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Sensitivity of Love surface waves to mass loading 
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A B S T R A C T   

The sensitivity of the phase velocity vp of Love surface waves to mass loading is a very important characteristic of 
Love wave devices. In this paper, we present a novel approach to evaluate the sensitivity of Love surface waves to 
loading with an infinitesimal layer of mass of a surface density σ

[
kg/m2]. To this end, the we developed 

analytical formulas for the mass coefficient of sensitivity Svp
σ = (1/vp)dvp/dσ [m2/kg] and phase velocity gradi

ents − dvp(f)/df and − dvp(h1)/dh1, where f and h1 stand, respectively, for frequency of the Love wave and 
thickness of the guiding surface layer. We also established analytical formulas that relate the mass sensitivity Svp

σ 
with 1) the relative slope (gradient) − (1/vp)dvp/dh1 of the phase velocity dispersion curve vp(h1), and 2) the 
relative slope (gradient) − (1/vp)dvp/df of the phase velocity dispersion curve vp(f). These analytical formulas 
have been developed using full wave theory. We have discovered that the maxima of the mass sensitivity Svp

σ (f), 
Svp

σ (h1) and maxima of the relative gradients (− (1/vp)dvp)⁄df , − (1/vp)dvp/dh1, occur virtually at the same values 
of f and h1. Comparing with the Perturbation Method and Finite Element Method (FEM), the analytical formulas 
established in this paper display some advantages, such as very low execution time of the mass sensitivity , and 
perhaps more importantly a possibility for a direct parametric optimization of the Love wave waveguide as a 
function of its material parameters, thickness of the guiding surface layer and wave frequency .   

1. Introduction 

Due to high concentration of the Love wave energy in the guiding 
surface layer of the waveguide, Love wave devices can achieve very high 
sensitivities to surface loading with a thin layer of a lossless mass or an 
infinite layer of a lossy viscoelastic liquid [1–3]. Shear horizontal (SH) 
surface waves of the Love type have only one SH component of me
chanical vibrations that is parallel to the free surface of the waveguide. 
Therefore, Love surface waves are naturally destined for use in devices 
operating in a liquid environment [4–13], since they are very little 
attenuated by liquids of a moderate viscosity. By contrast, Love surface 
waves can be considerably affected by loading with a thin layer of 
lossless mass (phase changes) or with an infinite layer of a lossy visco
elastic liquid (phase changes and amplitude attenuation). 

An infinitesimally thin layer of lossless mass of a surface density σ 
[kg/m2], loading the waveguide, alters the phase velocity vp of the Love 
wave, without introducing any extra attenuation of the Love wave. 

The mass sensitivity Svp
σ =

(
1/vp

)(
dvp/dσ

)
quantifies changes in the 

phase velocity vp of the Love wave caused by an infinitesimally thin 
layer of mass of surface density σ loading the waveguide. The mass 
sensitivity Svp

σ , although inherited from older types of ultrasonic devices 

(quartz micro-balance, QCM), is one of the most important parameters 
characterizing the quality of Love wave devices. 

In an optimum design process, including Love wave devices, it is 
prerequisite to develop an adequete mathematical model of the device 
that includes all its vital parameters. 

The problem of determining the mass sensitivity of Love wave de
vices (sensors) was previously investigated in References [14–20], 
where the authors employed Perturbation Method and the Finite 
Element Method (FEM). 

Perturbation Methods are valid, by definition, only for small changes 
in the physical parameters no higher than say a few %. For this reason, 
Perturbation Methods are always approximate and provide the solutions 
that are always different from closed-form analytical solutions of the 
analyzed problem. 

Since the FEM method can include a large number of parameters, 
such as piezoelectricity, nonlinearity, etc. it is the most general and 
versatile method comparing with analytical and perturbation methods. 
The FEM method is a very powerful tool in analysis of real (practical) 
structures of Love wave devices with waveguides of complex geometry, 
displaying anisotropy and/or a piezoelectric effect. Moreover, the FEM 
method can cope with the second order effects such as: reflections from 
the waveguide surfaces, leaky and bulk wave propagation, etc. 
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However, these advantages are counterbalanced by a significant in
crease in the computing time. For example, complicated FEM 3D sim
ulations can take days or weeks [19], depending on the number of 
available CPUs and RAM memory of the computer. 

In the present paper we have adopted different approach that is 
devoid of simplifications inherent for the Perturbation Method. Namely, 
to determine the mass sensitivity of the Love wave device, we first solved 
the equations of motion in the subsequent layers of the waveguide. 
Then, after imposing the boundary conditions, we developed the 
dispersion equation for phase velocity of Love surface waves. Subse
quently, using the rules of differentiation of implicit functions we ob
tained the equations for the mass sensitivity of Love surface waves in a 
closed analytical form that are valid for an arbitrarily high surface mass 
loading σ. 

The analytical model presented in this paper was developed under 
the following simplifying assumptions:  

1) Elastic materials of the surface layer and substrate are linear, 
isotropic, lossless and homogeneous in all directions.  

2) Piezoelectric effect is neglected.  
3) Elastic waveguide is semi-infinite in the transverse direction and 

infinite in the remaining two directions.  
4) Generation and detection of Love surface waves is out of scope of this 

paper.  
5) Spurious bulk and subsurface waves have been neglected.  
6) Material constants of the waveguide are constant and do not change 

with temperature or frequency. 

