by the deformable PD
bodies and thus, by a total of eight bodies. In contrast, in the
purely deformable sphere pack the deformation is distributed
over all 16 bodies. Thus, the average deformation in a single
deformable bodies is smaller.

6 Conclusion

In this contribution an efficient numerical coupling of dis-
continuous and continuous material behaviour based on an
interface contact scheme is developed. In a first step, a gen-
eralised force coupling scheme is introduced, consisting of
the superposition of inter-particle DEM, intra-particle peri-
dynamic and inter-particle coupling forces. The key part in
the formulation are surface particles of peridynamic bod-
ies acting as hybrid particles. Based on the formulation, a
multi-scale time integration scheme is proposed leading to
the generalised multi-scale PD–DEM coupling framework.

It is shown that the trend of the analytical 3D Hertzian
contact theory is captured reasonably well within the devel-
oped PD–DEM coupling framework, without calibrating the
micro-mechanical DEM contact parameters. Thus, a proper
force coupling of the discontinuous–continuous numerical
approach is verified. The multi-scale time integration is veri-
fied on the basis of a fully dynamic example. It is shown that
the staggered integration leads to a slightly smaller dynamic
impact than the monolithic scheme due to subsequent kine-
matic updates of hybrid particles within a global time step.
However, the general behaviour is similar. Comparing the
computational efficiency it is possible to reduce the compu-
tation time up to 21% when using the staggered scheme for
the simple example considered. It is expected that the compu-
tational efficiency significantly increases for more complex
simulations with higher number of peridynamic particles.
The reason behind is the general non-linear scaling of the
computation timewith respect to the number of particles con-
sidered. Most of the computation time is spend for collision
detection, which is considerably decreased when applying
the multi-scale time integration in case of �tDEM < �tPD.

The coupling framework is then applied to the simula-
tion of systems with deformable and rigid bodies. Firstly,
the successful simulation of the penetration of rigid dis-
crete elements into an elastic body is shown. Secondly, the
ability of the framework to represent the major morphol-
ogy change of squeezing a lengthy deformable body through
rigid spheres is presented. Since it is essential to capture
this phenomena in the simulation of deformable–rigid grain
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Fig. 14 Positions of discrete and peridynamic particles including displacements of peridynamic particles at t = 1 s in a z-direction, b the x–y
plane, at t = 2 s in c z-direction, d the x–y plane as well as at t = 3 s in e z-direction, f the x–y plane
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Fig. 15 Final particle configurations at t = 3 s including displacements in z-direction and norm of displacements in the x–y plane for a, b DEM
bodies and c, d PD bodies

mixtures under compressible loads, it verifies the applicabil-
ity of the developed framework for this kind of problems.
In the last numerical example the actual compression of a
deformable–rigid sphere mixture is considered. Using this
example, the capability of the framework to capture the effect
of deformable bodies being squeezed and clinging to rigid
bodies is proven. As a consequence, a successful applica-
tion of the developed numerical continuous–discontinuous
coupling framework for the simulation of grain mixtures is
presented.

In future it is desirable to apply the approach for real-
life grain mixtures, e.g. for rubber–sand mixtures. In order
to predict their dynamic behaviour appropriately, only two
steps are necessary. Firstly, it is required the calibrate the
macroscopic material parameters of the rubber by labora-
tory experiments. In a subsequent step a classical calibration
of required DEM contact parameters is necessary, whilst
already applying the rubber parameters. Besides specific
grain mixtures, the framework could also be applied to cap-

ture the penetration of tires by stones on gravel road with
stones being possibly trapped in grooves of the tire thread.

Overall, there are numerous possibilities to use the devel-
oped approach or tomake it applicable to other problemswith
simple extensions or changes. One of these approaches is the
simulation of grain crushing of specific stones in sand grain
mixtures.Whilst the sand can still be modelled by DEMbod-
ies it would only be necessary to model the crushable stones
by PD bodies and to apply a material law including fracture.

The implementation of the coupling scheme into Yade
offers newextensive additional possibilities.Generally,DEM
bodies do not have to be spherical particles and more com-
plex DEM shapes can be applied within the framework.
Moreover, the applications are not limited to the presented
Hertz-Mindlin contact model since various contact models
have already been implemented. Generally, it is also possi-
ble to apply different contact models within a mixture.

