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Summary The effect of intertaminar bonding imperfections on behaviour of shells, investigated 
in [1], is elaborated here for a special case of laminated plates. The problem is stated for linear 
elastic materials, within the small displacement gradient theory. The obtained results are ilus- 
trated by an example. 

EinfluB der Zwischenschichtdefekte auf das Verhalten geschichteter Platten 
Ubersicht Der in [1] beschriebene Einflut~ der Zwischenschichtdefekte auf das Verhalten ge- 
schichteter Schalen wird hier speziell ffir den Sonderfall geschichteter Platten studiert. Das Pro- 
blem wird unter Berficksichtigung der linearen Elastizit~itstheorie und der Theorie der kleinen 
Verschiebungsgradienten betrachtet. Die erhaltenen Ergebnisse werden anhand eines Beispiels 
illustriert. 

1 
Introduction 
In the paper [1], a general approach to the formation of 2D-theories for laminated linear elastic 
shells with initial imperfections in the interlaminar bonding was proposed. These bonding 
imperfections are supposed to be sufficiently small (compared to the lamina thickness) and 
randomly distributed over lamina interfaces. The proposed approach takes also into account 
the effect of the interlaminar strain discontinuities on the shell behaviour. In this paper, fol- 
lowing the line of approach given in [1], we elaborate a similar problem for thin laminated pla- 
tes. To this end, we postulate a certain modified theory of laminated plates which makes it 
possible to evaluate the effect of interlaminar bonding imperfections on the behaviour of a 
plate. The considerations are carried out for linear elastic laminae and within a small displace- 
ment gradient theory. The obtained results are illustrated by an example. 

Throughout the paper sub- and superscripts a, fl . . . .  run over 1, 2, and A, B run over 
1 . . . . .  M, unless otherwise stated; summation convention holds for a,/3 . . . . .  Derivatives of an 
arbitrary function f = f ( x ,  z, T) will be denoted byf~ --- Of/Oxa, f '  =- Of/Oz, f=-- Of/OT, where 
x - -  (x~, x2). 
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2 
Preliminary concepts and assumptions 
The subject of considerations is a laminated (multilayered) plate, a fragment of which is shown 
in Fig. 1. A region occupied by an undeformed plate is parameterized by Cartesian coordinates 
x~, x2, x3 = z, where x -= (&, xz) e 17, z �9 [-6/2, c3/2],/7 being plate midplane and 6 the plate 
thickness. It is assumed that z = 0 is the symmetry plane of the plate. By r we denote the time 
coordinate. The plate is made of M+ 1 laminae AA, A = 1 . . . . .  M+ 1. By qOA we denote the inter- 
face between the A-th and A + 1-th laminae, which is situated on a coordinate plane z = za. The 
thickness of an arbitrary A-th lamina is constant and will be denoted by 6a. 
We assume that: 

(i) the material of every lamina is macro-homogeneous linear elastic, and at every point has a 
plane of elastic symmetry z = const.; 

(ii) on every interface q~A there are small bonding imperfections across which there is a uni- 
lateral contact without friction between adjacent laminae; the part of qbA occupied by 
bonding imperfections is denoted by ZIA. 

By Ta~, Ta3, T33 we shall denote the components of the stress tensor at an arbitrary point of 
the plate (except of interlaminar planes). The components of a displacement vector will be de- 
noted by u~, u3. The plate is loaded in the direction of z-axis by a constant body force b and 
by tractions p(x, T) on the upper boundary z = -6/2.  The mass density is denoted by p = O(z), 
being constant in every lamina. The principle of conservation of momentum and that of the 
moment of momentum for an arbitrary plate element bounded by coordinate planes: 
xa = const., x~ + dxl = const., x2 = const., x2 + dx2 = const., z = _+612 lead to the known equations: 

