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The dynamic modelling of elastic wavy plates 
B~ Michalak, Cz. Wo~niak, M. Wo~niak 

Summary  The aim of the contribution is to formulate an engineering theory describing the dynamic 
behaviour of periodically waved shell-like elements, called wavy plates. On the basis of the proposed 
theory, the effect of coupling between free macro- and micro-vibrations of a wavy plate is investigated. 
It is a!so shown that the homogenized model of wavy plates (obtained by scaling down the 
wavelength parameters) cannot be applied in the analysis of dynamic problems. 
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1 
introduction 
The subject of the paper is a thin periodic shell-like structure made of a linear-elastic homogeneous 
material, which is referred to as a wavy plate. An example of this structure is shown in Fig. 1. It is 
assumed that the wavelengths lp 12 are small enough compared to the minimum characteristic length 

dimension L of the projection of the structure on the plane Oxix 2. Hence, the parameter h=  x/(l~) 2 + (/2) 2 
in the description of the wavy plate midsurface geometry can be treated as a certain microstructure 
length parameter. At the same time the thickness c~ of the shell under consideration is supposed 
to be constant and small compared both to the microstructure length parameter I and to the midsurface 
minimum curvature radius R, (~ << l, c~ << R. If follows that on a microscale (taking into account terms 
of an order I) the wavy plate behaves as a thin shell, while on a macroscale (neglecting terms of an 
order I), we deal with certain special plate behaviour. 

From a formal point of view, the structure under consideration can be described in the framework 
of the well-known theories for thin elastic shells. However, due to the micro-periodic shape of the 
wavy plate midsurface, this direct description of the wavy plates leads to shell equations with 
periodic highly oscillating coefficients. These are too complicated to be used in the analysis of 
engineering problems and numerical calculations. That is why the aim of this research is to formulate 
a simplified mathematical model of the wavy plates, which can be applied as a tool for investigation 
of specia! problems. 

The main feature of the proposed mathematical model of wavy plates is that it describes the effect 
of the microstructure length dimensions 11, l 2 on the macrobehaviour of the structure. It will be shown 
that this effect plays a crucial role in the analysis of dynamic problems. Hence, the proposed model 
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X31 ~" L2 ~ 11<<L1 12<<L2 
Fig. 1, A scheme of the wavy plate 

will be referred to as the microstructural theory of wavy plates. The asymptotic approximation of 
the obtained equations, where the microstructure is scaled down, I ~, 0, will be considered as 
a homogenized theory of wavy plates. 

The general line of the approach is similar to that used in [1, 2] for the formulation of what is 
called the refined macrodynamics of periodic composite materials. To make this paper self-consistent, 
the concepts used in the formulation of the refined macrodynamics will be recalled. 

The starting point of this contribution is the direct description of wavy plates in the framework 
of the theory of thin elastic shells in Sec. 2. In Sec. 3 we formulate the macromodelling hypotheses and 
the modelling procedure leading to the microstructural theory of wavy plates. The governing equations 
of this theory are summarized in Sec. 4. In Sec. 5 we derive the homogenized theory of the wavy 
plates. The examples of applications for both models and the comparison of results are given in Sec. 6. 
The conclusions in Sec. 7 close the paper. The considerations are carried out in the framework of 
the linear theory; a more general approach is reserved for a separate study. 

Throughout the paper, indices i , j ,  k . . .  run over 1, 2, 3, being related to the orthogonal carthesian 
coordinates x~, x 2, x 3 with vector basis e~ shown in Fig. 1. Indices cz, fi, 7 . . . .  run over 1, 2 and 
are related to the midsurface shell parameters 01, 0L We also introduce non-tensorial indices 
a, b, c . . . .  which run over the sequence 1 . . . . .  n. The summation convention holds for all aforementioned 
sub- and superscripts. The time coordinate is denoted by t, and the overdot stands for a time 
differentiation. 