Further, the PD–DEM force coupling scheme is imple-
mented in a generalised object-orientated manner with
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respect to the applied multi-scale time integration scheme.
Thus, the performed contact coupling in Yade is not limited
to PD–DEM couplings and can be straight forward extended
to other DEM coupling schemes.

Acknowledgements The authors would like to acknowledge the finan-
cial support of the Australian Research Council (DP190102407).

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Declarations

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Gethin D, Lewis R, Ransing R (2002) A discrete deformable ele-
ment approach for the compaction of powder systems.Model Simul
Mater Sci Eng 11(1):101

2. Martin C, Bouvard D, Shima S (2003) Study of particle rearrange-
ment during powder compaction by the discrete element method.
J Mech Phys Solids 51(4):667–693

3. Senapati R, Zhang J (2010) Identifying fracture origin in ceram-
ics by combination of nondestructive testing and discrete element
analysis. In: AIP Conference Proceedings. American Institute of
Physics, pp 1445–1451

4. AsadiM,MahboubiA,ThoeniK (2018)Discretemodelingof sand-
tire mixture considering grain-scale deformability. Granul Matter
20(2):1–13

5. Oden J, Reddy J (1976) An introduction to themathematical theory
of finite elements. Wiley, New York

6. Zienkiewicz O, Taylor R (1989) The finite element method, vol 1,
4th edn. McGraw Hill, London

7. Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements
for continua and structures. Wiley, Chichester

8. Moes N, Cloirec M, Cartraud P et al (2003) A computational
approach to handle complex microstructure geometries. Comput
Methods Appl Mech Eng 192:3163–3177

9. Fries T, Belytschko T (2010) The extended/generalized finite ele-
ment method: an overview of the method and its applications. Int
J Numer Methods Eng 84:253–304

10. Silling S (2000) Reformulation of elasticity theory for discontinu-
ities and long-range forces. J Mech Phys Solids 48(1):175–209

11. MacekR, Silling S (2007) Peridynamics via finite element analysis.
Finite Elem Anal Des 43(15):1169–1178

12. Kamensky D, Behzadinasab M, Foster J et al (2019) Peridynamic
modeling of frictional contact. J Peridyn NonlocalMode 1(2):107–
121

13. Cundall P, StrackO (1979)A discrete numericalmodel for granular
assemblies. Géotechnique 29(1):47–65

14. Scholtès L, Donzé FV (2012)Modelling progressive failure in frac-
tured rock masses using a 3d discrete element method. Int J Rock
Mech Min Sci 52:18–30

15. Rojek J, Nosewicz S, Thoeni K (2021) 3d formulation of the
deformable discrete element method. Int J Numer Methods Eng
122(14):3335–3367

16. Cheng H, Shuku T, Thoeni K et al (2019) An iterative Bayesian
filtering framework for fast and automated calibration of DEM
models. Comput Methods Appl Mech Eng 350:268–294

17. Warren T, Silling S, Askari A et al (2009) A non-ordinary state-
based peridynamic method to model solid material deformation
and fracture. Int J Solids Struct 46(5):1186–1195

18. Ha Y, Bobaru F (2011) Characteristics of dynamic brittle fracture
captured with peridynamics. Eng Fract Mech 78(6):1156–1168

19. Hu W, Ha Y, Bobaru F (2012) Peridynamic model for dynamic
fracture in unidirectional fiber-reinforced composites. Comput
Methods Appl Mech Eng 217:247–261

20. Zhu F, Zhao J (2019) Modeling continuous grain crushing in gran-
ular media: a hybrid peridynamics and physics engine approach.
Comput Methods Appl Mech Eng 348:334–355

21. Zhu F, Zhao J (2019) A peridynamic investigation on crushing of
sand particles. Géotechnique 69(6):526–540

22. Lei Z, Zang M (2010) An approach to combining 3d discrete and
finite element methods based on penalty function method. Comput
Mech 46(4):609–619

23. Liu J, Bosco E, Suiker A (2019) Multi-scale modelling of granu-
lar materials: numerical framework and study on micro-structural
features. Comput Mech 63(2):409–427

24. Mollon G (2018) Mixtures of hard and soft grains: micromechan-
ical behavior at large strains. Granul Matter 20(3):1–16