Qa,~ + f  = 0, M~,/3 - Q~ + rn= = 0, (1) 

where we have denoted: 
612 

Q~ -~ f T~3(x, z, v) dz,  
-i3t2 

612 

M~- f 
-612 

zT~z(x, z, v) dz,  

612 

f = p ( x ,  v) + f O(z) [b -/ i3(x,  z, z')] dz,  
-,312 

OI2 

rna - -  f 0(z) zaa(x, z, r) d z .  
-6/2 

(z) 

In order to formulate the basic hypotheses of the proposed plate theory which describe both 
laminated structure and bonding imperfections, we have to introduce auxiliary functions: 
hA(Z), gA(Z), ga(Z), Z E [-(}/2, 6/2]  defined in [1], diagrams of which are shown in Fig. z. In the 
sequel we denote va --- 6A/6a+1. We shall use only derivatives of these functions, given by: 

0 if z �9 [--6/2, ZA_1) tO (ZA+,, 6/2], 

h~(z) = 1 if z �9 (ZA<,Za), 

-va if z �9 (ZA, ZA+I) ; q]A ~- (~A/6A+I, 

0 if z �9 [-6/2, zA_,] tO (zA, 6/2], 
g~(z) = 

(Z--ZA_I)/6A if Z �9 (Za-~,Za), 

"0 if Z �9 [--6/2, ZA) tO [ZA+a, 6/2], 
~;,(z) = 

(ZA+,--Z)/C3A+, if Z �9 (Za, Za+,). 

Here, we have denoted z o - - 6 / 2 .  We also introduce functions: 

a(z) =- 1 - 4z2/6 2, z �9 ( -6 /2 ,  6/2), 

{ ;  if X e A A ,  
Za(x) = if X �9 ~ a \  AA. 
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Fig. a. Cross-section of a laminated 
plate 
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Fig. 2. Diagrams of shape functions 
and their derivatives 

The formulation of the proposed plate theory will be based on three assumptions: 

I Strain state hypothesis (SSH). The strain components ea# and ea3 can be approximated in the 
form: 

e~Ax, z, ~) --- cpc~,~/(x, r) z, 

e~3(x, z, 7:) ---- a(z )  [w~(x, r) + ~ ( x ,  v)]/2 
(3) 

+ Z Ibm(z) ~(x, ~)+g1(z)Z~(x) ~(x, T)+~(z)Z~(x) ~'(x, r)l,  
A=I 

where w(x, v), q~(x, v), ~(x,  r), s~(x, v), ~a(x, v), are sufficiently regular functions, which con- 
stitute basic kinematic unknowns of the theory. 

Bearing in mind introduced above form of shape functions hA, gA, ga, it can be seen that the 
unknown functions ~ are responsible for jumps of shear strains across interlamina planes CA 
and unknowns s a, ~A describe possible jumpas of displacements u~, across imperfections AA o n  
every OA. We shall assume that functions so, ~ are linear dependent; the form of this depen- 
dents will be specified below. 
II Displacement state hypothesis (DSH). The displacement components u~, u3 can be approxi- 
mated by: 

u~(x, z, T) - -  opt(x, 7:) z ,  u3(x, z, •) --- w(x, T). (4) 

The distribution of displacements ua across the thickness of a laminated plate, which takes in- 
to account possible displacement jumps across imperfections, could be postulated in the form: 

M 

u~ = cp~z + ~ [h~(z) q~ + g~(z) ~ + ~(z) ~1. 
A=I 
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In eqs. (4)1 and (3)l we have neglected terms involving shape functions (but not their derivati- 
ves!), as small parameters of an order of a lamina thickness 6A. Due to the introduced appro- 
ximations, the strain compatibility conditions on a plate midplane z = 0 are satisfied only with 
a certain approximation. 

