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Abstract: Global pollution of the environment is one of the most challenging environmental prob-
lems. Electronic-based population and anthropogenic activity are the main reasons for dramatically
increasing the scale of waste generation, particularly battery waste. Improper battery waste disposal
causes harmful environmental effects. Due to the release of heavy metals, battery waste affects
ecosystems and health. We are faced with the challenge of effective battery waste management,
especially recycling, to prevent the depletion of natural resources and maintain ecological balance.
Artificial Intelligence (AI) is practically present in all areas of our lives. It enables the reduction of the
costs associated with various types of research, increases automation, and accelerates productivity.
This paper reviews the representative research progress of effective Artificial Intelligence-based
battery waste management in the context of sustainable development, in particular, the analysis of
current trends, algorithm accuracy, and data availability. Finally, the future lines of research and
development directions of human-oriented Artificial Intelligence applications both in the battery
production process and in battery waste management are discussed.

Keywords: battery waste; waste management; artificial intelligence; machine learning; genetic
programming; end-of-life

1. Introduction

The growing standard of living, inextricably linked with the growing demand for
electronics, is driving the market for the recycling of spent batteries. The global battery
recycling market has been valued at USD 10.21 billion in 2021 and is projected to reach
USD 18.96 billion by 2030, with a compound annual growth rate (CAGR) of 7.12% over the
forecast period. In the case of lithium-ion batteries (LIBs), the market has been valued at
USD 6.55 billion by 2028, with a CAGR of 18.5% over the forecast period [1]. The battery
market has rapidly grown, where only in 2019, around 205,000 tons of portable batteries
and accumulators were placed on the market in the EU. The production of electric vehicles
(EVs) is also increasing and, consequently, the number of batteries produced. Another issue
contributing to this is that the battery used in an electric car, which has lost 20 percent of
its capacity, is considered to be used up. Recalled EV batteries pose a significant threat to
the environment because they contain heavy metals in many cathode materials and toxic
and corrosive electrolytes [2]. Among them, cobalt accounts for 60 percent of the cost of
cathodes [3]. At the same time, approximately 100,000 tons of battery waste were collected
and recognized as recyclable. It also turned out that the collection of used portable batteries
and accumulators is lower than the sale [4]. The rules for monitoring battery waste, taking
into account goals of waste collection and the effectiveness of recycling according to the
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types of waste, were included in Directive 2006/66/EC on portable batteries and accumu-
lators, and the Commission Regulation (EU) No. 493/2012 divided them into three target
groups: lead-acid batteries and accumulators, nickel-cadmium batteries and accumulators,
and other batteries and accumulators. Nickel-cadmium batteries are withdrawn from
circulation because of cadmium toxicity [3].

The rapid growth of battery production and usage will cause waste and disposal-
related issues in the next few years as these batteries reach end-of-life. Moreover, it also
causes the depletion of natural mineral resources. Thus, effective battery reuse and recycling
procedures are highly important because they contain metals of critical importance [5,6].
The recycling of batteries causes the return of valuable materials, including lead, lithium,
nickel, cadmium, and copper [7], back to the value chain, partially easing the need to
extract new resources. Moreover, recovering metals from batteries reduces the burden on
landfills, the burden on the environment, and the negative impact on human health. The
critical material’s recirculation also leads to a reduction of the ecological CO2 footprint,
which is connected with battery cell production and may provide CO2-neutral battery
cell production [8–10]. Improper battery waste disposal causes harmful effects on human
and animal health, as well as the environment, as they contain a huge number of heavy
metals [11]. These waste compounds contaminate water, soil, and vegetation.

Another economic issue is related to the fact that the chemicals that are used in the
production of batteries are sourced from the Congo (more than half of the cobalt), Australia
and Chile (80 percent of lithium), and China (80 percent of graphite) [12]. The concentration
of raw materials in these places may affect their unstable supplies to enterprises producing
batteries and accumulators in other parts of the world. Thus, the unsustainable production
of these strategic materials is a serious threat to the electronics industry. In addition, they
are hazardous materials for transport due to their thermal and electrical instability, which
translates into high transport costs. The possibility of LIB recycling provides an opportunity
to avoid these issues.

In this paper, we overview the existing management systems for battery waste, includ-
ing their reuse and recycling, emphasizing the use of Artificial Intelligence in the service
of the natural environment. We present different technologies, such as pyrometallurgical,
hydrometallurgical, and direct recycling methods, which are used in processing battery
waste, taking into account the current status of LIB recycling, algorithm accuracy, and data
availability, as well as the analysis of current trends and economic challenges.

2. Materials and Methods

The review methodology was based on the PRISMA Statement [13] and its extensions:
PRISMA-S [14,15], as well as our personal experience. We considered recent publications,
reports, protocols, and review papers from the Scopus and Web of Science databases. The
keywords: “battery waste” and “smart” were used; as a result, we obtained: 245 documents,
including 93 research papers, 105 conference papers, 28 conference reviews, five book
chapters, one book, one letter, one editorial, one short survey, and 11 reviews in the Scopus
database, and 173 documents, including 15 review articles, in the Web of Science database.
Records that were duplicated in both databases, records with irrelevant titles or/and
abstracts, as well as records with no AI aspects, and no ecological aspects were omitted
from the analysis. The selection process was done according to the context of battery waste
management and/or the use of Artificial Intelligence, in particular, Machine Learning,
taking into account keywords. Finally, 139 documents were taken into account.