The execution time, with the developed Analytical Method and an 
equivalent Perturbation Method, is virtually the same, namely of the 
order of a fraction of a second. However, the Analytical Method devel
oped in this paper provides us much deeper insight into the physical 
phenomena occurring in the Love wave waveguide. 

In contrast to Perturbation Methods, valid only for small changes in 
parameters of the waveguide, the Analytical Method developed in this 
paper is valid for an arbitrarily high surface mass loading σ of Love wave 
waveguides. 

In addition to the mass sensitivity Svp
σ , the author has developed 

analytical formulas for the phase velocity gradients − dvp/df and −

dvp/dh1, where f and h1 stand, respectively, for the frequency of the 
Love wave and thickness of the guiding surface layer. We have found 
that the maxima of the mass coefficient of sensitivity Svp

σ (f), Svp
σ (h1) and 

maxima of the relative gradients − (1/vp)dvp/df , − (1/vp)dvp/dh1, 
occur virtually at the same point of f and h1 what was not yet published 
in the literature. 

Another new result obtained by the author are analytical formulas 
(Eqs. 24 and 26) that relate the mass sensitivity Svp

σ of Love surface waves 
with both 1) the relative gradient − (1/vp)dvp/dh1 of the dispersion 
curve vp(h1) and 2) the relative gradient − (1/vp)dvp/df of the dispersion 
curve vp(f). 

The use of the developed analytical formulas for the mass sensitivity 
Svp

σ (Eq.18) and the relative phase velocity gradients − (1/vp)dvp/df , 
− (1/vp)dvp/dh1 (Eqs. 20 and 22) can be very useful in the design of Love 
wave devices giving us direct and quick insight in physical phenomena 
occurring in Love wave waveguides, such as dependence of the mass 
coefficient Svp

σ on material parameters of the Love wave waveguide, 
thickness of the guiding surface layer h1, wave frequency f , etc. 

Despite many simplifying assumptions, the Analytical Method, 
developed in this paper, can provide reasonably accurate results appli
cable in design and optimization of Love wave devices. Thus, it can be 
considered as a valuable complement for the more versatile and exact 
FEM method with many software packages that are available 
commercially. 

2. Physical model 

In this paper, we analyze properties of Love surface waves propa
gating in waveguides consisting of a guiding PMMA surface layer (0 <

x2 ≤ h1) deposited on a semi-infinite ST- cut Quartz substrate (x2 > h1). 
Losses in the PMMA surface layer are neglected. In addition, top surface 
of the guiding surface layer is covered with an infinitesimally thin layer 
of mass with a surface density σ [kg/m2], see Fig. 1. 

Material and geometrical parameters of the analyzed Love wave 
waveguide structure are given in Table 1. 

An important property of Love surface waves is their unique vibra
tion pattern with one non-zero shear-horizontal (SH) component of vi
brations (mechanical displacement u3), which is polarized along the x3 
axis, parallel to the free surface (x2 = 0) of the waveguide and 
perpendicular to the direction of propagation of the Love wave along the 
x1 axis. The x2 axis points into the bulk of the substrate. All material 
parameters of the layered waveguide may change only along the x2 axis 
but are homogeneous and isotropic along the x1 and x3 axes. 

Since Love surface waves analyzed in this paper propagate in the 
lossless waveguide structure shown in Fig. 1 the wave number k of the 
Love wave is a real-valued quantity and equals k = ω/vp, where ω is the 
angular frequency of the Love wave and vp its phase velocity. 

Phase velocity of bulk SH waves in the PMMA (Poly(methyl meth
acrylate)) guiding surface layer equals v1 = 1100 m/s and in the ST- cut 
Quartz substrate v2 = 5060 m/s (see Table 1). Love surface waves can 
exist only in waveguides with slower guiding surface layer than the 
substrate (v1 < v2). The waveguide analyzed in this paper was designed 
to fulfill this necessary condition. It is interesting to note that Quartz is 
the only common piezoelectric material that can support pure SH bulk 
waves [24] and therefore is often used as a substrate in Love wave 
waveguides. 

3. Theoretical background (Direct Sturm-Liouville Problem) 

The propagation of Love surface waves in the waveguide structure 
shown in Fig. 1 is governed by the wave equation [25,26] in the con
stituent regions of the waveguide in conjunction with the appropriate 
boundary conditions, [27], on the upper surface of the guiding surface 
layer x2 = 0 and at the interface x2 = h1 between the surface layer and 
the substrate. 

Fig. 1. Cross-section of the analyzed Love wave waveguide loaded with an 
infinitesimally thin layer of mass with a surface density σ

[
kg/m2]. Love surface 

waves propagate in the direction of axis x1. Shear horizontal (SH) mechanical 
displacement u3 of the Love wave is polarized along the x3 axis. 
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3.1. Governing differential equations 

3.1.1. Lossless elastic surface layer (0 < x2 < h1)

The mechanical displacement u(1)
3 of the Love wave in the elastic 

surface layer fulfills the following wave equation: 

1
v2

1

∂2u(1)
3

∂t2 =
∂2u(1)

3

∂x2
1

+
∂2u(1)

3

∂x2
2

(1)  

where: v1 =
(

c(1)44 /ρ1

)1/2 
is the phase velocity of bulk SH waves in the 

elastic surface layer, c(1)44 is its storage modulus and ρ1 is the density of 
the elastic surface layer. 