25. Mollon G (2022) The soft discrete element method. Granul Matter
24(1):1–20

26. Butt SN, Meschke G (2021) Peridynamic analysis of dynamic
fracture: influence of peridynamic horizon, dimensionality and
specimen size. Comput Mech 67(6):1719–1745

27. Neto AG, Hudobivnik B, Moherdaui TF et al (2021) Flexible poly-
hedra modeled by the virtual element method in a discrete element
context. Comput Methods Appl Mech Eng 387(114):163

28. Jha P, Desai P, Bhattacharya D et al (2021) Peridynamics-based
discrete element method (PeriDEM) model of granular systems
involving breakage of arbitrarily shaped particles. J Mech Phys
Solids 151(104):376

29. Davis A, West B, Frisch N et al (2021) ParticLS: object-oriented
software for discrete element methods and peridynamics. Comput
Part Mech 9:1–13

30. Gingold R,Monaghan J (1977) Smoothed particle hydrodynamics:
theory and application to non-spherical stars.MNRAS181(3):375–
389

31. Silling S, EptonM,Weckner O et al (2007) Peridynamic states and
constitutive modeling. J Elast 88(2):151–184

32. LeQ, Bobaru F (2018) Surface corrections for peridynamicmodels
in elasticity and fracture. Comput Mech 61(4):499–518

33. Silling S, Askari E (2005) A meshfree method based on the
peridynamic model of solid mechanics. Comput Struct 83(17–
18):1526–1535

34. Seleson P (2014) Improved one-point quadrature algorithms for
two-dimensional peridynamic models based on analytical calcula-
tions. Comput Methods Appl Mech Eng 282:184–217

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Computational Mechanics

35. Mitchell J (2011) A nonlocal ordinary state-based plasticity model
for peridynamics. Tech. rep., Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States)

36. Ciarlet P (1988) Mathematical elasticity: three dimensional elas-
ticity. North-Holland, Amsterdam

37. Wriggers P (2008) Nonlinear finite element methods. Springer,
Berlin

38. Mindlin RD (1949) Compliance of elastic bodies in contact. ASME
39. Littlewood D, Shelton T, Thomas J (2013) Estimation of the criti-

cal time step for peridynamic models. Tech. rep., Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States)

40. Courant R, Friedrichs K, Lewy H (1928) Über die partiellen
differenzengleichungen der mathematischen physik. Math Ann
100(1):32–74

41. Bobaru F, Foster J, Geubelle P et al (2016) Handbook of peridy-
namic modeling. CRC Press

42. Chareyre B, Villard P (2005) Dynamic spar elements and dis-
crete element methods in two dimensions for the modeling of
soil-inclusion problems. J Eng Mech 131(7):689–698

43. Hosn R, Sibille L, Benahmed N et al (2017) Discrete numerical
modeling of loose soil with spherical particles and interparticle
rolling friction. Granul Matter 19(1):1–12

44. Šmilauer V et al (2015) Yade documentation, 2nd edn. https://doi.
org/10.5281/zenodo.34073

45. Popov V (2010) Contact mechanics and friction. Springer
46. Rackl M, Hanley K (2017) A methodical calibration procedure for

discrete element models. Powder Technol 307:73–83. https://doi.
org/10.1016/j.powtec.2016.11.048

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.5281/zenodo.34073
https://doi.org/10.5281/zenodo.34073
https://doi.org/10.1016/j.powtec.2016.11.048
https://doi.org/10.1016/j.powtec.2016.11.048

	A generalised multi-scale Peridynamics–DEM framework  and its application to rigid–soft particle mixtures
	Abstract
	1 Introduction
	2 Fundamentals of methodology
	2.1 Conservation principles in mechanics
	2.2 Peridynamics
	2.3 Discrete element method

	3 Generalised multi-scale PD–DEM formulation
	3.1 Generalised force coupling
	3.2 Multi-scale time integration
	3.3 Implementation

	4 Verification of implementations
	4.1 PD–DEM coupling
	4.2 Multi-scale time integration

	5 Numerical examples
	5.1 General set-up
	5.2 Compression of deformable cube via generalised force coupling
	5.3 Morphology changes in deformable–rigid mixtures
	5.4 Compression of sphere pack

	6 Conclusion
	Acknowledgements
	References