3. Artificial Intelligence in Battery Production and Monitoring

Battery production is one of the components of sustainable development, including
reduction, clean energy, and economic development. An important role in battery produc-
tion is played by cost [16]. The chemical and physical characteristics of batteries can be
estimated. Optimizing the battery manufacturing process is complex (multi-criteria) and
costly. It includes the optimization of factors such as, for example, electrode and slurry
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formulation, choices of additives and solvents, time and speed of premixing powders
and slurries, coating speed and comma spacing, and time and evaporation temperature.
Here, methods based on Artificial Intelligence (AI), in particular, Machine Learning (ML),
can significantly simplify this process and reduce its cost while they are operating on
multidimensional data sets [17]. The first important issue is to collect a large amount of
reliable data on which the algorithms can perform the optimization. Incorrect assumptions
and unreliable data will lead to unreliable results. Some guidance on designing suitable
AI-based methods is applied to estimate the state of battery charge [18,19] and predict the
battery life cycle [20,21], or LIB electrode manufacturing [22].

The State of Charge (SOC) depends on several factors, such as temperature, ageing,
cell unbalancing, hysteresis characteristics, self-discharge, and charge/discharge rate. It
plays an important role in predicting EVs’ driving race and optimal charge control, which
are crucial in reducing the carbon footprint. It can be estimated using various methods
based on Artificial Intelligence, but each disadvantage is the accuracy and availability
of data. The estimation of SOC requires applying the algorithm to describe the battery’s
remaining capacity, which was described in the study [19]. In the paper [23], a simple
deep neural network combined with a Kalman filter was used to estimate the SOC of the
battery. In [24], the fuzzy logic methodology was used for this purpose, which analyzed
the data coming from impedance spectroscopy and/or coulomb counting techniques. A
genetic algorithm was used to evaluate the various types of batteries [25,26]. Genetic
algorithms provide less estimation error (5 times smaller) compared to fuzzy logic ones.
The support vector machine (SVM) was used to establish the relationship of the SOC to the
Ni-MH battery’s voltage, current, and temperature [27]. Thus, the paper [18] proposed a
recurrent neural network (RNN) with long short-term memory (LSTM) for the estimation
of SOC in the case of LIB. The algorithm was based on measured voltage, current, and
temperature. In [28], the dependence on ambient temperatures is included. In turn, in the
study [29], convolutional neural networks (CNN) and RNN were used to predict. This
approach enables the prediction of SOC with a maximum mean average error under 1%
and a maximum root mean square error under 2%, based on discharge profiles. It provides
a reasonable estimation of nonlinear relationships between SOC and measurable variables.
Recently, hybrid methodologies to estimate SOC were investigated in the study [30]. In
work [31], an adaptive extended Kalman filter was proposed. Thus, hybrid techniques
have the potential to multiply the advantages of individual components and thus enable a
more accurate SOC estimation.

On the other hand, the study [20] shows that Machine Learning-based techniques
can predict the battery life cycle with a 4.9 percent test error using the first five cycles,
considering the evolution of the discharge voltage courage. In the paper [2], the cognitive
digital twin batteries’ design and development were shown. This Artificial Intelligence-
based digital creation enables research to optimize the entire life cycle of a battery. In [20],
cycle life prediction models were proposed. As input data the cycle lives of batteries
ranging from 150 to 2300 using 72 different fast-charging conditions have served. In
research [22], Artificial Intelligence-based tools, in particular based on a decision tree, deep
neural network, and SVM to predict correlations between LIB properties and manufacturing
parameters, were proposed. It took into account the characteristics of the electrode, namely
the active material mass loading and porosity. It turned out that SVM links high accuracy
of prediction (above 90 percent) with the possibility of graphical analysis of the results.
A huge effort has been made to understand and experimentally validate the batteries,
which are working with constant current, voltage, and temperature, while there is still a
gap in the case of the batteries, which are working in severe, hot, wet, and rainy conditions.
Here, the surrogate battery models can be helpful, and they can be used as an input dataset
to the battery optimization process [32]. Thus, Artificial Intelligence can help increase the
sustainability of batteries.

Artificial Intelligence can also be applied as an effective tool for the analysis of the
material characteristics of battery [33] and the LIB failure mode [34]. In the study [33], as a
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training set, public battery cycling data, which contains 124 LiFePO4/graphite cells being
cycled to end-of-life [31], was used. It turned out that to predict the battery properties with
high accuracy, only single-cycle data are needed. The interesting solution for evaluating the
residual energy of lithium-ion batteries (LIBs) based on Artificial Intelligence, in particular
genetic programming, was presented in the paper [35]. The quantitative results determined
the relationship between stress and capacity and can provide an optimized recycling
strategy for batteries applied to electric vehicles, which is extremely important, while
current generations of batteries link active materials with high energy densities with highly
inflammable electrolytes.

In the paper [36], the dependence between the properties of the anode and cathode,
manufacturing control parameters, the intermediate product characteristics, and the final
cell performance with Machine Learning techniques were investigated. The Gradient
Boosted Decision Trees (GBT) and random forest were applied to predict positive and
negative electrodes as well as characteristics of the half-cell. As input data, a comma bar
gap, coating speed, and coating ratio have been used. It turned out that the electrodes,
including mass loading and thickness, can be predicted with an accuracy of 93.48 percent
and the cell capacity with an accuracy of 91.75 percent.