3.1.2. Semi-infinitive elastic substrate (x2 > h1)

The mechanical displacement u(2)
3 of the Love wave in the elastic 

substrate satisfies the following partial differential equation (wave 

equation): 

1
v2

2

∂2u(2)
3

∂t2 =
∂2u(2)

3

∂x2
1

+
∂2u(2)

3

∂x2
2

(2)  

where: v2 =
(

c(2)44 /ρ2

)1/2 
is the phase velocity of the bulk SH waves in 

the elastic substrate, c(2)44 its storage modulus of elasticity and ρ2 is the 
density of the elastic substrate. 

3.2. Derivation of the dispersion relation for Love surface waves using 
Transfer Matrix Method 

The dispersion equation of Love surface waves propagating in the 
layered waveguide presented in Fig. 1 has been derived in this paper 
using the Transfer Matrix Method (TMM) developed previously by 
Thomson and Haskell in seismology [28–30]. 

The key property of the TMM method is the relation between the 
mechanical displacement u3 and shear stress τ23 of the Love wave on the 
upper surface of the surface layer with the mechanical displacement and 
shear stress on the lower surface of the layer. Below we will sketch 
briefly the derivation of this relationship. 

A general form of the time-harmonic mechanical displacement u3(x1,

x2, t) of the Love surface wave, propagating in the direction x1, and 
uniform along the axis x3, will be sought in the following form: 

u3(x1, x2, t) = V(x2) • exp[j(kx1 − ωt) ] (3)  

where: V(x2) is the mechanical displacement u3(x2) of the Love wave, as 

a function of depth x2, k is the wave number of the Love wave and ω its 
angular frequency. 

The shear stress τ23(x1, x2, t) associated with the mechanical 
displacement u3(x1, x2, t) of the Love wave is given by the following 
formula: 

τ23(x1, x2, t) = T(x2) • exp[j(kx1 − ωt) ] (4)  

where: T(x2) = c44(x2)∂V(x2)/∂x2 and c44(x2) is the shear modulus of 
elasticity in the constituent parts of the waveguide, namely, guiding 
surface layer 0< x2 < h1 and substrate h1< x2. 

Substituting Eq.3 into Eqs. 1 and 2 one obtains two ordinary differ
ential equations of the second order. Introducing subsequently two new 
dependent variables: (V and T), each second order differential equation, 
resulting from Eqs. 1 and 2, can be represented as a system of two dif
ferential equations of the first order, as follows: 

d
dx

[
V
T

]

=

⎡

⎢
⎣

0 ,
1

c44(x)

β2c44(x) − ω2ρ(x), 0

⎤

⎥
⎦

[
V
T

]

(5) 

It can be shown that Eq.5 represents the Direct-Sturm-Liouville 
Problem for the eigenvalues β2 and the eigenvectors V. 

Solving matrix differential Eq.5 for the PMMA guiding surface layer, 
we arrive at the following formula (Eq.(6)) that links the mechanical 
displacement and shear stress on the upper surface of the PMMA surface 
layer for (x2 = 0) with the mechanical displacement and shear stress on 
the lower surface of this layer (x2 = h1), i.e.,

where: q1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
1 − k2

√

is the transverse wavenumber of the Love 
wave in the PMMA surface layer, k1 = ω/v1, v1 is the phase velocity of 
bulk SH waves in the PMMA surface layer, k is the real wave number of 
the Love wave and [A] is the transfer matrix defined by Eq.6. More de
tails about the derivation of Eq.6 can be found in [8]. 

The transfer matrix [A] derived in Eq.6 can be written explicitly as: 

[A] =
[

A11 A12
A21 A22

]

=

⎡

⎢
⎢
⎣

cos(q1 • h1)
1

c(1)44 • q1
sin(q1 • h1)

− c(1)44 • q1 • sin(q1 • h1) cos(q1 • h1)

⎤

⎥
⎥
⎦ (7) 

The unknown components of the mechanical displacement and the 
corresponding shear stress, of the Love wave at the interface x2 = 0 and 
x2 = h1 will be further denoted by V0,T0 and VD, TD, respectively. 
Consequently, Eq.6 can written as 
[

VD
TD

]

=

[
A11 A12
A21 A22

][
V0
T0

]

(8)  

3.3. Shear stresses on top T0 and bottom TD of the PMMA guiding surface 
layer 

Top surface of the PMMA surface layer (x2 = 0) is loaded with an 
infinitesimally thin layer of mass, with a surface density σ. 

It can be shown that the shear stress T0 of the SH Love wave at the 
interface x2 = 0 with the infinitesimal layer of mass, of a surface density 
σ, can be expressed as 

Table 1 
Material and geometrical parameters of the analyzed Love wave waveguide 
[21–23].  

