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Thermodynamics of isotropic 
pseudoelasticity in shape memory alloys 

B. RANIECKI * and CH. LEXCELLENT ** 

ABSTRACT. - The thermodynamic theory of the pseudoelastic behaviour of SMA is generalized to include new 
observed effects in isotropic solids. It has been shown that macroscopic eigenstrain due to martensitic phase 
transitions (p.t.) is a homogeneous function of the stress of order zero, provided that partial thermodynamic 
equilibrium occurs. The specific form of the Gibbs potential is presented and new conditions for the initiation of 
p.t. are derived. They are expressed in terms of the temperature, second and third invariants of the stress deviator. 
The thermostatic properties and phenomenological constants are found for a NiTi alloy using experimental data 
reported in the literature. The theoretical and experimental results are compared for simple tension compression 
and pure shear. 0 Elsevier, Paris 

Notation 

t7.A = Ai;; A . B = A;jB;ji AB -+ A;j,,,))B,,(,,) 1 + hij (Kronecker’s symbol) 

1. Introduction 

In order to account for the essence of behaviour of shape memory alloys (SMA) 
including stress-strain-temperature coupling a thermodynamically consistent formulation 
is necessary. The details of energetic description of pseudoelastic behaviour of SMA 
may be found in recent papers (Mtiller, 1989), (Mtiller and Xu, 1991), (Raniecki et 
&., 1992), (Huo and Mtiller, 1993), (Sun and Hwang, 1993), (Raniecki and Lexcel- 
lent, 1994), (Jesse Lim and McDowell, 1995), (Leclercq and Lexcellent, 1996) and 
(Boyd and Lagoudas, 1996) which use the framework of thermodynamics of irreversible 
processes to incorporate experimentally observed main features of the SMA behaviour. 
The present authors (R and L, 1994) and (R et al., 1992) have developed the class of 
so called RL - models that are able, e.g., to incorporate most of the basic features of 
formation of pseudoelastic hysteresis loops observed by (H and M, 1993) in uniaxial 
situation. The models are valid for complex stress state and they employ versatile phase 
transition kinetics relations including not only ideal but also nonlinear pseudoelastic 
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flow. They predict the existence of two limiting surfaces in stress space for pseudoelastic 
flows associated with forward and reverse stress-induced phase transitions (pt.). The 
recently reported experimental results (c-if: Sittner and Tokuda, 1994 and Rogueda ef 
al., 1996) obtained under two-parameter (torsion-tension) proportional loadings seem 
to confirm those predictions. However, the experimental observations indicate the 
important deviations of the shape of actual limiting surfaces from the spheres discussed 
in (R et al., 1992) and (R and L, 1994). The experiments (Roumagnac, 1993, R et 
al., 1996, Vacher and Lexcellent, 1991 and Orgeas and Favier, 1996) also show the 
substantial discrepancy between the pseudoelastic limits in tension and compression. 
More particularly, (0 and F, 1996) notified the following experimental observations: 
a) The critical stress for forward p.t. in tension (limit of pseudoelastic flow) c$” is 
smaller than the absolute value of corresponding critical stress $lr < 0 in compression, 
i.e., CT?- -l\I < +u, 

b) The pseudoelastic amplitude y, in tension is greater than the one found in compression, 
say y(. However, the energies in tension and compression represented by product of 
critical stress (for forward pt.) and pseudoelastic amplitude are the same, i.e., 

where T is the temperature. 
c) Both a$?’ and $“I are linear functions of the temperature. However, the temperature- 
sensitivity of pseudoelastic limit is greater in compression than in tension, i.e., 

d) The hysteresis width obtained in compression is greater than the one measured in 
tension. 
e) The observed behaviour in pure shear is symmetric. 

Although most of recently proposed thermodynamical models have used some of 
fundamental issues of the micromechanics they are not expected to reproduce the 
strong tensile-compressive asymmetry and other aforementioned effects without special 
modifications. The RL-models seem to be the only 3-D phenomenological models 
employing the concept of thermodynamical instability which originates the martensitic 
phase transformations. They are the simplest workable models which were successfully 
applied e.g., in the designing of bronchial prosthesis (Leclercq et al., 1996), in the analysis 
of the efficiency of a solid state engine (iiolkowski, 1993) and in the analysis of coupled 
effects occurring during pseudoelastic deformations (iiblkowski and Raniecki, 1996). 
However, they are applicable only in the temperature range where pseudoelasticity of 
SMA is observed (T > AOf). 

The main objective of the present paper is to develop generalized thermostatics 
consistent with (R and L, 1992) which account for all experimental trends (a)-(e) 
observed by (0 and F, 1996). 
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2. Basic concepts of thermostatic of pseudoelasticity 

2.1. FORMS OF THERMODYNAMIC POTENTIALS 

Consider a piece of SMA (representative macroscopic volume element - RVE) which 
at a reference state (stress u = 0, temperature T = To) is the single phase solid. This 
phase will conventionally be referred to as “austenite” (A), and it will be regarded 
as a high-temperature phase. Its properties will be denoted by index a = 1. Under 
applied thermomechanical loading, austenite can be transformed (“forward” p.t.) into 
low-temperature phase called “martensite” (M). The properties of martensite will be 
denoted by index (Y = 2. Under appropriate loading paths, martensite can be transformed 
back into the initial phase A, and such process is termed “reverse” p. t. M -+ A. Suppose 
that a non-equilibrium state of two-phase RVE is described by: 

EC1 - total intrinsic strains of phases (a = 1,2), 
T - actual temperature, 
z - volume fraction of martensite 
h, - a set of internal variables (K = 1,2 . . .). 