4. Artificial Intelligence in Waste Management, Including Battery Waste
Management Systems

Artificial Intelligence-based algorithms can solve various issues of information pro-
cessing, including pattern recognition, classification, clustering, dimensionality reduction,
image recognition, natural language processing, and predictive analysis. Recently, Artificial
Intelligence was also applied in waste management [37,38], providing the opportunity to
link waste management, joint supervision and collection process, and safety.

Another important issue in waste management is connected with the efficiency of the
cleaning process, while Artificial Intelligence can also support waste collection schedules.
The intelligent trash cans can send data, such as the presence and volume occupied by
garbage, using the Internet. In the paper [39], a waste collection system based on location
intelligence and applying graph optimization algorithms as a part of Smart City (Copen-
hagen, Denmark) was proposed. The proposed solution returns the data concerning trash
level collected by the embedded sensors to the server over the Internet, which optimizes
the collection routes and sends this information to workers. In this study, input data were:
waste level of trashcans, which come from 3046 trashcans, and available open data about
the city of Copenhagen, Denmark. On their basis, the optimal schedule of waste collection
from individual places is determined, taking into account the optimization of the driving
distance of the daily routes based on the Shortest Path Spanning Tree (SPST) to calculate the
minimum driving distance between points and a genetic algorithm to predict the minimal
driving distance between the points, is determined.

The identification, localization, and size determination of waste are based on image
recognition techniques. In the study [40], based on images, the determination of the
location and the degree of filling of the containers with the use of four Laws Masks and a
set of support vector machine (SVM) classifiers with 99.8 percent accuracy was proposed.
The containers were classified into three groups, i.e., empty, partially full, or full. The
assignment to a particular group determined the garbage collection schedule. Input data
were in the form of pictures of bins and the nearest neighborhoods (800 × 600 pixels),
including 60 rotated and 160 unrotated. As a training set, unrotated pictures were used,
while during testing of the solution proposed, both unrotated and rotated pictures were.
All pictures were converted into grayscale and subjected to the automatic edge detection
procedure. The bin position of the image was detected with Hough line detection and
cross-correlation. It turned out that the algorithms proposed are robust against bin shift
and rotation. In the research [41], the classification of electrical and electronic waste
from trash pictures using the deep learning convolutional neural network (CNN) was
presented. The proposed solution provides efficiency of 97 percent. As input data, pictures
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of refrigerators, washing machines, and television sets (three classes) in the RDG format
(128 × 128 pixels) were taken. The training set includes 160 pictures (60 for each class),
while the testing set includes 30 pictures (10 for each class). The pictures of waste are
sent to the server, where they are subjected to the object recognition procedure. Once
the waste is identified and located, waste collectors can plan for efficient collection. The
systems can recognize three categories of e-waste, namely: refrigerators, washing machines,
and monitors or TV sets. In the paper [42], convolutional neural networks were used to
identify hazardous recyclable materials, such as batteries, syringes, and nonhazardous
waste, with an accuracy of 90 percent. Datasets, including three categories (i.e., batteries,
syringes, and nonhazardous waste), in the number of pictures taken in front of a white
background with moderate lighting (512 × 384 pixels): 23, 91, and 1984, respectively.
Artificial Intelligence-based algorithms are also involved in trash control in institutions,
for example, universities [38]. This system combines linear regression (LR) with Machine
Learning techniques. Dijkstra’s algorithm optimizes the path for waste collection based on
historical data. It operates on data containing information about the current state of filling
the bin, i.e., the level of waste and bin position. The pictures were collected for 4 months
during the academic year.

Thus, waste management can be treated as a multi-hierarchical clustering problem.
In the paper [43], the concept of an AI-based classification of medical waste, e-waste,
and toxic atmosphere pollutants, taking into account real-time indicator conditions such
as daily waste and strain, was proposed. This system contains three modules: the input
module (responsible for defining the essential trash characteristics), the second level module
(description of the toxic patterns), and the community module. The general idea of the
system is derived from LCA, MCA, and Extended Producer Responsibility. It enables
e-waste tracking, taking into account the safety of the whole process. In the case of the
application of Artificial Intelligence, this can reduce the duration of the assessment process
by at least 35 percent.

Waste management, in particular solid waste, is an important issue, taking into ac-
count the negative impact on human health and the environment [44,45]. For an efficient
waste management system, Artificial Intelligence has great potential [46]. According to the
research analysis presented in [47–49], the reduction of waste through recycling helps to
achieve a circular economy. The prediction of an accurate waste amount, mass, and type
is crucial in waste management. Thus, in the paper [50], the convolution neural network
was used to predict the waste mass. In the study [51], artificial neural networks and the
Machine Learning framework (MLDPAF) were applied to the effective planning of waste
management, including the prediction of waste amount and effectiveness of waste collec-
tion. The research [51] shows an attempt at waste management on an academic campus. In
turn, in the paper [52], the concept of an effective construction waste management system
was proposed.