Material Thickness 
[μm] 

Density 
[kg/m3]

Storage shear 
modulus 
[GPa] 

SH wave 
velocity 
[m/s] 

PMMA surface 
layer 

h1 = 0 − 8 ρ1 =

1180 
c(1)44 = 1.43 v1 = 1100 

ST- cut Quartz 
substrate 

semi- 
infinite 

ρ2 =

2650 
c(2)44 = 67.85 v2 = 5060  

[
V
T

]⃒
⃒
⃒
⃒

x=h1

= cos(q1•h1)*

⎡

⎢
⎢
⎣

1
1

c(1)44 • q1
tan(q1 • h1)

− c(1)44 • q1 • tan(q1 • h1) 1

⎤

⎥
⎥
⎦*

[
V
T

]⃒
⃒
⃒
⃒

x=0
=

[
A11 A12
A21 A22

]

*
[

V
T

]⃒
⃒
⃒
⃒

x=0
(6)   
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T0 = − σ • ω2V0 (9) 

This dependence emphasizes the inertial character of the loading 
with an infinitesimally thin layer of mass with a surface density σ. 

The bottom of the guiding surface layer (PMMA) (x2 = h1) is rigidly 
bonded to the semi-infinite elastic substrate (Quartz). The mechanical 
displacement V(x2) of the Love wave in the elastic substrate is given by: 
V(x2) = VD • exp( − b • x2). Consequently, the shear stress in the elastic 
substrate at the interface x2 = h1 with the guiding surface layer (PMMA) 
is given by: 

TD = c(2)44
∂V
∂x2

⃒
⃒
⃒
⃒
(x2=h1)

= − c(2)44 • b • VD (10)  

where: b = (k2 − k2
2)

1/2
; k2 = ω/v2 and v2 =

(
c(2)44 /ρ2

)1/2
. The variables 

b and k2 correspond, respectively, to the transverse wavenumber of the 
Love surface wave in the substrate and the wavenumber of bulk SH 
waves therein. 

Substituting Eqs. 9 and 10 into Eq. 8 one obtains: 
[

VD

− c(2)44 • b • VD

] ⃒
⃒
⃒
⃒
⃒

x=h1

=

[
A11 A12
A21 A22

]

•

[
V0

− σ • ω2 • V0

] ⃒
⃒
⃒
⃒

x=0
(11) 

Closer examination of Eq. 11 reveals that it contains only two un
known quantities, namely, V0 and VD. By a simple rearrangement of 
terms in Eq. 11 we finally get a system of two linear homogeneous 
algebraic equations for V0 and VD, in the following form: 
[

1, −
(
A11 − A12 • σ • ω2)

c(2)44 • b,
(
A21 − A22 • σ • ω2)

]

•

[
VD
V0

]

=

[
0
0

]

(12)  

4. Dispersion equation 

A set of two linear algebraic equations for V0 and VD has a non-trivial 
solution if the determinant of the left-hand-side matrix in Eq.12 van
ishes. This condition leads to the following dispersion equation for Love 
waves, propagating in the investigated waveguide structure, shown in 
Fig. 1: 
(
A21 − A22 • σ • ω2)+

(
c(2)44 • b

)
•
(
A11 − A12 • σ • ω2) = 0 (13) 

Substituting elements of the matrix [A] from Eq.7 into Eq.13, we 
arrive at the following dispersion equation for the Love surface waves 
propagating in the analyzed lossless waveguide structure, depicted in 
Fig. 1: 

tan(q1 • h1) •
{(

c(1)44 • q1

)2
+
(
σ • ω2) •

(
c(2)44 • b

)}
+

(
c(1)44 • q1

)
•
{(

σ • ω2) −
(

c(2)44 • b
)}

= F
(
vp, σ, h1, f

)
= 0

(14) 

where: k1 = ω/v1; k2 = ω/v2; q1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
1 − k2

√

; b =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2 − k2
2

√

; σ is the 

surface mass density loading the surface of the waveguide, k is the real 
wavenumber of the Love wave and vp = ω/k is the phase velocity of the 
Love wave at an angular frequency ω. 

The dispersion equation Eq.14 is of primary importance in analysis of 
Love surface waves, since it enables the determination of the phase 

velocity vp of the Love wave, as a function of frequency f and the 
thickness h1 of the guiding surface layer. In fact, the determination of the 
dispersion equation is the necessary first step in analysis of Love surface 
waves, propagating in any surface waveguide. 

Equation No 14 is an implicit relation between the phase velocity vp 
of the Love wave propagating in the waveguide with material and 
geometrical parameters of the waveguide, shown in Fig. 1. 

The dispersion equation (Eq.14) can be written in a more abstract 
form as: 

F
(

c(1)44 , ρ1, c(2)44 , ρ2, σ, h1, ω; k
)
= 0 (15) 

Eq. 15 has the form of a nonlinear transcendental algebraic equation 
with only one unknown, i.e., the wavenumber k = ω/vp of the Love 
surface wave. The parameters in Eq. 15 are the following: c(1)44 , ρ1, c

(2)
44 , ρ2,

σ, h1 and ω. It is rather not realistic to expect that any closed form so
lution for the algebraic Eq. 15 would emerge, regardless how hard we 
might work. Therefore, the nonlinear algebraic Eq. 15 has to be solved 
numerically. 

The nonlinear algebraic Eq. 15 was solved in this paper numerically 
using specialized procedures provided by the computer package Scilab. 
Since the analyzed waveguide is lossless the wave number k of the Love 
wave determined from Eq.15 must be a real-valued quantity. 