2 
Direct description of wavy plates 
Let the midsurface of the undeformed wavy plate under consideration be given by x i = Ri(O ~, 02), 
(01, 02) E/7, where /7  is a regular plane region. The explicit form of the above equations be described 
by x I = 01, x 2 = 02, x 3 = z(O 1, 02) , where z(-) is a piecewise smooth function satisfying conditions 
z(O 1, 02) = z(O 1 + 11, 02) = z ( O  1, 0 z + 12) in the whole domain of its definition. In the sequel x = (x~,x 2) = 
(01, 0 z) stands for an arbitrary point belonging to/~r. Under denotation A - (0, ti) x (0, I2), function 
z(-) will be referred to as the A-periodic function, A being the representative plate element of 

a wavy plate. Setting I:= x/(ll) 2 + (12) 2, it is assumed that I/L << 1, L being the smallest characteristic 
length dimension of/7. Hence, I will be called the microstructure length parameter of the microperiodic 
wavy plate under consideration. Using the known denotations: G~ -= RI~, g~ - G~e~, n -= gl x g2/[g~ x g2] 

_ i and a Ricci we obtain the metric tensors of the undeformed midsurface a~ = G~G~, b f ~ - n~Gi ~ 
tensor G~ as A-periodic functions and define a = det G,- Here and in the sequel, a vertical line before 
the subscripts stands for the covariant derivative in the metric G~, and {~} denote the pertinent 
Christoffel symbol related to the midsurface of a wavy plate. Introducing the displacement field of 
the wavy plate midsurface: u = u ~(x, t) e~, denoting by p = p~(x, t) e~ the external forces, and by p the mass 
density related to this midsurface, in the framework of the linear approximated theory for thin elastic 
shells [3], we obtain the following system of equations: 

(i) strain-displacement equations 

gaff = G(~ i,fl), Ko:fl = n i  Ui, afi - -  Ui,7 ' (1) 

(ii) stress-strain equations 

n ~  = D H ~ % ~ ,  m ~ = BH~f~K~ ,  (2) 



where 

H ~fi~a = a<'a fia - v g~,g/~a D =- E - -  B =- E 
1 -- v 2' 12(1 -- v2) ' 

E, v being the Young modulus and Poisson's ratio, respectively, 
(iii) equations of motion in the weak form 

ct 
e ~ 1 2 1 2 

11 H 
(3) 

where 

&~5 = G~ d ue,/~/, 

U9 

which have to hotd for any virtual displacement field cSu~, such that 6u~(x) = 0 for every 
X = (X 1, X 2) @ 0 H .  

In order to simplify the considerations, boundary conditions are not specified here, and the 
approximated version of the shell theory is used. 

It can be seen that the coefficients in Eqs. (1)- (3) are A-periodic functions. Due to the highly 
oscillating character of these functions, the direct description ofwa W plates does not constitute a proper 
mathematica! tool for investigations of engineering problems, and it will be used only as the starting 
point of the modelling procedure. 

3 
Modelling procedure 
Following [1, 2] we introduce two auxiliary concepts. To this end, let 2F be a small parameter 
characterizing the accuracy of calculations of a certain function F in the proposed macrodescription 
of the microperiodic shell-like structures under consideration. A function F(x, t), x = (x ~, x 2) ~Hwill  
be called l -macrofunct ion (related to ).s) if for every x, ye l l ,  such that II x - y  [r < I, condition 
IF(x, t) - F(y, t) r < 2F holds. If a function F is continuous in F/together with its derivatives, and if 
similar conditions with pertinent calculation accuracy parameters hold also for all derivatives of 
F (including time derivatives), then F will be called the regular l-macrofunction. 

Let f(x, y) be an integrable function, such that f ( . ,  y) is a regular l-macrofunction defined on 
H and f (x , . )  is a A-periodic function. In the sequel, we shall use the denotation 

1 
( f ) ( x )  = ~l~!  f ( x ,  y)dyld.Y2, 

I f f  is independent o fx  then ( f )  is constant. 
Let ha(.), a = 1, . . . ,  n, be a system of n linear independent continuous A-periodic functions defined 

on g2, having continuous first and second derivatives and such that (h a) = 0. Moreover, let for every 
xeHfunct ions  h~ satisfy conditions h~(x) eO(12), h~(x) eO(1), h~e(x) eO(1)  (i.e. the vaiues of hl"p are 
independent of the microstructure length parameter I). Let us also assume that the displacement 
field u~, restricted to an arbitrary but fixed element (x 1, x ~ + ll) x (x 2, x 2 +/2) of H, can be approximated 
by a linear combination of functions h~(.), a = 1 . . . . .  n, superimposed on a certain uniform 
deformation. Under the aforementioned conditions, functions h ~ will be referred to as the microshape 
functions.  For more detailed discussion of this concept the reader is referred to [1]. 