Another issue connected with waste management strategies is waste amount predic-
tion. In the study [53], multi-layer perceptron artificial neural networks (MLP-ANN) were
used for the verification of annual waste production, including municipal, commercial,
construction, and demolition waste. For the forecast, the data, which contain solid waste
datasets deposited at Askar Landfill in Bahrain between 1997 and 2016, were used. It
turned out that artificial neural networks enabled the estimation of the future-proof genera-
tion of different types of waste with high accuracy. In the paper [54], the comparison of
different artificial neural networks, i.e., adaptive neuro-fuzzy inference systems, discrete
wavelet theory artificial neural networks (DW-ANN), discrete wavelet theory–adaptive
neuro-fuzzy inference systems (DWT-ANFIS), and genetic algorithms, for the amount of
waste prediction has been made. This study covered two data streams, namely, data that
come from governmental, semi-governmental, and private publications from the period
of 1993–2011 and data that come from field surveys. It turned out that the most accurate
forecast was delivered by a genetic algorithm. In the study [55], four options were used
to estimate the ability of intelligent systems algorithms to predict monthly amounts of
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waste generated—support vector machines (SVM), adaptive neuro-fuzzy inference systems
(ANFIS), artificial neural networks (ANN) and k-nearest neighbors (kNN). It has been
shown that AI can be successfully used to estimate the amount of generated waste, and the
best results were obtained for the ANFIS (most accurate peak forecasts) and kNN (monthly
average waste prediction) systems. The medical waste generation rate was estimated in [56]
based on multiple linear regression, artificial neural networks, fuzzy logic–artificial neural
networks, support vector regression, least squares support vector regression, and fuzzy
logic–support vector regression. It turned out that in the case of hospital solid waste, the
higher accuracy was provided by fuzzy logic–support vector regression.

5. Artificial Intelligence in the Waste Sorting

Waste sorting, i.e., the process of separating waste into different types, plays a crucial
role in the closed circular economy model [57]. The available sorting methods can be
divided into two groups: manual sorting and automated/mechanical sorting, with the
application of robotic technology or a combination of these two types [58]. In the case of
solid waste, the manual approach prevails [59]. To provide an automatic waste sorting
system based only on pictures of waste in [60], convolution neural networks and support
vector machines were applied. The system classified waste into three groups, namely
plastic, paper, and metal. It operates on colored images in png format (256 × 256 pixels).
It turned out that support vector machines provided higher efficiency than convolution
neural networks. An interesting approach was proposed in the paper [61], placing RFID
tags on packages that would enable the identification and classification of individual
plastic packages, for example, using Artificial Intelligence. The recycling robot ZRR2 from
ZenRobotics in Finland [62] was the first attempt to apply such a solution in practice [63]. It
has built-in computer vision and deep learning algorithms. The robot enables the automatic
separation of selected waste from solid construction and demolition waste. In the study [64],
the ZRR robot was applied to the sorting of municipal household waste streams. In this case,
the main limitation in the application of the system is the protection of personal data from
households. In turn, for the already collected waste the identification to sort them into two
groups, i.e., glassware and plastics, based on a convolution neural network was proposed in
the paper [65]. The input data was gathered with an RGB camera, i.e., 103 pictures of waste
(50 glassware, 53 plastics). To increase the amount of data, image enhancement was done
to the training set. After identification, the gripper sorting robot separated the waste into
two groups. In the study [66], an Artificial Intelligence-based, especially hierarchical deep
learning, algorithm was applied to waste detection and classification in food trays. As input,
the Labeled Waste in the Wild dataset was used, which contains 1002 RGB pictures of used
food trays (3456 × 4608 pixels) that have been taken with several different smartphones.
Some of the objects shown in the photos were not wasted. These pictures were used
to label the shape and material of the visible waste. In the paper [67], to distinguish
nails and screws in construction waste, a region-based convolutional neural network was
applied. The COVID-19 pandemic also revealed the need for automatic sorting of medical
waste, including polyethene terephthalate (PET) waste from the pandemic period. In the
study [68], the support vector machine with an accuracy of 96.5 percent was proposed for
this purpose.

Since improper segregation of biomedical waste causes health hazards, the application
of Artificial Intelligence to their disposal and recycling seems to be a reasonable solution [69].
One of the directions is smart bins [70]. In the first step, they have the possibility to identify
and segregate waste. Next, they choose a suitable disposal method and transfer it to
recycling. In turn, Abeygunawardhana et al. [71] presented the concept of such smart bins
for sorting the most common solid waste—metal, glass, and plastic. Their proposal uses the
convolutional neural network (CNN) system—waste is segregated using image processing
and machine learning algorithms. The use of CNN made it possible to obtain a 70 percent
validation accuracy with a loss of 0.03.
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6. Artificial Intelligence in Battery Waste Recycling