5. Mass sensitivity Svp
σ of Love surface waves 

The sensitivity of Love surface waves to loading with an infinitesimal 
layer of mass, of a surface density σ, can be quantified by the following 
coefficient of mass sensitivity Svp

σ defined as [1]: 

Svp
σ =

1
vp

(
dvp

dσ

)

(16) 

Since in lossless waveguide structures, such as those analyzed in this 
paper (see Fig. 1), the phase velocity vp = ω/k of the Love wave is always 
a real-valued quantity. Consequently, by virtue of Eq.16, the same can 
be said about the mass coefficient of sensitivity Svp

σ . 
The dispersion Eq. (14) is an implicit function of the phase velocity vp 

and surface mass density σ, what can be symbolically written as 
F
(
vp, σ

)
= 0 (see also Eq.15). The derivative dvp/dσ in Eq. 16 can be 

calculated analytically from the dispersion equation, using the rules of 
differentiation of implicit functions. In fact, the differentiation of the 
dispersion equation F

(
vp, σ

)
= 0 with respect to vp and σ leads to the 

following differential relation (dvp/dσ)∂F/∂vp + (dσ/dσ)∂F/∂σ = 0. 
Consequently, the derivative dvp/dσ can be written as: 

dvp

dσ = −
∂F/∂σ
∂F

/
∂vp

(17) 

By virtue of Eqs. 16 and 17 the coefficient of mass sensitivity Svp
σ is 

given by the following explicit formula:   

where: h1 is the thickness of the guiding surface layer, q1 and b are 
respectively transverse wavenumbers of the Love wave in the guiding 
surface layer and in the substrate and ∂q1/∂k = − k̅̅̅̅̅̅̅̅̅̅

k2
1 − k2

√ ; ∂b/∂k =

k̅̅̅̅̅̅̅̅̅̅
k2 − k2

2

√ . 

Svp
σ =

ω21
k

{(
c(1)44 q1

)
+
(

c(2)44 b
)
• tan(q1h1)

}

h1
cos2(q1h1)

∂q1
∂k

{(
c(1)44 q1

)2
+
(

c(2)44 b
)
(σω2)

}

+ tan(q1h1)

{

2q1

(
c(1)44

)2∂q1
∂k + c(2)44

∂b
∂k (σω2)

}

+ c(1)44
∂q1
∂k •

{
(σω2) −

(
c(2)44 b

)}
− c(2)44

∂b
∂k

(
c(1)44 q1

) (18)   
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It has to be stressed that Eq. (18) is a closed form analytical formula 
for the mass coefficient of sensitivity Svp

σ , as a function of ω,h1,vp,c(1)44 ,ρ1,

c(2)44 , ρ2, and σ. Eq. (18) will be used in the subsequent numerical calcu
lations for Love surface waves propagating in waveguides composed of a 
PMMA guiding surface layer deposited on the ST-Quartz substrate (see 
Section 8). 

6. Analytical formulas for phase velocity gradients − dvp/dh1 and 
− dvp/df of the dispersion curves vp(h1) and vp(f)

In this section we will try to find possible correlations between the 
maximum of the coefficient of sensitivity Svp

σ and the maximum of phase 
velocity gradients − dvp(h1)/dh1 and − dvp(f)/df . 

To this end, the author developed in this Section the equations for the 
phase velocity gradients − dvp(h1)/dh1 and − dvp(f)/df in a closed 
analytical form that can be readily used for numerical calculations. 

If the phase velocity vp of the Love wave and thickness of the guiding 
surface layer h1 are considered as independent variables, the dispersion 
Eq. 14 can be written in the following implicit form as F

(
vp, h1

)
= 0. 

Using the rules of differentiation of implicit functions from the disper
sion relation Eq.14 we obtain: 

dvp

dh1
= −

∂F/∂h1

∂F
/

∂vp
(19) 

Consequently, Eq. 19 leads to the following closed-form formula:   

Eq. 20 relates the gradient (slope) 
(
dvp/dh1

)
of the dispersion curve 

vp(h1) with material parameters of the Love wave waveguide and fre
quency ω = 2πf . 

On the other hand, the dispersion Eq. 14 is also an implicit function 
of vp and f , namely F

(
vp, f

)
= 0. Therefore, the phase velocity gradient 

(
dvp/df

)
can be expressed as 

dvp

df
= −

∂F/∂f
∂F

/
∂vp

(21) 

Consequently, Eq. 21 leads to the following closed-form analytical 
formula for the phase velocity gradient 

(
dvp/df

)
:   

Similarly to formula 20, Eq. 22 relates the gradient (slope) 
(
dvp/f

)
of 

the dispersion curve vp(f) with material parameters of the Love wave 
waveguide, wave frequency ω and thickness of the guiding surface layer 
h1, etc. 

At first glance, Eq. 20, 22 and 18, may look somewhat intimidating 
but in fact they are quite elementary and easy to implement in numerical 
calculations (see Section 8). 

Having developed the analytical formulas for Svp
σ and dvp/df ,

dvp/dh1 in the next Section 7 we will seek for possible relations be
tween them. Our attention will be focused on points where the relative 
gradients − (1/vp)dvp/dh1, − (1/vp)dvp/df of the dispersion curves, and 
the mass sensitivity Svp

σ attain maxima. 