III Stress state approximation (SSA). In stress-strain relations of the linear elasticity, the stress 
component T33 will be neglected. Hence, stress-strain relations for T~ are: 

T~# = C~y6e~,6, T~3 = 2Ca3p3ep3, (5) 

where C~ar6 - Ca~ra - C a f 1 3 3 C y 6 3 3 / C 3 3 3 3  and C~,ya, C3333 , as well as C~3~3 are components of the 
elasticity tensor (the remaining components of this tensor are equal to zero). 

Instead of SSA, in the form T33 = 0, we could also introduce a less restrictive assumption 
postulated in Reissner plate theory, where T33 depends on the load p on the upper boundary 
plane of the plate. 

We have assumed above that every lamina is made of a macro-homogeneous material; 
hence we shall denote 

c2  6- e era(z) for z E z A ,  

for z e zA ,  

where ~ar6, C~3#3 are the known components of the elasticity tensor of A-th lamina. Here and 
in the sequel, ZA-1 = --6/2 for A = 1. The jump of shear stress Ta3 across any interface qh, which 
is produced by shear strains done by bonding imperfections, has to be equal to zero; hence 
from (3) 

C~3~3ZA(X) S~(X, V) = C~;A3ZA(X) ~(x, ~'), x ~ / 7 .  (6) 

A ~,  can be taken as independent kinematic unknowns of the the- Thus, functions w, ~ ,  q~, s~, 
ory. 

Now, for an arbitrary function F = F(x, z, r) we define: 

[IF]] (x, = F+(x, r) - F-(x, r), 

where F+(x, ZA, Z) =-- lim F(x, z, r), F-(x, zA, z) ---- lim F(x, z, r). We also introduce the following 
denotation: z ~  z>~ 

T~3(x, v) -- Iim T~3(x, z, z), x e H ,  
Z/~Z~ 

for the shear stress acting on the interface ~A. Hence 

T~3(x, v) = 2cA3~3{2-'aa(z) [w,~(x, 7:) + ~ ( x ,  v)] 

-- 'b'A_lq~-l(x, 1~) -[- q~(X) T) "[- S~(X, "]5') ~A(X) -[- ;~(X, q[) ZA(X)}. 

The interlamina conditions have now the form: 

[[Ta3~ A (x, z ' ) = 0  for x e H ,  (7) 

T~3(x, ~7) ZA(X) = 0 for x c H .  (8) 

Equations (1)-(8) constitute the general formulation of the laminated plate theory with inter- 
laminar bonding imperfections. It can be observed, that these relations lead to the system of 
governing equations for unknowns w, c~, q~, s~, ~ .  In the special case of homogeneous plates 
and neglecting interlaminar imperfections the obtained equations reduce to a certain version 
of Reissner plate theory, cf. [2], [3]. 

For sake of simplicity at the beginning of this section we have assumed that the material 
structure of the plate under consideration is symmetric with respect to the midplane z = 0. 
However, the proposed theory could be also applied to laminated plates in which components 
Calyx(z) of the elasticity tensor satisfy condition: 

6/2 612 
Zo f Ca~),6(z) dz = f Ca~rd(z ) z dz,  

-612 -612 

for a certain constant Zo. In this case, coordinate z e [-6/2, c3/2] in all relations of the present 
paper has to be replaced by coordinate ~ e [-c3/2 - Zo, c3/2 + Zo]. 
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3 
Averaged formulation of the theory 
Relations of laminated plate theory proposed in Sect. 2 have purely theoretical meaning, and 
can not be applied to engineering problems since the exact distribution of imperfections is not 
known a priori. In the sequel, we shall assume that this distribution is random, and the mean 
density on every interface is known. Denote by BA(X) a sphere with a center at a point (x, ZA) 
and a radius 5A. For an arbitrary function f = f ( x ,  z-), x c H, we define an average value: 

1 f (f)A(X) ~ area (BA(x) f )  C1)A) f ( y )  dy. 
BA(X)CIAA 

Using the procedure similar to that introduced in [1], we shall convert to the averaged form of 
equations presented in Sect. 2. To this end, we assume that there exists a constant r]A such that 
~?a ~ (XA>A (X) for every x E /7. Hence r]a is a mean density of imperfections on every interface 
(/)A. These imperfection densities r/A E [0, 1) are assumed to he known in every special problem 
under consideration. 