We do not specify the number and the physical character of h,. The basic conclusions 
derived in this paper will not depend on this information. In general h, are variables of 
displacement type. They are supposed to represent actual rearrangements of the internal 
pattern observed in the RVE on microscale, e.g., the change in mutual orientations of 
martensite active systems. 

Consider the following form of the specific free energy a,, for a two-phase mixture 
[R et al., 19921, 

(1) a,, = %,(T, %J,h) = (1 - z)&) + q@ + 4jtz(l - z); qbit = ii0 - 7’s” 

where &t (~0, SO are constants) represents type of configurational energy associated 
with the coherency of phases (R and L, 1994; H and M, 1993). Both phases are regarded 
as thermoelastic solids that have equal temperature independent thermoelastic constants 
L - elastic moduli, a - thermal expansion coefficients and cl, - specific heat at constant 
stress) such that (a = 1,2), 

(2) p =Ti; - T g g + c,[T - To - Tln(T/To)] + (E,, - of,) L(E,, - .4)/2p 

* 0 where mass density of austenite p, internal energies u o * 0 and entropies s o of individual 
phases (a = 1,2), at reference state, are treated as constants. 

Moreover, .$) = crAT, AT = T - To, 

$I = I + crAT 

where K is the traceless (try = 0) eigenstrain associated with the formation of the 
martensite phase. Thus, it is stipulated that merely eigenstrain 1~. depends on internal 
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* (2) variables hI<. In general, u, a and $i+ are also influenced by microstructural changes. 
Here, however, effects of such variations are neglected. 

Denote by E the total overall strain of the two-phase RVE. Under prescribed e, the 
intrinsic strains e,, must satisfy the following constraint relation 

(4) E = (1 - “)E(l) + ZE(2) 

One assumes that during the actual process of straining, the macroelement is in mechanical 
equilibrium, i.e., that the free energy function (1) reaches the constrained minimum with 
respect to the variables co at fixed E, T: z and 1~1~. Using (1) and (4), it can be shown 
(R et al., 1992) that in mechanical equilibrium, the intrinsic phase stresses defined by 
o. = pk+Y’/&, are equal to the overall macroscopic stress 6. From this condition, one 
can determine the equilibrium values of E,,: 

(5) q;‘, = E - m(h): E;.;) = E + (1 - z)&(h) 

Inserting (5) into (1) one finds the following function of the free energy 

(6) +Lcl(T,~,z,h) = @I, ltlrzi;+ = Gf’ - TRr - “To(T) 

+r [AT-Tln(T/T)]+ :p 0 2 (I-‘)$. z /t 
+ [E - m(h) - CXAT] . L[E - z~(h) - crAT]/2p 

where 

(7) r;(T) = Au* - TAs*; Au* = ;*I:” - k;;‘: * (2) As* = ;I” - so . 

This function is the potential for overall stress u. 

(8) u = pX$,/& = L[E - m(h) - CYAT] 

We shall now introduce the concept of “optimum internal arrangement”. The internal 
arrangement is said to be optimum if the internal variables hI< are the minimizers of the 
free energy function (6), i.e., if the material system is in unconstrained equilibrium with 
respect to hlc. The necessary condition for this is 

* hI< = h’;:!(U). 

The formal solution (9)~ of the set of algebraic Eqs. (9)r must be the function of 
overall stress. Hence, the equilibrium value of macroscopic eigenstrain must also be a 
function of c7’, 

(10) bc(h)Ih=h’” = /P(u). 

Multiplying both sides of (9)r by i3h’;:!/i3 u one finds the necessary condition which must 
be satisfied by the function S(o) 

(11) 
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The condition (11) was also derived in (R et al., 1992) where the function ~;j was 
postulated to be quadratic and isotropic what precluded to reproduce the tensile- 
compressive asymmetry. To capture this phenomena, we shall here assume that ~.“q(cr) 
admits a potential g*(a) 2 0. Then, one can rewrite the condition (11) in the equivalent 
form, 

(12) 

It is seen that (11) and (12) imply the functions K”~( a) and g* (a) to be homogeneous 
of order zero and one, respectively. Thus, e.g., 

(13) kc “1 . 0 = pg* and g;jgl*J,,ll, = 0 

where gi*j ))t n = pa2g* pai.; darn 12 . Moreover, since det g* = 0 (the conclusion following 
from (13)) there exist one or more surfaces in K-space along which the end of the actual 
“vector” of eigenstrains moves during ongoing p.t. By eliminating 0 between (10) and 
(8) one can express equilibrium value of eigenstrains in terms of E; T, and Z, 

(14 ri p’1 = /p(yTE)> Y” = {T, E; zz}. 