Effective and environmentally friendly waste management is one of the biggest prob-
lems in the whole world. Waste processing and recovery are crucial elements in waste
management systems [72,73]. One of the crucial parts of battery waste management is the
recycling process [74]. Lithium-ion batteries can be recycled using various methods, in-
cluding pyrometallurgical, hydrometallurgical, and biological recycling to recover valuable
metals [75–77]. Figure 1 shows a schematic diagram of the management system and waste
recovery methods for the current batteries (including LiBs).
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The pyrometallurgical approach is based on the high-temperature treatment of the
battery waste in a wide range of temperatures in the furnace. During this process, the
decomposition of organic materials occurs, and new alloys are formed [78]. It is an effective
way to recover metals such as cobalt, nickel, and copper, while lithium, manganese, and
aluminum get into slag or kiln dust. As a consequence, lithium, manganese, and aluminum
can be extracted with a large financial outlay in another process. During this process,
semi-finished products are produced, which, to be reusable, have to be subjected to further
purification. The huge disadvantage of the pyrometallurgical process is the small number
of recyclable materials and low efficiency in the case of low concentrations of recyclable
materials [78,79]. The pyrometallurgical process is quite simple and does not cause any
operational problems, but it causes air pollution and requires a lot of energy [80]. Moreover,
there is no need for sorting or reduction of battery size [81,82]. Low energy consumption
and high recycling efficiency are the hallmarks of hydrometallurgy processes [83]. Hy-
drometallurgical methods of recovering metals from used batteries most often mean acid
leaching, which is based mainly on the application of strong inorganic acids and reduction.
For example, refs. [84–86] proposed the application of sulphuric acid and hydrogen perox-
ide as leaching agents due to the fact that the use of strong inorganic reagents is associated
with technological problems, such as corrosion and rapid destruction of equipment, the
emission of toxic vapors, and the danger of working with strong chemicals, currently. The
interest of scientists is focused on the possibility of applying organic acids (e.g., acetic,
citric, and DL-malic acids) in the leaching process of spent batteries [87,88]. In addition,
an up-and-coming alternative to the pyrometallurgical and hydrometallurgical recovery
of metals from waste batteries is the bioleaching process using microorganisms such as
bacteria and fungi [89,90]. Biological methods of metal recovery allow for the reduction of
the formation of secondary pollutants (including no toxic gas emissions) and, at the same
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time, are characterized by high efficiency, safety, and the relatively low costs of the process.
However, the duration of the reaction in most cases is longer than for the acid leaching
with the use of chemical reagents [91,92].

Since the recycling of metals from battery waste is a complex task, its efficiency
can be improved by the application of various prediction methods, including Artificial
Intelligence [93]. In the paper [94], the Machine Learning approach, including linear
regression, random forest regression, AdaBoost regression, gradient boosting regression,
and XG boost regression, to optimize the metal recovery of Zn and Mn from battery waste
was proposed. As input, data on energy substrate concentration, pH control of bioleaching
media, incubating temperature, and pulp density were used. The maximum Zn and
Mn yield was the output data. It turned out that XG boost regression provided the best
estimation, while linear regression was the least accurate. While the lithium-ion batteries
from electric vehicles cannot be directly reused, the development of effective sorting of cells
is of high importance [95]. In the study [96], the screening method for retired battery packs
was shown. The support vector machine, with an accuracy of 96.8 percent, was applied.
The input data come from 12 retired batteries, i.e., 240 cells, and include their capacities
and resistances. It turned out that the proposed approach can reduce the time needed for
sorting and four-fifths, in comparison to the manual process. In the paper [97], the sorting
methods of lithium-ion batteries in large quantities were described. The degradation
state of the battery was determined with X-ray radiographic scanning and digital image
contrast computation. The proposed approach provides an accuracy of 79 percent. In
turn, in the study [98], the Artificial Intelligence-based sorting method was applied to
the recycling of unused mobile phones. As a first step, the retired batteries from mobile
phones were subjected to magnetic separation, eddy current, and pyrometallurgical and
hydrometallurgical processes. Next, the pictures, which were taken with purified metal,
were classified with the convolutional neural network with rectified linear unit (ReLU)
activation function. To increase the amount of input data, image augmentation was used.

7. Discussion

In e-waste management, it is extremely important to create an eco-system that enables
their proper processing, recycling, and reuse. The recycling processes must be flexible
and adaptable to the next generation of batteries [2]. That leads to sustainable battery
cell production as a green technology of the future [99,100]. In turn, the information
and communication technologies (ICTs) and Internet of Things-based concepts of waste
collection were postulated [43,101–103]. Since smartphones and mobile applications are
commonly used in the information society [104], they can also be used in waste collec-
tion. Such applications are responsible for data collection and transfer on servers. The
Artificial Intelligence-based approaches are reasonable promises in data analysis. Artificial
Intelligence-based algorithms can also be helpful in the estimation of the influence of the
first battery life on the recycled one, and this context, the evaluation of the different recycled
materials [105]. The early prediction of the battery life cycle provides a decrease in its
degradation process, while it is associated with the non-linear character of this process [106].
To enable battery monitoring in real-time cloud computing, in particular cloud storage,
as well as blockchain [107,108] and the digital twin-based battery cloud management sys-
tem [109,110] can be applied. Moreover, high-performance processor units can accelerate
the whole computational operation, including learning processes. Based on the battery field
data for low dynamics and high dynamics (capacity, nominal voltage, weight, cathodes,
and anode material), and impedance, the digital twin can be used for online monitoring
of the electrode level [111]. In the case of the field data, several factors affect the accuracy
of the identification, including the sampling rate and sensor rate. With the increase in the
sampling rate, the computational and storage costs increase. The resulting sampling rate is
a compromise between the accuracy of identification and the cost incurred. Thus, Artificial
Intelligence-based algorithms are the promising direction in the production, manufacturing,
optimization, and monitoring of batteries [20].
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It is known that Artificial Intelligence-based algorithms, in particular Machine Learn-
ing techniques, require a large amount of data to be trained and tested; however, their
quality is not without significance. Datasets that are too small or contain low-quality data
can lead to incorrect predictions. Thus, the first step to developing Artificial Intelligence-
based algorithms is the implementation of adequate acquisition, storing, and management
of the data. Providing good quality, reliable data is of high importance [17]. To ensure the
amount of data that is appropriate to train the models, for example, in [18] to predict the
state of battery charge, a training set was created in the laboratory by applying drive cycle
loads at various ambient temperatures to a Li-ion battery and supplemented with data from
the public database Panasonic 18650PF Li-ion Battery Data, which includes HPPC, drive
cycles, and impedance spectroscopy tests that were performed taking into account the tem-
perature impact [112]. Taking into account the algorithms’ accuracy, the most commonly
used split for training to testing data that is applied in the Artificial Intelligence-based
algorithms is 90% to 10%, while in many papers in the field of waste management, a 70%
to 30% split for training to testing data is considered [56,113]. The relatively small amount
of data might lead to overfitting issues; to avoid this, one can combine theoretical data
with experimental measurements or/and apply the algorithms that are dedicated to the
small dataset, for example, the hierarchical Machine Learning approach [17]. Another
issue is connected with the lack of data standardization, in particular for experimental
data in the material sciences [114]. Moreover, the cross-validation of different Artificial
Intelligence-based algorithms should be attached to detect overfitting.