Macro-Kinematic  Hypothesis (MKH). The displacement field ui(x, t), x e H o f  the wa W plate can 
be assumed in the form 

Ui(X; t )  = g i ( x , t ) - 4 - h a ( x ) r a ( x , t ) ,  X = ( x l ,  x 2 ) e H ~  [ ~ 0 ,  (4 )  

where Ui (., t), V~ a (,, t) are regular l-macrofunctions and ha(.) are the microshape functions, postulated 
in every problem under consideration. Similarly, the virtual displacements c~u~ in Eq. (3) will be given by 

bui(x) = aV~(x) + h~(x )aV; (x ) ,  x = ( x ' , x 2 ) e H ,  (5) 

-where c~U~, cSV~ are arbitrary linearly independent regular/-macrofunctions, such that c~ui(x) = 0 for 
every x~ 8/7. 
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Fields Ui(.), V/~(.) are the new kinematic basic unknowns being called macrodisplacements and 
correctors, respectively. 

Macro-Modelling Assumption (MMA). In the course of a modelling procedure, terms O(2~) can 
be neglected as compared to values of F, where F runs over all macrofunctions U~, V~, ~ U~, 3 V a and their 
derivatives. 

In order to explain the meaning of MMH, let us observe that for any integrable A-periodic function 
f and continuous/-macrofunction F defined on H, the following formula holds: 

~ f(x)F(x)dxflx 2 = ( f >  J" F(x)dxflx 2 + 0 ( ~ ) .  
17 17 

Moreover, if h is a microshape function then 

(hF),. = h F + O(X~), (hF)l~ ~ = hl./~F + O(2~) + O().w) , 

where VF stands for a gradient of F. Using MMH, terms O(),v), O(2w) in the above approximation 
formulae can be neglected. 

Since h~ h~ where )w, 2vv stand for calculation accuracies related to V~, 
V~.~, respectively, Eqs. (1), (2) yield, by means of MKH and MMA, the relations 

n~ = DH~&~G~ Ui, ~ + DH~G~h~V~, 

/2 U m~ =BH~niUi,~-- BH~/3~ni {?b} ~.,+ BH~n~h~.:ff~. 

The aforementioned macromodelling hypotheses lead from Eqs. (3)- (6) to a certain averaged 
model of a wavy plate. 

Let us define the following 3 x 3-matrices: 

D ~ - D ( H ~ g ~  | gr x ~ ) ,  

D ~b -= D (H~a'*g~ | g , h ~ h b , ~ ) ,  

B~&-=B(H~/S"*{'# l n @ n ~  ) '  

\ (fl j v ' 

B ~" =-- B (H~'h~flh~,,n | n~aa), 

2 

B --- B h?, n | 

(I,} s) B a ~ - B  H&.~ a h l .~n |  n , 
? 

and introduce the system of vector macrofunctions given by 

N ~ = D~flU,~ + D~V ~, 

N = D~Uf i+DW ~, 

N ~ = D~bv b + Dau,~, 

M~fi = B~&~U ~ + B~&U~ + B~flV ~, 

M ~ = B~:~U,y~ + B~YUy + BaaV a, 

M ~ = Babvb + B~aU.~ + Ba~U,~, 

(6) 

(7) 

(8) 



which wili he cailed the macrostress resultants. Moreover, define ~ -- px/a  and assume that p~ are 
I-macrofunctions. Substituting the right-hand sides of Eqs. (4), (5), (6) into Eq. (3), and applying 
MMA to the aforementioned approximation formulae, we obtain the condition 

~ [M~.6U,# + k 7- J 'eu~+N.cSU+(Na+Ma)~  2 
/7 

d 
+-~-~ (<t5)U.bU + (fih~hb>~rb'oV")dx~dx 2 = J~ p 'bUdxldx a, 

at17 H 

(9) 

which has to hold for every c~U, cW", such that virtual macrodisplacements 6U~ together with their 
derivatives are equal to zero on OF/. After applying the divergence theorem and du Bois-Reymond 
lemma, we arrive at the system of equations in macrodisplacements Ui and correctors V~. These 
equations represent the proposed simplified mathematical model of the wavy plates and will be 
discussed in the subsequent section. 
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4 
Nkro structuraJ theory (MST) 
Governing equations of the averaged theory of wavy plates derived from (9) have the form 

(1o) 

N ~ + M a + (~h~hb)V b = O. 