Even though derivation of the explicit formula of the type (14) in many particular cases 
may be cumbersome one can define the free energy function @ of constrained phase 
equilibrium 

@(YT’) = @&lK.=neq(yTI) 

and associated Gibbs potential g 

(15) dYT”) = {@ - 0. +)~~E~,.,n~> YTo = {T,~,~), 

which takes the form (M = L-l), 

(16) g(YT”) = gA’(T, a) - z&T) + g.f(Y=o) 

g-’ = ;A ;jl’ - T s *;;‘+g > 

.G=cIj[AT-Th(g)] -(cx.aAT/p)-a.Ma/2p 

gf = -zg*(a) + ~(1 - +$jt(T). 

The Gibbs potential of two-phase RVE being in constrained phase equilibrium is additively 
decomposed into three parts: the first term ga’(T, a) is the Gibbs free energy of 
thermoelastic austenite. The second term (c$ (7)) represents the energy of formation 
of martensite in absence of micro and macrostresses. It is frequently regarded as the 
“chemical Gibbs free energy” (cfi, e.g., Lii et al., 1990) The third term represents 
the mechanical energy stored in the material. The term xg* = XK . a/p is equal to 
the work of macroscopic stress done on pseudoelastic strain in the course of stress 
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assisted p.t. (it vanishes when 0 = 0). whereas the term containing ~#+t represents 
stored energy associated with microstresses that develop during ongoing p.t. Energy and 
entropy differences AU* and As* associated with formation of phases in unstressed 
state are much higher than the corresponding variations of energy and entropy caused 
by generated microstresses. Therefore, it is reasonable to assume that AU* > ~0 and 
As* > SO (cfi (1) and (7)). 

Note that the Gibbs function can be partitioned into another more familiar form (an 
analogy of (1)) 

g = (1 - z)g-4(T, a) + 2.9:“(T, u) + z(1 - z)&(T) 

where 9” and ,g”’ are Gibbs potentials of austenite and martensite, respectively, and the 
third term may be regarded as configurational energy. Here 

gsf = &{;2) - Ts * if’ - 9*(o) + g(T, a). 

where g is defined by (16)s. 

2.2. THERMAL EQUATIONS OF STATE 

Thermal equations of state following from (16) are 

(17) c(Yr”) = -pa/l/da = Ma + ZPC + aAT, 6 = $g*/da 

s(Y’“) = 4g/i3T = :/j,l’ - zAs* + cJn + (a . a/p) + z(1 - z)9n 

xf(YT”) = -i)g/i-)z = s*(a) - (1 - 2z)yJjt + KG(T) 

where s is the specific entropy of two-phase RVE, and -,.f is the energy-conjugate force 
of z. Here, and what follows we neglect, for simplicity, the superscript “eq” at symbol K. 

The first and the second laws of thermodynamics when written for infinitesimal 
processes of successive constrained phase equilibria take the form 

(18) du= -rtq+ad&/p and 

ds + c?q/T = $D/T 2 0, ;E D = ddz 

respectively. Here 11, = Q + Ts = ,IJ + Ts + D . E/P is the specific internal energy of 
RVE, dq and d D are the incrementals of heat exchange and energy dissipation per unit 
of mass, respectively. From (18)~ it clearly follows that forward (A -+ M) pt. can be 
initiated only from those states where 7rf 2 0. Likewise, the reverse p.t., M -+ A: are 
admissible only at those states where & 5 0. Equations (17) form the first group of 
constitutive equations. The complete set should contain additional kinetic relation for z. 
This equation is detaily discussed in (R and L, 1994) and will not be rewritten here. The 
general form (44) given in (R and L, 1994) also remains valid, however, the differential 
d,~f should be evaluated from the new modified Eq. (17)s, i.e., 
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where 

By eliminating ds between (17)~ and (18)~ one obtains the incremental equation for 
temperature, 

(21) c,,dT + & = Tfdz - T(a . da/p) + c;dz 

The first right-hand term represents the positive heat due to energy dissipation, the second 
term is the usually small heat of piezocaloric effect, whereas the last term occurring in 
(21) represents the apparent thermostatic heat of p.t. (c$ R and L, 1994). 

Since the thermodynamical force nf can be partitioned as follows 

(22) 7rf(Y=“) = Cf ( u,z) -c;> “,f = g*(u) + au* - (1 - 2Z)G” 

the energy dissipated is partially balanced by thermostatic heat of p.t., and (21) can be 
rewritten in the equivalent form, 

(23) c,,dT + dq = cf(a. z)dz - Ta . dr~/p 

The quantity c,f represents the “true” latent heat of p.t. Note, that the first term occurring 
in (22)~ when multiplied by dz represents the incremental work of pseudoelastic strain 
(c$, (ll)-(13) and (17)1), i.e., 

(t IV” G u . d&” = CT . d(E - 6’) = CT . d[c - (Ma + crAT)] = u . d(z~) = pg*dz 

2.3. SOME THERMOSTATIC PROPERTIES 

(i) The states described by equality 

(24 7rf(YT") = 0 

are the states of unconstrained phase equilibrium of RVE. It can be shown that when 
the condition 

(25) 

holds then the equilibrium is unstable. In the simplest situation, when M is isotropic and 
g* depends only on deviator+ part 8 of stress tensor 0, the condition (25) becomes 

(26) 
2 
, CT’ = (8 . a)l/“, (T = deva 

where b is the elastic shear modulus. We found that (26) is satisfied by a number of 
SMA. Therefore, no real process continuously linking the unstable states is observed 
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in such alloys. Moreover, one can conjecture that instability of phase equilibrium is the 
primary origin of the observed hysteresis loops. We shall use the condition (24) to define 
the critical states at which the processes of p.t. are initiated. 