An important aspect is also data security, especially for data from households and
institutions [115]. It is connected with privacy laws and a lack of regulation, to the author’s
knowledge, that protects personal waste, including e-waste and battery waste. This may
limit the intelligent waste management systems [116] while opening access to individual
household data.

On the other hand, intelligent sorting of waste materials can also significantly decrease
waste management costs and increase efficiency. Thus, manual source segregation provides
a higher possibility of waste recovery, a tedious and time-consuming process. The automa-
tion process will not only improve its efficiency but also positively affect the employees’
health [45].

It is also worth stressing that all waste management systems, including battery waste
management, consume energy, mostly from batteries in the devices/sensor used in the
solutions. At the same time, they can be replaced by renewable energy sources such as
photovoltaic panels for battery charge [117].

To summarize, the algorithmic performance comparison in terms of their types and
accuracy has been done in Table 1. For waste classification and sorting based on im-
age recognition algorithms like deep neural networks, region-based convolutional neural
networks, convolution neural networks, support vector machines, k-nearest neighbor,
and random forest were applied. Convolution neural networks provide the highest effi-
ciency [40,118–120]. In turn, random forest, multilayer perceptron neural networks and
convolution neural networks were also successfully applied to waste management [50,121],
while the support vector machine and naive Bayes provide lower accuracy. For a forecast
of the number of annual waste generation AI-based algorithms, including support vector
machine, fuzzy logic–support vector regression, adaptive neuro-fuzzy inference system,
artificial neural network, k-nearest neighbors have been proposed. It turned out that the
highest accuracy of prediction can be obtained using an adaptive neuro-fuzzy inference sys-
tem [55]. For the optimization of the metal recovery from battery waste using an automated
neural network, linear regression, random forest regression, AdaBoost regression, gradient
boosting regression, and XG boost regression were applied. It turned out that in the case
of Zn recovery, the highest accuracy provides automated neural network [113], while in
the case of Mn recovery, XG boost regression was used [94]. Moreover, the optimization
linear regression provide the wrong prediction, namely a negative value for non-negative
property, in the case of the metal recovery of Zn from battery waste.
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Table 1. Comparison of the Artificial Intelligence-based, in particular Machine Learning-based
algorithms in terms of application types and accuracy.

Ref. AI-Based Algorithms Type of Operation Accuracy [%] Datasets

[66] Region-based Convolutional
Neural Network

waste classification
based on image

recognition
81.40 800 pictures of waste (3456 × 4608,

600 pixels)

[122] Convolution Neural Networks
waste classification

based on image
recognition

87.69

Garbage In Images (GINI) dataset
https://github.com/spotgarbage/

spotgarbage-GINI (accessed on
1 September 2022)

[67] Region-based Convolutional
Neural Network

construction waste
classification based on

image recognition
(nails and screws)

89.10 A number of pictures of nails and screws

[42] Convolution Neural Networks
waste classification

based on image
recognition

90.00 2298 pictures (i.e., 223 batteries,
91 syringes, 1984 non-hazardous trash)

[123]
Support Vector Machine

k-Nearest Neighbor
Random Forest

waste classification
based on image

recognition

93.00
93.00
93.00

1200 pictures (400 pictures for each class,
i.e., glass, paper, metal, plastic)

[118]
Deep Neural

Networks for Trash
Classification

waste classification
based on image

recognition

94.00 (Trashnet
dataset)

98.00 (VN-trash
dataset)

5904 images of waste, divided into three
classes, including Organic, Inorganic and

Medical wastes (VN-trash dataset)
2400 images of waste, divided into six

classes, including glass, paper, cardboard,
plastic, metal,

and trash (Trash-net dataset)

[124] Support Vector Machine
waste classification

based on image
recognition

94.70 Pictures of waste

[125] Convolution Neural Networks
waste classification

based on image
recognition

96.50 waste pictures from Google search and
existing published image databases

[41]
Convolution Neural Networks
Region-based Convolutional

Neural Network

waste classification
based on image

recognition

93.30
96.70

16,384
(128 × 128) pictures of e-waste

[40] Support Vector Machine
Solid waste

classification based on
image recognition

99.40
220 pictures of waste (i.e., 60 rotated bin

images, 100 unrotated bin images,
800 × 600 pixels)