Define H ~ := {x = (x~, x2)eH:x + A c H}. It can be shown that for every x e l l  ~ and every instant t, 
the introduced macrostress resultants have the following physical interpretation: 

N (x, t) = n c~fl g~ (x, t), 

N~(x,t) = <n g~h,~x/a) (x, t), M~lS(x , t )=(m~Pnx /a) (x , t ) ,  (11) 

M~(x_, t) = n (x, t), Ma(x,t) = <m i~#nx/a) (x, t), x@H~ 
7 

Equation (10) L describes, in the averaged form, the macrodynamic behaviour of wavyplates, due to 
the well known form - @)  D i of inertial forces. On the other hand, in Eq. (10) 2 we deal with a new kind 
of inertia terms given by <fihah b) VI', characterizing what can be called microinertial properties of 
the structure under consideration. The mechanical interpretation of Eq. (10) is strictly related to the 
postulated form of Eq. (4), where h~V~ represent certain disturbances of displacements caused by 
the periodic changes in the shell geometry. 

Equations (i 0) and (8) will be called equations of motion and constitutive equations of the averaged 
theory of wavypiates, respectively. Since ha~O(I2), then the microinertial modulae @h~h u) satis~ 
condition (fih~h b) e O (/4), and hence the aforementioned equations describe the microstructure 
length-scale effect on the behaviour of the structure under consideration. That is why the proposed 
theory will be referred to as the microstructural theory of wavy plates (MST). Substituting the right-hand 
sides of Eq. (8) into Eq. (10), we obtain 3 + 3n equations for 3 macrodisplacements ~ and 3n correctors 
V a. It has to be emphasized that the resulting differential equations have constant coefficients, 
defined by Eq. (8), and hence represent a good computational model of the wa W plates, which can 
be easily applied to the analysis of particular engineering problems. In particular, components N~, N3, 
N; and M~ ~, M~, M a describe the coupling between the plate and plane problems. The characteristic 
feature of the microstructural theory ofwa W plates is that the correctors Via are governed by 
the ordinary differential equations involving second-order time derivatives. Hence, the correctors 
play the role of internal dynamic variables, being independent of the boundary conditions. Equations 
(10), (8) have to be considered together with the boundary and initial conditions for 
macrodisplacements and with the initial conditions for correctors. The exact form of the boundary 
conditions will be discussed separately. It can be seen that for trivial initial conditions for correctors, and 
under assumption that z(O ~, 02) = 0, the correctors are equal to zero. From Eqs. (7)-(10), after simple 
manipulations, vce obtain the well-known equations of the Kirchhoff theory for homogeneous plates. 



If the obtained microstructural theory of wavy plates is based on the approximate theory of shallow 
shells, then {~.~} ~ O, b B ~ z,~, and terms N and M ~ drop out from the above equations. In this case, 
we deal with what will be called the microstructural theory of slightly wrinkled plates, which is 
to be investigated separately. 
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5 
Homogenized theory (tiT) 
The homogenization methods for periodic composite materials, leading to the effective modulus 
theories, cf. [4, 5], are based on the asymptotic approximation in which the microstructure of the 
body is scaled down. Applying the asymptotic approximation l ~, 0 to the equations of MST, we shall 
neglect microinertial terms (~h~h b) in Eq. (10) 2, as well as terms D% D ~, Dab in Eq. (8). In the framework 
of HT, we have to replace Eq. (10), by M" = 0. In this case, using the constitutive equations for M", 
and bearing in mind that the linear transformation R 3~ ~ ~3n given by the 3n • 3n matrix of 
elements B ~b is invertible (this statement can be proved by rather lengthy calculations, which are not 
exposed here), we can eliminate correctors V a from the governing equations by means of the formula 

V . = _ K .u [BbC~b'U,c,3 + BbC~u,~], (12) 

where K "b determine the linear transformation, inverse to that given by W b 

KabBbc = ~ac ,  

where6~de te rmine the  identity transformation ~3~R3~.  Denoting 

B.&a=B~&~__Ba.~KabBb# ' (13) 

B ~  ~ B~fl~ _ Ba~KabBb&, B~fi = B~ _ Ba~KabBbfl, 

we obtain the constitutive equations of HT in the form 

N ~ = D~flU, fi, 

N = D~U,~, 

M ~ = B~&~U.~ + BT~/~U,7 , 

M ~ -- B~&U& + B~U/~. 

(14) 

The equations of motion reduce to Eq. (10) 1 

M,~f~ - (M ~ + N*),~ + N + ( ~ ) 0  = p. (15) 

Equations (14), (15) represent the system of govering equations for the homogenized theory of wavy 
plates. The material properties of  wavy plates in the framework of HT are determined by the constant 
coefficients (13) which can be referred to as the effective modulae. That is why the homogenized 
theory of wavy plates can be also called the effective modulus theory. The basic unknowns are three 
macrodisplacements U,, satisfying the system of three partial differential equations obtained by 
substituting (14) into (15). Equations (14), (15) have to be considered together with the pertinent 
boundary and initial conditions for macrodisplacements. 