(ii) Consider first, the temperature-induced p.t. when (T = 0. Suppose additionally that 
4it = 0. In this case the condition (24) (c$ (7) and ( 17)) reduces to (.q* (0) = 0). 

(27) 

Thus, forward and reverse p.t. proceed at the same constant temperature known as 
“equilibrium temperature” T”“. Note, that 7-r{ (2’) < 0 for T > T”’ since at high 
temperatures, the free energy of unstressed austenite is smaller than the free energy of 
martensite. 

Return to the case when 4;t # 0. The condition (24) together with z = 0 define the 
theoretical temperature M:’ under which A + iV p.t. starts 

Likewise, combination of (24) and z = 1 defines the theoretical start temperature A! 
of the reverse (IV --+ A) p.t., 

&A;) + ~$;t(Ai) = 0 M A; = 
flu* + ug 
as* + S() 

Hence, one arrives at the conclusion that self-equilibriated microstresses (or their measure 
- the coherency energy 4jj+) developed at the initial moment qf nucleation qf the product 
phase are responsible for the bifurcation qf the equilibrium temperature into M,: and A!. 

(iii) Consider the situation when macroscopic stresses are acting, u # 0. The stresses 
at the absolute equilibrium state .z = 0 are those critical stresses which cause the start 
of isothermal stress-induced A -+ M p.t. Alternatively, the value of the temperature 
T = M,(a) calculated from the condition (24) for x = 0 can be regarded as the critical 
temperature under which the stress-assisted temperature-induced p.t. begins. Thus, the 
condition (24) implies 

(30) F-4“‘(a:T) - g*(a) - @s* - $))(T - M,;) = g*(a) f&T) - &t(T) = 0 

The equation F;l”‘(a, T) = 0 describes the surface of pseudoelastic flow limits in stress 
space. The flows are associated with A 3 M p.t. This notion is analogous to the notion 
of initial yield limit used in the theory of plasticity. States where F-“” < 0 are states 
of stable thermoelastic behaviour of single austenitic phase. Likewise, the condition (24) 
(specified for x = 1) constitutes the criterion for determination of critical stresses which 
cause the start of stress-induced reverse M -+ A p.t. Alternatively, the temperature of the 
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unconstrained equilibrium state z = 1 can be identified as the austenite-start temperature 
A,q (a) for stress-assisted temperature-induced p.t., 

~~1) FJ’-~(~, T) E g*(a) - (as* + s())(T - A:) = g*(a) + q(r) + &t(T) = 0 

9* (0) 

A,(a) = -4: + As* + so 

On macroscopic level M + A pt. display in the form of strain recovery phenomenon. 
Therefore, the surface F-lf=’ (a, T) = 0 in stress space can be referred to as “surface 
of strain recovery initiation”. The single phase martensite is stable for F”‘a4 > 0. The 
surfaces F-4-‘f = 0 and F“‘” = 0 are the geometrical loci of two characteristic states of 
all outermost (bounding) hysteresis loops, i.e., loops associated with complete A -+ A4 
and iW + A p.t. 

Since g* > 0 one can conclude from (30)~ and (31)~ that the applied macrostresses 
(external stresses) increase the transformation temperatures, a feature observed 
experimentally for SMA behaviour. 

Note, that at fixed temperature the product (a. FG) is constant for all critical states (3O)r 
or (3 l)r, on account of (13)r. The feature (b) of the behaviour of SMA mentioned in Sec. 
1 can, therefore, be easily incorporated into the present theoretical framework (c$ Sec. 4). 

Some recently proposed thermodynamical models for three-dimensional loading cases 
(e.g. S and H, 1993 and B and L, 1996) do not reveal the above discussed features. It is 
worthwhile to mention that conditions (3O)r and (3 1)r are 3-D counterparts of the classical 
Clausius-Clapeyron equation for forward and reverse phase transitions, respectively. They 
are not postulated “ad hoc” but conjectured from analysis of stability of unconstrained 
equilibrium states. The instability of equilibrium states affects also the creation of the 
internal hysteresis loops as discussed e.g. by M and X, 1991 for uniaxial case. 

3. Isotropic solid. Generalization of RL - models 

The generalized theoretical framework discussed in Sec. 2 will now be used to get the 
simplest version of the theory that incorporate all effects listed in Sec.1. 

To this end adopt the following simplifications: 
- the behaviour of two-phase RVE is isotropic, 
- macroscopic eigenstrain K is independent of hydrostatic pressure. 

These imply that the potential g* is at most isotropic function of stress deviator a. 
Taking into account that g* is homogeneous function of order one, we conclude that its 
most general representation (in the class of regular functions in a domain of ti # 0) 
may be written in the form, 

3&J; - 
pg*(a) = rp’f(y); g = di%rN3 = -. 