7. Relation between phase velocity gradients − dvp/dh1, 
− dvp/df and the mass sensitivity Svp

σ 

The mathematical analysis of the dispersion Eq. 14 allows to develop 
the analytical equations relating the mass sensitivity Svp

σ with the phase 
velocity gradients dvp/dh1, − dvp/df . 

Employing Eqs. 17 and 19 it can be shown that the mass sensitivity 
Svp

σ and phase velocity gradient − dvp/dh1 are related by the following 
differential formula: 

Svp
σ =

∂F/∂σ
∂F/∂h1

■
1
vp

■
(

dvp

dh1

)

(23) 

Thus, differentiation of the dispersion equation F(σ,h1) = 0 (Eq. 14) 
with respect to σ and h1 and employment of Eq. 23 lead to: 

Svp
σ =

ω2 • cos2(q1h1)

q1
•

{
tan(q1h1) •

(
c(2)44 b

)
+
(

c(1)44 q1

)}

{(
c(1)44 q1

)2
+ (σω2) •

(
c(2)44 b

)} •
1
vp

•

(
dvp

dh1

)

(24) 

Eq. 24 is an analytical formula that relates the mass sensitivity Svp
σ 

with the relative gradient − (1/vp)dvp/dh1 of the dispersion curve vp(h1)

of the Love wave, propagating in the waveguide structure shown in 
Fig. 1. 

It should be stressed that Eq. 24 was developed without any 
simplifying assumptions from the dispersion Eq. 14, obtained from the 

full wave theory presented in Section 3. 
Eq. 24 shows that the mass sensitivity Svp

σ depends critically on the 
operation point on the dispersion curve vp(h1). In fact, Eq. 24 

(
dvp

dh1

)

=

q2
1•(vp)

3

ω2•cos2(q1h1)
•
{(

c(1)44 q1

)2
+ (σω2) •

(
c(2)44 b

)}

h1
cos2(q1h1)

{(
c(1)44 q1

)2
+ (σω2) •

(
c(2)44 b

)}
+ tan(q1h1)

{
2q1

(
c(1)44

)2
− (σω2) • c(2)44 • q1

/
b
}
+ c(1)44 •

{
(σω2) −

(
c(2)44 b

)
+ c(2)44 • q2

1

/
b
} (20)   

(
dvp

df

)

=

2π•q1•(vp)
3

ω3

{
q1h1

cos2(q1h1)

[(
c(1)44 q1

)2
+ (σω2) •

(
c(2)44 b

)]
+ tan(q1h1)

{

2q1
2
(

c(1)44

)2
+ 3(σω2) • c(2)44 • b

q1

}

+ c(1)44 q1

{
(σω2) − 2

(
c(2)44 b

)
+ 2σω2

}}

h1
cos2(q1h1)

{(
c(1)44 q1

)2
+ (σω2) •

(
c(2)44 b

)}
+ tan(q1h1)

{
2q1

(
c(1)44

)2
− (σω2) • c(2)44 • q1

/
b
}
+
(

c(1)44

)
•
{
(σω2) −

(
c(2)44 b

)(
1 − q2

1
/

b2
)} (22)   
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demonstrates that the mass coefficient of sensitivity Svp
σ is actually pro

portional to the relative phase velocity gradient − (1/vp)dvp/dh1. As a 
result, the maximum of the mass sensitivity Svp

σ and the maximum of the 
relative gradient − (1/vp)dvp/dh1, will occur virtually for the same 
value of thickness h1 of the guiding surface layer. This is a very impor
tant conclusion enabling for optimum design of Love wave devices with 
high sensitivities. 

Similarly, employing Eqs. 17 and 21 and the dispersion equation 
F(σ,f) = 0 (Eq.14), it is straightforward to show that the mass coefficient 
of sensitivity Svp

σ can be expressed by the following differential formula: 

Svp
σ =

∂F/∂σ
∂F/∂f

•
1
vp

(
dvp

df

)

(25) 

Fig. 2. Mass sensitivity Svp
σ [m2/kg] for Love surface waves propagating in the 

PMMA- Quartz waveguide shown in Fig. 1, as a function of wave frequency f , 
for different values of thickness h1 of the guiding PMMA surface layer (h1 =

0.5, 1 and 2 μm). 

Fig. 3. Relative phase velocity gradient − (1/vp)dvp/df of the dispersion curve 
vp(f), as a function of frequency f , for Love waves propagating in the PMMA- 
Quartz waveguide shown in Fig. 1. 

Fig. 4. Phase velocity dispersion curves vp(f) of the Love wave propagating in 
the PMMA-Quartz waveguide structure shown in Fig. 1. The maxima of the 
relative slope − (1/vp)dvp/df , are marked with the cross "x". 

Fig. 5. Mass sensitivity Svp
σ [m2/kg] for Love surface waves propagating in 

PMMA-Quartz waveguides, shown in Fig. 1, as a function of thickness h1 of the 
PMMA guiding surface layer, for different values of wave frequency f =

50,100 and 200 MHz. 