Following [1] we shall replace interlamina conditions (7), (8) by 

( U T J ] A ) a ( x , v ) = 0  for x e / 7 ,  (9) 

(TA~ZA)A (X, V)= 0 for x e H .  (lO) 

At the same time we introduce an averaged form of SSH, replacing eqs. (3) by 

e~(x, z, r) ~ cf(~,~)(x, ~) z, 
M 

~a3(X, Z, "~) ~ ~ ( Z )  [W,a(X , "~) "{- q~)a(X, V)]/2 + ~ [h~(z)  ~(x, r) +g~(z) ~(x) +~1(z) ~(x)], (11) 
A=I 

where ~(x, z') -= (zAsA)A (X, V), #~A(X, V) --= (ZAg~)A (X, V). It is easy to see, that the first of eqs. (3) 
does not change its form after averaging, since the averaging operation is applied exclusively 
to highly oscilating functions involving ZA. Averaging (6) yields 

cA3fl3~(X, T)----cA~-/~3T;(X, "f'). (12.) 
Similarly, formula for shear stress acting on the interface will be now assumed in the averaged 
form: 

T~3(x, v) = 2Ca~3z3{a(zA) [w3(x, v) + ~z(x, v)]/2 - va_,q~-'(x, v) + q~(x, v) + r~(x, r)}. (13) 

Eqs. (1), (2), (3), (4), (5), (9), (lO) and (12) represent the formulation of laminated plate theory 
with interlaminar imperfections, which can be applied to the analysis of engineering problems 
provided that mean imperfection densities t/A are known. Aforementioned relations lead to the 
system of equations for unknown functions w, q~, ~ ,  ~ ,  ~ .  The characteristic feature of the 
obtained relations is that unknowns ~ ,  describing strain discontinuities across interfaces, and 
r a, ~A, due to the interlamina imperfections, cf. [1], can be eliminated. This will be done in the 
subsequent section. 

4 
Governing relations 
For sake of simplicity we shall use denotations A __ A Carl = Co:3fl3 and aa =-- a(za) = 1 - 4Z2A/O 2. Interla- 
minar condition (9), after taking into account (5), (11) and (lZ) leads to the following system of 
linear equations for 

--'V A- I CAfl q~ -1-[- ('b' A CA~ I "Jt" carl) q~ -- CaA/~lq~ +1= a A [[ Cafl ]] A ( W,a "[- q~a)/2, 

where [[Cj] A --- C~ 1-  C~ = C~-Js - C~3~s. After calculating a system of parameters KA~ from 
equations 

~A r~'A-I,B~A-1 A+I A Ij-AB.~A [~A+I vA+I,B.~A+I ~. ~ a T )  -va-l t ,  afl~-~r Oc + (vAC~ + Ca~) (14) l"~fly~'C -- t~afl lxf17 t ic  

where b~, ~a7 are Kronecker symbols, we obtain 

M 
q~B = E KJ~[[Cra]] B aB(W,a + Cpa)/2. (15) 

B=I 
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It is easy to see that for homogeneous plates [[G3]] A --- 0, and eqn. (15) yields qA = 0. This means 
that functions qA describe jumps of elasticity tensors across interfaces of a laminated plate. 

From condition (lO), and using (5), (n), (12) we obtain 

cA~ 4 = Caa; I r'~ = v a_ , cA~ r] a q~3 - 1 -  Ca~ r] A q~ - 2 -1Caa~ O~ a ( W,3 + ~ ~ ) flA. (16) 

Keeping in mind definition of T~3 in Sect. 3. and combining eqn. (13) with (16) we obtain 

T~3 = 2(1 - rh) C~333[a(zA) (w,z + cp3)/2 - VA-~q~-' + q~]. 