(a’)3 ’ 
N=; 

where 

(a’)” = t&; Jr = deta = it& 
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7 is a constant and f(y) is positive dimensionless scale (or shape) function which is 
stipulated to satisfy two mathematical conditions, 

(34) f = 1 for y = 0 

The specific numeric factor occurring in the definition of y normalizes this variable such 
that [y/1 5 1 for all stress states. When f = 1 for all y then the theory reduces to the 
one given in (R et al., 1992). 

The strain-stress relations now become 

where K and p are bulk and shear moduli, respectively, and (Y is the coefficient of linear 
thermal expansion. The eigenstrain K is split additively into two parts which are mutually 
orthogonal in the sense that tr(k n) = 0, what follows from the fact that tr(nN) = 0. 
The part E did not appear in previous works (R et al., 1992) and (R and L, 1994). 

The equivalent eigenstrain 7 is defined as follows, 

(36) y(y) = ;trfc2 [ 1 
1/Z 

,:z 2 
: Y=v Tj 

J 

The new constant y introduced here can be identified as equivalent eigenstrain in the 
situation when y = 0, e.g., in pure shear (cfi Sec. 4.2), on account of the assumption (34)~. 
It is seen that pseudoelastic strain is independent of the magnitude of stress deviator and 
varies only with variations of its direction N in the stress deviator space. Since tr(N) = 0 
and tr(N2) = 1, the tensor N has at most 4 independent components. They can be 
regarded as parameters when writing the parametric form of a surface in 5-dimensional 
space of second order tensor deviators. Thus, e.g., Eqs. (35),,, describe a surface (in 
K-space) which is the geometrical loci of all admissible values of eigenstrain. The last 
thermal equation of state, i.e., the expression for thermodynamical force & now become 

(37) 7rf = ;n’f(y) - (1 - 22)9;t + 7&‘1’) 

The parametric forms of equations of surfaces FAAA2’ ((T, T) = 0 and @‘-‘(a, T) = 0 
(cJ: (30) and (31)) are 
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Here (fLu and (+A are the critical values of the effective stress defined by 

(39) 

They are linear functions of T (c$ property (b), Sec. 1). The temperature sensitivity of 
pseudoelastic flow and recovery limits measured by &r4”/dT and i?‘a”‘“/dT depend 
on N through dependence of f on y. In Sec. 4 we show that the observed experimental 
facts mentioned in Sec. 1 impose additional restriction upon admissible function f(y). 

The width of an outermost hysteresis loop (measured at fixed T and N) on 7 - (T 
plane is defined by 

Aa(y, T) = a-“$~, T) - rr-““(y, T). 

Calculating A(T with the aid of (37) and multiplying the result by y(y) one finds, 

(40) ANY, T)?(Y) = Gw%t(T) 1+ 9 [ (+q 

Thus, the product of the width of a loop and the equivalent eigenstrain is not completely 
determined by the coherency energy $;t, unless y = 1 or y = 0 (the latter value follows 
from the heuristic assumption (34)~). 

4. Simple tension-compression. Pure shear 

4.1. SIMPLE TENSION-COMPRESSION 

(i) For uniaxial stress state 

(41) CT;) = flllSilfi,jl~ 
2 

@ij = -CJllUij; 
3 

Uij = S,lSjl - 0.5(Si26j2 + 6;36jJ3) 

one finds (cfi (32)) (T’ = 10111 
$ 

$, Jf = 2 . af1/27, 

(42) N=f ;lJ, y=fl 
\i 

where the upper and lower sign correspond to the tension and compression, respectively. 
Hence, (cf: (35-36)) E = 0 and 

(43) pg* = 1cq11 .7(&l), $&l) = y. f(&l), K = %7(&l) . u 

Moreover, (cJ: (37)t), the critical values of all are all = A#“‘( f 1, T) and 
nll = hrAf’(H,T) f or uniaxial pseudoelastic flow and recovery, respectively, where 
Cc& (3%) 

(44) Y(&l) . &l~ (fl,T) = p(As* - so)(T - @) 
y(fl) . ,A[‘-! (kl, T) = p(As* + so)(T - A;) 

such that (cc (40)), 

(45) 7(&l) . A+l, T) = 2p&(T) 

The uniaxial stress-strain relation and the expression for thermodynamic force & take 
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the form (E is the Young modulus) - cJ: (35) and (37), 

(46) El1 = (W/E) + (Y(T - To) f y(*-l)x 

and 

(47) 7J = rw . (lml/p) - (1 - 2445;t +7&T) 

It is seen that in this case the equivalent eigenstrain can be identified as pseudoelastic 
strain amplitude. 

Fig. 1. - Illustration of the isothermal relationship between uniaxial stress and strain (pseudoelasticity: T > A!;.). 