Table 2 
Maximum values of the relative phase velocity gradient − (1/vp)dvp/df , mass 
sensitivity Svp

σ , and the corresponding frequencies fmax of the maxima for Love 
waves propagating in PMMA-Quartz waveguides. Thickness of the guiding 
PMMA surface layer h1 = 0.5, 1 and 2 μm.   

− (1/vp)dvp/df 
(Fig.3), (Eq.22) 

Svp
σ 

(Fig.2), (Eq.18) 

h1 fmax max fmax max 
μm MHz 1/MHz MHz m2/kg 
0.5 552 0.8106e-2 559 8623 
1.0 277 0.1596e-1 280 4310 
2.0 138 0.3236e-1 140 2155  

P. Kiełczyński                                                                                                                                                                                                                                    



Sensors and Actuators: A. Physical 338 (2022) 113465

7

Differentiating the dispersion equation F(σ,f) = 0 with respect to the 
surface mass density σ and wave frequency f from Eq.25 one obtains:  

Eq. 26 shows that the mass sensitivity Svp
σ is in fact also proportional 

to the relative phase velocity gradient −
(
1/vp

)
dvp/df . As a result, the 

maximum of the mass sensitivity Svp
σ and the maximum of the relative 

gradient −
(
1/vp

)
dvp/df will occur virtually at the same frequency f . 

This is a very important conclusion allowing for optimum design of Love 
wave devices with high sensitivities. 

8. Results of numerical calculations 

The dispersion curves vp(h1), vp(f), their gradients dvp/dh1, dvp/df 
and mass coefficient of sensitivity Svp

σ were evaluated numerically using 
formulas no 14, 18, 20 and 22 developed in Sections 3, 4, 5 and 6. The 
propagation of Love surface waves was evaluated in the exemplary 
waveguide structure composed of the PMMA surface layer deposited on 
ST-Quartz substrate, with the parameters given in Table 1. 

In the numerical calculations, we selected the following initial sur
face mass density: σ = 1 × 10− 6 [kg/m2]. 

The mass sensitivity Svp
σ was plotted as a function of wave frequency f 

(Fig. 2) and thickness h1 of the PMMA guiding surface layer (Fig. 5). 
From Fig. 2 it is apparent that the mass coefficient of sensitivity Svp

σ 
starts from zero for low frequencies f , displays subsequently resonant 
like peaks, and gradually decreases to zero for higher frequencies, when 
f→ + ∞. 

Using formula 22, we plot in Fig. 3 the relative phase velocity 
gradient − (1/vp)dvp/df as a function of frequency f , for Love waves 
propagating in the analyzed PMMA-Quartz waveguide structure, shown 
in Fig.1. 

Similarly to the mass sensitivity Svp
σ shown in Fig. 2, the relative 

gradient − (1/vp)dvp/df of the dispersion curve vp(f) plotted in Fig. 3, 
displays also resonant-like maxima, as a function of frequency f . 

The numerical results calculated for maxima of the relative phase 
velocity gradient − (1/vp)dvp/df , and the mass coefficient of sensitivity 
Svp

σ , plotted in Fig. 2 and 3, are summarized in Table 2. 
Phase velocity dispersion curves vp(f) of the Love wave propagating 

in the PMMA-Quartz waveguide are shown in Fig.4. From Fig. 4 it is 
clear that the maxima of the relative slope − (1/vp)dvp/df , (marked by 
the cross) occur approximately halfway down the slope of the dispersion 
curve vp(f). 

Using the formula Eq.18 we also plotted in Fig. 5 the mass sensitivity 
Svp

σ of the Love wave sensor, as a function of the thickness h1 of the 
guiding surface layer. 

From Fig. 5 it is evident that the mass coefficient of sensitivity Svp
σ 

starts from zero for low values of h1, shows subsequently resonant like 
peaks and gradually drops to zero for larger values of the surface layer 
thickness h1. 

The plot of the relative gradient − (1/vp)dvp/dh1 of the Love wave 
dispersion curve vp(h1), as a function of the thickness h1 of the surface 
layer, is given in Fig.6. 

The plots of the relative gradient − (1/vp)dvp/dh1 of the Love wave 
dispersion curve vp(h1), see Fig.6, also displays resonant-like maxima as 
a function of the surface layer thickness h1. 

To visualize the location of the points with the maximum gradient of 
the dispersion curve vp(h1), the dispersion curves vp(h1), as a function of 
the surface layer thickness h1 were plotted in Fig. 7. The maxima of the 
relative gradient − (1/vp)dvp/dh1 are marked with the cross. 

The results for the maximum of the relative gradient 
− (1/vp)dvp/dh1(h1) and the mass coefficient of sensitivity Svp

σ , plotted in 

Fig. 6. Relative gradient − (1/vp)dvp/dh1 of the dispersion curve vp(h1) as a 
function of thickness h1 of the guiding PMMA surface layer of the Love wave 
propagating in the PMMA-Quartz waveguide shown in Fig. 1. 

Fig. 7. Phase velocity dispersion curves vp(h1) of the Love wave propagating in 
the PMMA-Quartz waveguide shown in Fig. 1. The maxima of the relative slope 
− (1/vp)dvp/dh1(h1) are marked with the cross. 