[119] Convolution Neural Networks
waste classification

based on image
recognition

99.60

10,108 waste images (i.e., 2527 pictures of
flipping horizontal, 2527

pictures of flipping vertical, and
2527 random 25◦ rotations)

[126] Convolution Neural Networks waste sorting based on
image recognition 91.72 Pictures of waste (227 × 227 pixels)

[120] Convolution Neural Networks waste sorting based on
image recognition 94.71 1040 images of waste

[63] Convolution Neural Networks,
Support Vector Machines

waste sorting based on
image recognition

94.80
83.00 2000 images of waste

[127] Convolution Neural Networks waste sorting based on
image recognition 95.00

2400 images of waste, divided into six
classes, including glass, paper, cardboard,

plastic, metal,
and trash (Trash-net dataset)

https://github.com/spotgarbage/spotgarbage-GINI
https://github.com/spotgarbage/spotgarbage-GINI
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Table 1. Cont.

Ref. AI-Based Algorithms Type of Operation Accuracy [%] Datasets

[68] Support Vector Machines
COVID-19 pandemic

waste sorting based on
image recognition

96.50 2400 images of waste

[128] Convolution Neural Networks e-waste sorting based
on image recognition 96.00 8000 pictures of electronic devices

[129] Convolution Neural Networks waste sorting based on
image recognition 99.00 1241 pictures of waste

[50] Convolution Neural Networks waste management 96.00 200 pictures of waste

[53] Multi-layer Perceptron
Artificial Neural Network

forecast of the number
of annual waste

generation
95.00 solid waste generation rates (kg per

capita–1 day–1) in Bahrain (1997–2016)

[121]

Support vector machine
Random Forest

Multilayer perceptron
Naive Bayes

waste management

89.52
97.49
96.44
81.46

2947 pictures of waste

[56] Fuzzy Logic–Support Vector
Regression

estimation of waste
generation rates 92.00 105 × 7 matrices, representing

static data: 105 samples of 7 elements

[55]

Support Vector Machine
Adaptive Neuro-fuzzy

Inference System
Artificial Neural Network

k-Nearest Neighbours

waste generation
forecasting

71.00
98.00
46.00
51.00

collection of monthly time series of waste
generation from the period of eighteen

years (1996–2014)

[71] Convolutional Neural
Network

waste sorting based on
image recognition 70.00

2400 images of waste, divided into six
classes, including glass, paper, cardboard,

plastic, metal,
and trash (Trash-net dataset)

[36]
Gradient-boosted decision

trees (GBT)
Random Forest

prediction of the
characteristics of the

electrodes

93.48
91.75

96 cathode-related, and 75 anode-related
electrodes and
half-cell data

[113] Automated Neural Network
(SANN)

optimization of metal
recovery of Zn from

battery waste
94.00 Experimental data-two sets of

29 data samples for Zn and Mn yield

[94]

Linear Regression
Random Forest Regression

AdaBoost Regression
Gradient Boosting Regression

XG Boost Regression

optimization of metal
recovery of Zn from

battery waste

−42.33
88.02
82.67
96.76
99.88

Experimental data-sets of
29 data samples for Zn yield

[94]

Linear Regression
Random Forest Regression

AdaBoost Regression
Gradient Boosting Regression

XG Boost Regression

optimization of metal
recovery of Mn from

battery waste

19.36
22.96
12.32
61.25
95.97

Experimental data-sets of
29 data samples for Mn yield

8. Conclusions

Despite the recent developments in battery production and battery waste management,
there is still a need to fill the gap between laboratory studies and real-world applications.
In this review, we presented the recent capabilities of Artificial Intelligence, in particular
Machine Learning and computational intelligence to develop algorithms, which can support
effective battery life cycles, from projecting and production to battery waste management
and recycling in accordance with the model of the closed circular economy. It turned
out that convolution neural networks provide the most effective IT tools to evaluate the
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classification and sorting of waste [40,118–120], in particular, battery waste based on image
recognition algorithms as well as waste management [50,121], while the adaptive neuro-
fuzzy inference system provides the prediction of annual waste generation with higher
accuracy [55]. In effective recycling, a high percentage of recycled raw materials is an
important issue. The prediction of it can also be successfully made with an Artificial
Intelligence-based approach [94,113]. Some of the recommendations for future research are:

1. Since the development of efficient Artificial Intelligence-based algorithms strictly
provides an adequate amount of good-quality data, the development of a standardized
public database, which will contain battery data [17], for example, sleep data-national
sleep research resource (NSRR, the database that contains physiological signals and clinical
data [130]). In turn, many prediction algorithms can be based in part on experimental
data from published papers and technical reports. Here, also involving the text mining
methods to extract and analyze the results and conclusions already obtained will be good
practice [131,132];

2. The analysis of the relationship between manufacturing factors and anode and
cathode parameters, taking into account other battery manufacturing processes such as
slurry mixing and calendaring based on an Artificial Intelligence approach [36];

3. The development of the battery multiscale models [133];
4. The development of sorting and separation technologies supported by Artificial

Intelligence, which can increase the efficiency of recycling [134];
5. The development of local recycling or pretreating, which can reduce the cost of

hazardous LIBs transport [135];
6. The increase in the accuracy of waste detection and identification based on Artificial

Intelligence, in particular Machine Learning and computational intelligence [136];
7. Increasing the speed of data transfer, which is especially important in the part of

waste management, in particular battery waste, related to efficient collection [137];
8. The security of the data, while the intelligent waste management systems open

access to individual household data [115].
Moreover, strict legal regulations must also be established in the area of battery waste,

including greater producer responsibility. The recycling capacity has been developed
mostly in places with significant recycling regulations, like China [138]. Moreover, the
European Union has suggested legislation in the area of battery collections, labeling, and
recycling [139].
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127. Bircanoğlu, C.; Atay, M.; Beser, F.; Genc, O.; Kizrak, M.A. RecycleNet: Intelligent Waste Sorting Using Deep Neural Networks.
In Proceedings of the Innovations in Intelligent Systems and Applications (INISTA) 2018, Thessaloniki, Greece, 3–5 July 2018;
pp. 1–7.