(ii) The states of absolute equilibrium in uniaxial stress state for fixed T (thermal 
expansion is neglected) are illustrated in Figure 1. The straight line segment containing 
the origin of the coordinate system illustrates the elastic behaviour of stable austenite. 
The other two ascending straight lines show the behaviour of stable martensite. The 
geometrical loci of unstable two-phase equilibrium states are the descending straight 
line segments K f = 0. Figure 2 illustrates the dependence of pseudoelastic flow and 
recovery limits on the temperature. The straight line containing M.y can also be regarded 
as geometrical loci of martensite-start temperatures T = M,s(all). In such case T is 
treated as dependent variable. Likewise, straight lines containing AZ illustrate critical 
temperatures T = A,s(oll) of stress-assisted reverse M + A p.t. In Figures 1 and 2, 
the following abbreviated notation is used 

EUROPEAN JOURNAL OF MECHANICS. A/SOLIDS, VOL. 17, No 2, 1998 



THERMODYNAMICS OF ISOTROPIC PSEUDOELASTICITY IN SHAPE MEMORY ALLOYS 197 

Fig. 2. - Illustration of variation of the critical stresses with temperature for 
forward (A + M) and reverse (A4 + A) p.t. in simple tension-compression. 

(iii) The experimental observations confirm the predictions of thermodynamic theory. 
The Eq. (44) shows that the feature of the behaviour of SMA observed by [0 and F, 19961 
(equality of the products of c”’ and 7 for tension and compression - c$ the property 
(b)-Sec.1) is the thermodynamicaE property. On the other hand, for a number of SMA 
(c$ V and L, 1991 and 0 and F, 1996) c”‘~ (+l,T) < ~‘~‘(-1,7’). When this fact is 
combined with (44) the latter equation implies $+l) > T( -1) (the complement of the 
property (b)-Sec.1). Hence the observations (a)-(b) impose the following restriction on 
the function f(y) (cJ: (43)r) occurring in the definition of the potential g* (cc (32)r) 

(48) f(+1) > f(-1) 
When the mathematical property (48) holds then the features (c) and (d) listed in Sec.1 
follow directly from the thermodynamical properties (44)1 and (45), 

cfg(-l,T) > 
i),A.ZI 
F(+l,l'); A+l,T)> Aa(+l,T) 

Thus, the inequality (48) is the only condition which is necessary to include the 
experimental facts (a)-(d) (Sec. 1) into the theory. Moreover, when (48) is satisfied 
the developed theory suggests that the similar properties concern also the reverse p.t., 

~u”I.4 &+A 
_(-1,T) > r(+1,?‘); a”lJA(-l,T) > c+(+l,T) 

4.2. PURE SHEAR 

For pure shear 

(49) a;,q = u12S;,(. = a&., 

one finds 0’ = fi]~r2], Jf = 0 and 

S;j = (Sil6j2 + Si2Sjl) 

(50) N = JZsgn(u~l)S 
2 > y=o f(O) = 1 
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Hence, 

(51) Kl* = dhla21, Y(y) I!,=0 = y = const, K = r; = ~~(syrlrrlrjs 
2 ' < 

The critical values of cr12 are 1crr21 = CJ~“‘~(O,Y’)/~~ and 101;21 = a”‘-‘(O,T)/fi for 
pseudoelastic flow and recovery, respectively, where 

(52) CT-yo, T) = p(As* - So)(T - @)/y; 
8;'(0, T) = p(As* + so)(T - A:)/7 

They are not influenced by shearing direction. Thus, the characteristic feature (e) of 
pseudoelastic behaviour in pure shear, mentioned in Sec. 1, is incorporated in the present 
theory. 

The ratios w0 of pseudoelastic limits in pure shear and simple tension (compression) are 

(53) 

They are independent of T unless scale function f is temperature-dependent. The 
stress-strain relation and the expression for 7rf now become (cc (35), (37)) 

Thus, the constant y is proportional to the amplitude ys of pseudoelasticity in pure shear 

(55) ys = d&p 

Moreover, there is definite relation between wn. and ratios of pseudoelastic amplitudes 
in tension (compression) and pure shear 

(56) 

and account of (43)~. Note, however, that the conclusions presented in this Section are 
the consequences of the heuristic assumption (34)~ which, if necessary, can be modified 
in further development of the thermodynamic theory. 

4.3. EQUATION OF BOUNDING HYSTERESIS LOOP 

The hysteresis loop associated with complete forward and reverse p.t. is refereed to 
as “bounding” loop. Two of such loops (for tension and compression) are illustrated 
in Figure 1. The active pseudoelastic flow (dz > 0) associated with complete 
(z=O --+ z = 1) forward p.t. (A + 1M) proceeds along the line segment $1 = 0, 
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whereas the active pseudoelastic strain recovery accompanied by complete reverse p.t. 
(M + A; dz < 0) occurs along the segment $2 = 0. According to the general equation 
of transformation kinetics discussed in [R and L, 19941 $,, are defined by 

(57) $1 = (7rf/2fi”y - p1z + 7-l ln(1 - 2) 

$9 = (-~f/2tiO)r”2 - pn(l - Z) + T2 In(z) 

where m n > 1, pC1 and TV (a = 1,2) are non-negative phenomenological constants. 
Using (57) and eliminating of from the set of algebraic equations $, = 0 and (47) one 
finds the following relations between uniaxial stress and z 

(58) 

for the segment $1 = 0 (associated with A + l\/r p.t.) of bounding hysteresis loop, and 

for the strain recovery segment ($2 = 0) of the bounding loop, where CJ*‘~” and CJ”‘-’ are 
defined by (44). The set of algebraic Eqs. (46) and (58), (59) constitutes the parametric 
form (z is regarded as parameter, 0 < z < 1) of the equations of the bounding hysteresis 
loops on (~11 - ~11 plane for simple tension and compression. Similar equations can be 
derived for pure shear. They will not be discussed here. 