Comparing both the microstructural and homogenized models of wavy plates with the known 
theories of Reissner or Kirchhoff plates, it can be seen that the wavy plates under consideration cannot 
be described using the plate theories. This statement is implied by the fact that for wavy plates the 
decoupling between in-plane and out-plane problems is not possible. 

6 
Example 
In order to compare MST and HT, we shall investigate the simple problem of the cylindrical bending 
of a wavy plate, in which the basic unknowns depend exclusively on variables x 2 = 02 and t, being 
independent of the 01-coordinate. In the framework of MST, we obtain the system of equations for 
U i = Ui(x 2, t) and V~ = V~(x2, t) by substituting the right-hand sides of Eq. (8) into Eq. (10). After some 
manipulations, bearing in mind formulae (7), and neglecting external loadings, this system will take 



the form 

MS22 v~2 N12 + IVl + (~5 0 '  = 0, 
,22 - -  *'1,2 - -  ,2 

M222 _ v 2 2  N22 + IV 2 + <~> 0 2 : 0 ,  
,22 *'%2 - -  ,2 

M,32 22 --M32,2 -- N-32,2 + N3 -]- <P> 03 ----0, 

N a/t q- M an 4- <~hahb> gbl = 0, 

Nal2 q_ Mal2 q_ <fih~hb> {/;b2 = 0, 

Nas + Ma/3 + <fih~h b> {~b3 = O, 

where the right-hand sides of  formulae (8) with notations (7) have to be substituted into (t6). Let 
us restrict considerations to the analysis of free vibrations for the unbounded wa W plate. In this 
case, we shall look for solutions of  Eq. (16) in the form 

U I = 0 ~  

V~ = 0, 

g 2 = e  2 sin (kx2) cos (092t), [73 = A3 sin (kx2) cos (c%t), 

V 2 = C 2 cos (kx 2) cos (%t) ,  V 3 = C 2 cos (kx2) cos (co2t), 

where k:= 27r/L is the wave number, L being the vibration wavelength, L >> I and A2, A3, C~, C 3 are 
constants. 

Substituting the right-hand sides of Eq. (17) into Eq. (16) combined with Eq. (8), we obtain 
non-trivial solutions only if 

] ((1)2) 2 <st~> - -  C22 

! I I 0 
0 

C62 

where we have denoted 

4 2 
C22 : C22 -]- C22 , 

C242 ~ B (H2222(n2)2x/a> k4 , 

0 0 C26 

(63)3) 2 <#> -- C33 C35 0 

C53 ((o3) 2 <fihh > - C53 0 

0 0 ((/)2) 2 <~hh> -- C66 

2 2"~2 2222 C~2z ~ [B </-[2222({zz}n J N ~ >  + D < H  x / a ) ] k  2, 

C66 ~ B < H  2222 ( , 3 h , 2 2 ) 2 ~ >  ~- D < H  2222 (G23h,2)2N/a), 

C26 ~--- C62 ~--- [ - a < H 2 2 2 2 G 3 h , 2 % ~ >  - ]~ < H  2222 {~2} n2n~h,22x/a)] k, 

C33 = G~ + G2~, 

C343 ~ B <]~/2222 ( n 3 ) 2  % ~ >  k 4, 

C323 -- [B <H2222 ({22~} n3)2~/a> + D(H2222(G[)2x/a>] k 2, 

Css =-B(H2222(n2h,22)2x/a) + D(H2222(h2)2~/a ),  

DZH2222G3h ~aa> B g H  2222~z In3n2h22~/a)]k. C35 = C53 ~ [ - -  x 2 ,2"g ~" - -  k 1.22) , 

(~6) 

(17) 

(18) 

(19) 
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Equation (18) implies the decoupling between % and co 3. Under additional notations 

(/./2)2 _ D<H2222h2h,2~> 4- B <I-I2222NZN2h,22h,22~> 
<#hh) 

(~3) 2 = D<H22=G~G~hah2x/-a> + B <H==N3N3h22h=x/a> 
<#hh) 

(20) 

we obtain from (18) the resulting relation for the free vibration frequencies in the form 

184 ( % ) 2  _ C22 - (CR~)~/G~ 
<#) < ; > J \ # d  ' 

= <~) + (co,)~- <~)]\v U (21) 