Substituting the right hand side of eqn. (15) into above formula, and denoting 
M 

H~ =--cA333 ~ (KAg- VA-,KCg I'B) [Caz]] B , (17) 
B=l 

we arrive at the final form of the shear stresses acting on the interfaces: 

Taa3(x, r) = a(ZA) (1 --r]A) (cA3~3 -- H~3~3) [w?(x, 7:) + cflZ(x, r ) l .  (18) 

Due to the fact that every lamina is thin we shall apply an approximation 

T~3(x, z, r) ~ T~3(x, 7:) for z e (ZA-1, ZA). 

Using formulae (z), (5h, (11)1 and (18), after denoting 
6/2 

B~:r~- f GzMz) z ~ dz, 
-~/2 (19) 

Aa~ =-- a(ZA) A A (G~3~ - H;~Z3) G ,  

we obtain 

Ma3(x, 1:) = B,&~q~r,~(x, 7:), 
M (2o) 

Oa(x, r) = ~ (1 - rh) A~[w3(x, r) + q~(x, 7:)], x E H .  
A=I 

Moreover, using (4) and denoting 
c312 c~/2 

/~ = f O(z) dz,  I=- f O(Z) Z 2 dz,  (21) 
-dl2 -012 

we shall rewrite Eqs. (1) to the form 

O~,~(x, r) +p(x, z) +#b  =/~//,(x, 7:), (2z) 

M~/3,3(x, r) - Q~(x, r) = @a(X, V), X ~ H .  

Eqs. (zo), (zz), together with denotations (17), (19), (Zl), where Kr have to be calculated from 
(14), constitute the system of governing equations of the proposed theory of linear elastic lami- 
nated plates with initial interlaminar imperfections. The effect of interlaminar imperfections on 
the plate behaviour is described by the form of moduli A~. The obtained equations have to be 
considered together with three boundary conditions, and initial conditions for functions w and 
~ a .  

If all mean densities of imperfections r/A are equal, r/a = ~/, then denoting 
M 

A~Z =-- ~ ct(za) (C~3~3- H~3/33) dA, (23) 
A=l 

we shall rewrite constitutive equations (2o) to the form 

q~(x, 7:) = (1 - ~7) d~3[w,~(x, r) + ~3(x, z)], 

Ma3(X, 7:) = Ba3~6ct)(y,6)(x, T) ,  x e / - I .  (24)  
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Substituting right hand side of (24) into eqs. (22), we obtain the system of equations of the 
proposed laminated plate theory 

(1 - 11) Aaz( w .z + cf z,.) + p +fib =ply ,  

BafiTa~7,6~ - (1 - 11) A,~(w,fl + ~fi) = Idea, (25) 

which describe the effect of interlaminar imperfections on the laminated plate behaviour in the 
explicit form. 
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5 
Example of application 
Now, we shall apply the general results obtained in the previous sections given by eqs. (22), 
(24) and (25). We shall investigate the effect of intertaminar imperfections on the free vibra- 
tions of a laminated rectangular plate. The plate is simply supported on oposite edges x~ -- 0, 
x~ = L. In this case, the problem depends only on arguments x~ ~ [0, L], r E [-0% +oo]. By 
means of ~ = 0, eqs. (25) reduce to the form 

(1 - 11) A[W,H(X, V) + cfl,a(X, V)] =kt/b(x, v),  

Bcf,al(x, v) - (l  - 11) A[w,a(x, r) + of(x, v)] =@(x ,  v),  (26) 

where we have denoted A ~- All, ~ -- of 1, B ------ Bml, x --= xt, and where we have neglected loads 
p(x, v) and b. Solutions of eqs. (26) can be assumed in the form 

w(x, v) = C sin (nz~x/L) exp (io2.v), 

cp(x, v) = D cos (n~x/L) exp (/co,r),  (27) 

where n = 1, 2 . . . . .  and C, D are arbitrary constants. Substituting (27) into (26) we obtain a sys- 
tem of linear equations for C, D: 

[ - (1  - 11) A(nn/L)  2 + co~] C -  (1 - 17) A(nz~/L) D = O, 
(28) 

- ( 1 - 1 1 )  a(nz~/L) C-[B(nz~/L)2+(1-11)  A-co]I]  D = 0 .  