Svp
σ =

ω3

2π •
tan(q1h1) •

(
c(2)44 b

)
+ c(1)44 q1

q1h1
cos2(q1h1)

[(
c(1)44 q1

)2
+ σω2c(2)44 b

]

+ tan(q1h1) • σω2c(2)44 b + σω2c(1)44 q1

•
1
vp

•

(
dvp

df

)

(26)   
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Figs. 5 and 6 are summarized in Table 3. 

9. Discussion 

The mass coefficient of sensitivity Svp
σ is a very important parameter 

of Love wave waveguides that quantifies the quality of Love wave de
vices. The coefficient of mass sensitivity Svp

σ relates the change in the 
phase velocity vp of the Love wave with the surface density σ of an 
infinitesimally thin layer of mass, deposited on top of the guiding surface 
layer of the waveguide. 

In general, the dispersion equation (Eq.14) of the Love surface wave 
can be regarded as an implicit function of the phase velocity vp, surface 
mass density σ loading free surface of the waveguide, thickness h1 of the 
surface layer and wave frequency f . The dispersion equation (Eq.14) can 
be expressed symbolically as F2

(
vp, σ, h1, f

)
= 0. 

Applying the theorem of differentiation of implicit functions, the 
author has developed in this paper novel analytical formulas for the 
mass coefficient of sensitivity Svp

σ , and phase velocity gradients dvp/dh1, 
dvp/df , as a function of thickness h1 of the guiding surface layer and 
wave frequency f . 

The developed analytical formulas for Svp
σ , − (1/vp)dvp/dh1 and −

(1/vp)dvp/df) depend explicitly on: 1) material parameters of the 
waveguide, 2) surface layer thickness h1, and 3) wave frequency f , as 
well as 4) surface mass density σ loading top surface of the waveguide. 

In Section 7 the author discovered new relations between the mass 
coefficient of sensitivity Svp

σ and the relative phase velocity gradients 
− (1/vp)dvp/dh1 and − (1/vp)dvp/df , see Eqs. 24 and 26, showing that 
Svp

σ is in fact proportional to − (1/vp)dvp/dh1 and − (1/vp)dvp/df . 
Consequently, the maximum of the coefficient of mass sensitivity Svp

σ and 
the maximum of relative phase velocity gradients occur virtually at the 
same thickness h1 of the guiding surface layer and wave frequency f . 
This property is of crucial practical importance in design of Love wave 
devices (e.g., sensors) since the maximum of the mass sensitivity occurs 
at the point of the steepest descent of the dispersion curves as a function 
of frequency f or thickness of the surface layer h1 of the waveguide. 

The analytical model, developed by the author, for mass sensitivity 
of Love wave waveguides (Eqs. 18, 20, 22, 24 and 26) can provide a very 
useful tool for optimum design of Love wave devices with enhanced 
mass sensitivities. 

10. Conclusions 

From the analytical and numerical results obtained in this paper we 
can draw the following conclusions:  

1. The analytical formulas (Eqs. 18, 20 and 22) for: 1) mass sensitivity 
Svp

σ , 2) gradient dvp/dh1 of the dispersion curve vp(h1) and 3) gradient 
dvp/df of the dispersion curve vp(f), developed by the author are new 
and were not yet published in the literature.  

2. Similarly, the analytical formulas (Eqs.24 and 26) that relate the 
mass sensitivity Svp

σ of the Love wave sensors with the relative slopes 
( − (1/vp)dvp/dh1 and − (1/vp)dvp/df of the dispersion curves vp(h1)

and vp(f), were developed by the author for the first time and were 
not yet published in the literature.  

3. The mass sensitivity of the Love wave Svp
σ exhibits pronounced 

maxima as a function of both: a) the thickness h1 of the surface layer 
and b) wave frequency f , see Figs. 2 and 5.  

4. Analogous maxima can also be found in the relative slopes of the 
phase velocity vp dispersion curve as a function of thickness h1 of the 
surface layer: − (1/vp)dvp/dh1 and wave frequency f : −

(1/vp)dvp/df , see Figs. 3 and 6.  
5. The maxima of the mass sensitivity Svp

σ and the relative gradients −
(1/vp)dvp/dh1, − (1/vp)dvp/df , occur virtually at the same points of 
the thickness h1 and frequency f , see Tables 2 and 3.  

6. The analytical formulas (Eqs. 24 and 26) developed by the author for 
the first time show that the mass sensitivity Svp

σ and the relative slopes 
( − (1/vp)dvp/dh1, − (1/vp)dvp/df) are in fact proportional to each 
other.  

7. Employment of the analytical formulas developed by the author for 
the mass sensitivity Svp

σ (Eq.18) and phase velocity gradients −

dvp(f)/df , − dvp(h1)/dh1 (Eq. 20, 22) can significantly improve the 
design process of Love wave devices. 

By contrast to pure numerical methods, such as (FEM), the closed- 
form analytical formulas developed for the first time in this paper 
have many advantages such as very high speed of execution in numerical 
implementations and even more importantly the possibility for a direct 
parametric optimization of the Love wave waveguide as a function of its 
material parameters, thickness of the guiding surface layer h1 and wave 
frequency f . 

The results of this study can be very useful for engineers and scien
tists working in the design, modeling and optimization of ultrasonic 
Love wave devices. 
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