Assuming that O ( l )  = O (3), let us introduce a small parameter ~ setting O (~) = O ( l ) .  After that, solutions 
002, % to Eq. (21) are 

- -  C66 [C2612[C66 ft 
(co2) 2 c(2]} +o ( r  <fihh)C(C2e~2_ ~ 

<~> L\c6d 

4 2 C 2 

(G)~ = 7~> + ~ >  L <#> \%)  J 

(22) 

c~ [cd~/G~ f l  (G') 2 - 
<~> L\qd - ~  ~ 

Let the shell midsurface be given by z = / s i n  (2n0211). In this case, formulae (19), for a wa W type 
plate with a constant thickness 6 and a constant mass density/5, after notation 2:-- 611, q:= kl, yield 

E 
C24z- `5(1 --,,2~ 0.001716 24q 4, 

C222 - _ _  

E 

`5(1 - v 2) 
(0.47365[ 2 + 0.080575)22q 2, 

E`5 
C26 = 1 - - v  2 ( --0.076803 + 1.2727 22)q, 

( 0..% 
C 6 6  ~ -  7.7067 + i ~  j ,  

E 
C34 -- `5(1 -- v 2) 0.004998 24q 4, 

(23) 

E 
C3~ -- (0.799122 + 0.076803)22q 2, 

,5 (1 lfl) 

E`5 
C35 = 1 - -  V 2 

-- - -  ( -- 0.076803 4- 1.272722) q, 

E`53 ( 0"0768031 
C55- - - -  2 .4847+ 

1 - - V  3 ~ ) "  



{m,2)21 /~,=0.1 
a'10-5 / 

~5 -I l 

'~ 

0 ~ J ~ ,,- 
0.1 0.2 0.3 0.4 0.5 q 

{o0 ~}2 l 
�9 lo-s / 

10 
,~.=0.1 

i ~,=0.05 
x:o  

0 0.1 0.2 0.3 0./, 0.5 q 

Fig. 2. Free lower vibration frequencies o0'2' o0'3 versus the non-dimensional wave number q = kl; ratio ,i = 6/I is 
used as a parameter 
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~dO-3' 

~0. 

=0.I 

(m'~)z I 

adO-4 I 

I 
._--- ~.=OA 

~=0.04 
~, -- 0.02 

0 0.1 0.2 0.3 0.4 0.5 q 

I k:O.Ot, 
0 ~ ~ r r  �9 , __~,=0.0._2 

0 0.1 0.2 0,3 0,4 0.5 q 

Fig. 3. Free higher vibration frequencies o02, o0'3' versus the non-dimensional wave number q = kI; ratio 2 = a/l 
is used as a parameter 

In Figs. 2, 3 the diagrams of  the free vibration frequency co versus the non-dimensional  wave number 
q are shown, where the ratio ,t = 6/I is used as a parameter. 

Equation (18) holds in the framework of the proposed microstructuraI theory of the wa W type 
piates. For the homogenized asymptotic approximation (obtained by scaling down wa W 
microstructure) we obtain 

(o3~) ~ - 

(g~13) 2 - -  

C22 - -  _ _  
C66 

(C3s) 2 
C 3 3 - - - -  

C55 

(G) = (co2Y + o \L  } '  

(G)2 = (%)~ + o(~)[ 

(24) 

Comparing the obtained results, given by Eqs. (22) and (24), it can be seen that !ower vibration 
frequencies obtained from HT can be treated as certain approximations of the pertinent frequencies 
resulted from MST. However, the homogenized theory is not able to describe higher vibration 



frequencies, since the effect of the microstructure length dimensions on the dynamic behaviour of 
the wavy plate in the framework of HT is neglected. 
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7 
Conclusions 
From the above example it follows that the proposed microstructural theory of wavy plates can be 
successfully applied to the analysis of special dynamic problems. In order to compare results related to 
MST and HT, we have restricted ourselves to a simple illustrative example. Nevertheless, the example 
leads to the conclusion that the homogenized theory (effective modulus theory) of wavy plates 
cannot be used in the analysis of dynamic problems, and the effect of the microstructure length 
dimension on the time dependent processes plays an important role. On the other hand, for 
quasi-stationary processes, the homogenized theory of wavy plates can constitute a convenient tool 
for engineering investigations. Generally speaking, problems of wavy plates, very difficult when analysed 
within the framework of the shell theory, can be described by the relatively simple differential equations 
with constant coefficients both within the framework of the microstructural and homogenized theories. 
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