128. Madhav, A.S.; Rajaraman, R.; Harini, S.; Kiliroor, C.C. Application of artificial intelligence to enhance collection of E-waste: A
potential solution for household WEEE collection and segregation in India. Waste Manag. Res. 2022, 40, 1047–1053. [CrossRef]

129. Gondal, A.U.; Sadiq, M.I.; Ali, T.; Irfan, M.; Shaf, A.; Aamir, M.; Shoaib, M.; Glowacz, A.; Tadeusiewicz, R.; Kantoch, E. Real Time
Multipurpose Smart Waste Classification Model for Efficient Recycling in Smart Cities Using Multilayer Convolutional Neural
Network and Perceptron. Sensors 2021, 21, 4916. [CrossRef]

130. National Sleep Research Resource. Available online: https://sleepdata.org/ (accessed on 19 October 2022).
131. Torayev, A.; Magusin, P.C.M.M.; Grey, C.P.; Merlet, C.; Franco, A.A. Text Mining Assisted Review of the Literature on Li-O2

Batteries. J. Phys. Mater. 2019, 2, 044004. [CrossRef]
132. El-Bousiydy, H.; Lombardo, T.; Primo, E.N.; Duquesnoy, M.; Morcrette, M.; Johansson, P.; Simon, P.; Grimaud, A.; Franco, A.A.

What can text mining tell us about Lithium-Ion battery researchers’ habits? Batter. Supercaps 2021, 4, 689. [CrossRef]
133. Gayon-Lombardo, A.; Mosser, L.; Brandon, N.P.; Cooper, S.J. Pores for Thought: The Use of Generative Adversarial Networks for

the Stochastic Reconstruction of 3D Multi-Phase Electrode Microstructures with Periodic Boundaries. Comput. Mater. 2020, 6, 82.
[CrossRef]

134. Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial intelligence
and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Autom. Contr. 2022,
141, 104440. [CrossRef]

135. Yu, X.; Li, W.; Gupta, V.; Gao, H.; Tran, D.; Sarwar, S.; Chen, Z. Current Challenges in Efficient Lithium-Ion Batteries’ Recycling: A
Perspective. Glob. Chall. 2022, 2022, 2200099. [CrossRef]

136. Yu, K.H.; Zhang, Y.; Li, D.; Montenegro-Marin, C.E.; Kumar, P.M. Environmental planning based on reduce, reuse, recycle and
recover using artificial intelligence. Environ. Impact Assess. Rev. 2021, 86, 106492. [CrossRef]

137. Rahman, M.W.; Islam, R.; Hasan, A.; Bithi, N.I.; Hasan, M.; Rahman, M.M. Intelligent waste management system using deep
learning with IoT. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 2072–2087. [CrossRef]

138. Bird, R.; Baum, Z.J.; Yu, X.; Ma, J. The Regulatory Environment for Lithium-Ion Battery Recycling. ACS Energy Lett. 2022, 7,
736–740. [CrossRef]

139. Ali, H.; Khan, H.A.; Pecht, M. Preprocessing of spent lithium-ion batteries for recycling: Need, methods, and trends. Renew.
Sustain. Energy Rev. 2022, 168, 112809. [CrossRef]

http://doi.org/10.1088/0965-0393/18/6/065008
http://doi.org/10.1016/j.jclepro.2019.118529
http://doi.org/10.1109/ACCESS.2019.2959033
http://doi.org/10.1016/j.resconrec.2020.105132
http://doi.org/10.1016/j.resconrec.2021.105543
http://doi.org/10.1155/2021/5942574
http://doi.org/10.1016/j.wasman.2019.03.032
http://doi.org/10.1002/cpe.5751
http://doi.org/10.1177/0734242X211052846
http://doi.org/10.3390/s21144916
https://sleepdata.org/
http://doi.org/10.1088/2515-7639/ab3611
http://doi.org/10.1002/batt.202100076
http://doi.org/10.1038/s41524-020-0340-7
http://doi.org/10.1016/j.autcon.2022.104440
http://doi.org/10.1002/gch2.202200099
http://doi.org/10.1016/j.eiar.2020.106492
http://doi.org/10.1016/j.jksuci.2020.08.016
http://doi.org/10.1021/acsenergylett.1c02724
http://doi.org/10.1016/j.rser.2022.112809

	Introduction 
	Materials and Methods 
	Artificial Intelligence in Battery Production and Monitoring 
	Artificial Intelligence in Waste Management, Including Battery Waste Management Systems 
	Artificial Intelligence in the Waste Sorting 
	Artificial Intelligence in Battery Waste Recycling 
	Discussion 
	Conclusions 
	References