Nontrivial solutions exist only if the determinant of this system is equal to zero. This condition 
leads to the following equation for vibration frequencies co,: 

,ulo2 4 - {,uB(n~/L) 2 + (1 - 11) A[/~ + I(n~/L)2]} 602, + (1 - 11) AB(n~/L) 4 = 0. (29) 

Since ,uI/L 4 can be treated as a small parameter of  an order (5/2) 4, then the solutions of eqn. 
(29) can be obtained in the approximate form: 

/co 2 = (B/2) (rex~L) 2 + (1 - 11) (A/2/~) [# + I(nz~/L)2l • {(B/2) (n~/L) 2 + (1 - 11) A [/~ + I(n~/L) 2] 

- (1 -11) IAB(n~/L) 4 ~uB(nz~/L)2+ (1 -11) a[/~ +I(nz~/L)2]}-l}. (30) 

As it is known for thin plates, the effect of rotational inertia term I~b in eqs. (26) on frequency 
2 co is rather small; hence, setting I ~  0 and assuming that o2~ is bounded, we see that eqn. (30) 

holds only if one takes into account the branch with sign " - " .  In this case, we obtain the final 
formula: 

o) 2 = (1 - 11) AB(n~/L) 't {~uB(n~/L) 2 + (1 - 11) A [,u + I(n~/L)2]} -~ . (31) 

This result illustrates explicitly the effect of interlaminar imperfections (represented by a mean 
imperfection density ~/) on the free vibration frequency co, for the laminated plate under con- 
sideration. On passing to a delaminated plate, i.e. setting q ~ 1, we obtain from (30) that 
COn--~ 0. 

Taking into account sign "+" in Eq. (3o) we would arrive at the high frequency vibrations: 

co 2, = (B/I) (n~/L) 2 + (1 - 11) (A/I) [1 + (I/ke) (nz~/L) 2] 

- (1-11) IAB(n~/L) 4 {,uB(nz~/L)2+ (1-11)  AL u +I(nz~/L)2]} -1 . 

The last term in the above formula is relatively small, compared to the first and second one, 
and can be neglected. Passing to a total d e l a m i n a t i o n / / ~  1 we would obtain 6o2 ~ (B/I) (n~/L) 2. 
This result follows immediately from eqs. (28) under assumption that C = 0, D ~ 0. In this case 
(which has purely theoretical meaning) we would deal exclusively with rotational vibrations. 
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6 
Conclusions 
It has been shown, in the framework of the Reissner-type plate theory in which one deals with 
three basic unknown functions, how the laminated structure of a plate can be described. To 
this end, we have to calculate parameters KA~ from systems of linear algebraic equations (14). 
After that we have to determine coefficients HA3~3 from eqs. (17) and AA~, Ba~76 from eqs. (19). 
The additional unknowns qA, which describe jumps of material properties across lamina inter- 
faces, have been eliminated from governing equations. Let us observe, that this situation does 
not hold if we apply the broken line hypothesis [4]-[7]. Here, the number of basic unknowns 
can be, for example, equal to 3(M+ 2), where (M+ 1) is the number of lamina [8]. At the same 
time, we have taken into account possible bonding imperfections on the interfaces between ad- 
jacent laminae. It needs to be emphasized that the resulting relations (2o)-(22) have a relative- 
ly simply form, and can be applied to the analysis of engineering problems illustrated by the 
example given above. 
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