4.4. DETERMINATION OF CONSTANTS FOR NiTi ALLOY 

To identify the physical constants and to have a view upon the validity of the predictions 
of the theory we used the experimental data reported in [0 and F, 19961 for equatomic 
NiTi alloy supplied by Memometal Industry. The basic elastic constants for this alloy 
are given in Table I. To identify the thermostatic constants So, As*, Au* and Uo we used 
the measured ~~11 - ~11 hysteresis loops (for simple tension and compression) presented 
in (0 and F, 1996) for the temperature Tl = 333K. A number of experimental points are 

TABLE I. 

Properties Value 

/, [kg/m”] 
E [Ml%] 

v (Poisson ratio) 
Au’ [J/kg] 

fin [.J/kg] 
As* [J/k,qK] 

.i(j [J/k,qK] 

f(L 
f(-1) 

6500 

55000 

0.29 

23800 

1000 
80 

0 
0.061 

1.05 

0.744 
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reproduced in Figure 3 and denoted by special signs x and q i. The loops were regarded 
as bounding one i.e., associated with the complete forward and reverse p.t. Directly 
from the presented curves we estimated pseudoelastic amplitudes y(+l) and ^I( - 1). 
as well as pseudoelastic flow and recovery limits ,;l’l (+ 1, Tr ) and (I~“-’ (t 1, Tr ) for 
simple tension. 

y(+1) = 0.064; 7(-l) = 0.0454; 

,--lnr(+l,Tr) = 390MPa; ,hlP’L(+l, Tr) = 187 MPa 

The estimation of pseudoelastic amplitudes made by [0 and F, 19961 brought different 
values since they were identified as maximum recovery strains obtained after simple 
tension performed at T2 = 293 K, i.e., out of the pseudoelastic temperature range 
(T2 < A,f = 329 K). However, the ratio w: of pseudoelastic amplitudes in both cases 
are the same 

(61) WA, = y(-1)/y(+1) M 0.71 

We also used the experimental data concerning ~11 - T relation for tension presented in 
[0 and F, 19961 and shown in Figure 4. The experimental points represents the critical 
values ~?‘~(*l, T) f o uniaxial stress for different temperatures. They were estimated 
from 011 - ~11 curves by [0 & F, 19961. We have approximated data for tension by 
straight line passing through point (arr = 390 MPa, T = Tl = 333 K) and extrapolated 
it to ~11 = 0 and T = M,f . The theoretical value M,f was found to be AI! = 285 K - 
five degree higher than measured by DSC technique (c$ 0 and F, 1996). Furthermore, 
we have neglected interfacial entropy So = 0. The data (60) and values of j@! and 
SO = 0 are sufficient for determination of As*, AU* and ~0. From the set of Eqs (44) 
(28)~ and (29)~ one finds 

W) Ai = Tl - (Tl - ~,O),-‘r;l(+l,T~)/rr-~‘\‘(+l,T~); 

nu* = $h*(~,f + A;); Go) = J~A~*(A: - M,:) 

The constants As*, Au* and tie given in Table 1 were calculated from Eqs. (62). 
The theoretical value of austenistic-start temperature AZ was found to be 3 10 K - ten 
degree higher than the one measured by application of DSC technique. The remaining 
thermostatic constant y was estimated from the results of cyclic shear test presented in the 
paper of (0 and F, 1996) and reproduced in Figure 6. We have estimated pseudoelasticity 
limit in shear to be CJ-‘-‘~(~, Tl)/fi = 236 MPa. Then, using data (60) for tension 
we found the value of the ratio w, (c$ (53)), wV(+l) = 0.605. The value of y was 
calculated with use of (55-56), y = y(+l)/[&+(+l)] ” 0.061. However, this value is 
uncertain and can not be verified because of we have no information about the maximum 
pseudoelastic strain generated during the first cycle. 
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Fig. 3. - Pseudoelastic tension-compression curve of NiTi, 
T’ = 333 K (experimental points after [0 and F. 19961). 

1 A - tension “A A 

280 290 300 310 320 330 340 350 360 370 

4 Temperature K 

Fig. 4. - Variation of the limit of pseudoelastic flow (T I,” with T in simple 
tension-compression of NiTi (experimental points after [0 and F, 19961). 

Having known all thermoelastic constants, one cm predict other properties of the alloy. 
For example, limits of pseudoelastic flow and strain recovery in compression and pure 
shear can be calculated from (44) and (52). They are 

(63) c+(-1: TI) = 549 MPa; a”-‘( -1,Tr) = 263 MPa (compression) 

a-‘“(0, Tl)/h = 113 MPa (shear) 

The predicted temperature-sensitivity of pseudoelastic limits are 

(64) 
&+“(+1, Tr) 

= 8.125 MPa/K; 
i3&q-l, Tr) 

dT i)T 
= 11.45 MPa/K 
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Energy of transformation [J/g 1 
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280 290 300 310 320 330 340 350 

Temperature K 

Fig. 5. - Variation of the transformation energy with 2’ in simple tension-compression 
of NiTi (experimental points - after [0 and F, 19961 with modified energy-axis scale). 

Pure shear 

G121MPal 

300 

0.04 

El: 

QO6 

Fig. 6. - Predicted hysteresis loop in pure shear for NiTi at T = 333 K (individual 
points represent results of cyclic shear test discussed by [O and F, 19961). 

These coefficients define the slopes of theoretical straight lines presented in Figure 4. 
The comparisons of theoretical and experimental results (c$ Figs 3, 4 and 6) show that 
predicted values (63-64) are reasonable. 

The experimental points reproduced in Figure 5 make evidence that energies of 
p.t. represented by product YcJ-‘~” are the same for tension and compression at 
every temperature. When marking this points we multiplied the energy-axis scale by 
factor w1 = 0.71 (cc (61)) in order to account for the fact that our estimation 
of pseudoelastic amplitudes are different from those given in (0 and F, 1996). The 
discrepancies between experimental points and points of theoretical straight line observed 
in Figure 5 are acceptable. One of the reasons of their occurrence is that our estimation 
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of &“, &“‘(+l, Tr) = 390 MP a, is different from the one made by (0 and F, 1996) 
(cJ;‘-‘~(+~,T~) Z 412 MPa). 

To identify the phenomenological constants given in Table II we have chosen a 
few characteristic points on experimental tension curve and used formula (58-59). The 
comparison of predicted hysteresis loop for compression with experiments is shown 
in Figure 3. In Figure 6, the theoretical hysteresis loop for pure shear is shown on 
the background of experimental points representing the results of cyclic shear test (cc 
0 and F, 1996). Since we do not know the behaviour of a specimen during the first 
cycle, the latter comparison demonstrates only that the characteristic parameters of the 
experimental and theoretical loops are of qualitative agreement. 

TABLE II. 

Constant Value 

Flow (<Y = 1) 

III. , I .25 
PI 0.64 
1’1 0.35 

Recovery (0 = 2) 

7112 1.7 
P, 2.42 
1’2 0.063 

5. Discussion 

In this paper, the thermodynamic theory of pseudoelastic behaviour of SMA is 
generalized to account for new observed effects, in particular, the type of Strength 
Differential Effect in SMA, i.e., occurrence of large differences between hysteresis loops 
measured in tension and compression. The thermodynamic description used in this paper 
is simplified since no notions of discontinuous fields of microstrains and microstresses 
are employed. Instead, the piecewise uniform fields are considered and an extra term - 
coherency energy is added to the free energy function in order to account for the energy 
concentrated near the moveable phase boundaries. In general, the coherency energy terms 
Au* and As*T, as well as phase eigenstrain, depend upon microstructure changes. Here 
only the latter dependence is accounted for (in general terms). Under this assumption, 
it was shown that equilibrium values of macroscopic eigenstrain K”Q is homogeneous 
function of stress of order zero, provided that it admits the potential. In effect, there exists 
at least one constraint relation which actual equilibrium eigenstrain must satisfy. During 
actual process of straining, a two-phase macroscopic material element is not in a state of 
phase equilibrium because of such states are unstable. This fact was utilized to define the 
initial pseudoelastic flow limit and the strain recovery limit. As a consequence, the stress 
limits are known when the form of thermodynamic potential is specified. The critical 
stresses are thus the thermodynamical properties of SMA. They are linear function of 
temperature and depend on the direction N of loading in the stress space. 
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The Gibbs free energy function discussed here for isotropic solids employs only five 
new constants and one scale function f (of single variable) in addition to the constants 
used in usual infinitesimal theory of thermoelasticity. Two values of the function f 
(corresponding to tension and compression) and all new constants are found for NiTi 
alloy. Moreover, it has been shown that all features of behaviour of SMA discussed 
by (0 and F, 1996) are incorporated into the developed theory. The comparison of 
experimental and theoretical results presented here show good agreement. 

While the present paper was under process of reviewing we have been acquinted 
with the paper (Jacobus et. al.. 1996) where new experimental results for NiTi alloy 
under triaxial stress state are reported. Although some of the statements (concerning the 
possibility of theoretical description of the reported results) present in (J et nl., 1996) 
are questionable, the work is probably the first where the effect of hydrostatic stress 
upon behaviour of NiTi are systematically investigated. The provided results show that 
pseudoelastic flow limits under uniaxial compression and triaxial compression (in both 
cases :y = -1; <fi Eq. (32)) differ by about 15%, whereas under zero hydrostatic stress 
and uniaxial tension (in both cases ?/ = 1) the difference is negligible. Thus, the higher 
is the hydrostatic pressure the more pronounced is its influence upon the pseudoelastic 
flow limit. Within the present approach this effect could be accounted for by assuming 
that, at equilibrium, not only the potential !I* but also the configurational energy d,;t and 
the chemical energy ~,f depend on hydrostatic stress tra/X 
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