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Abstract—It is commonly agreed that shear horizontal (SH) 

surface acoustic waves cannot exist on an elastic half-space or at 

the interface between two different elastic half-spaces. However, 

in this paper (inspired by the newly developed elastic 

metamaterials) we will show that SH surface elastic waves can 

propagate at the interface between two elastic half-spaces, 

providing that one of them is a metamaterial half-space with a 

negative elastic compliance 𝒔𝟒𝟒(𝝎). In addition, if 𝒔𝟒𝟒(𝝎) changes 

with frequency 𝝎 as the dielectric function 𝜺(𝝎) in Drude's model 

of metals, then the proposed SH ultrasonic waves can be 

considered as an acoustic analogue of Surface Plasmon Polariton 

(SPP) electromagnetic waves propagating at the metal-dielectric 

interface. Analytical expressions for the dispersion equation, 

phase and group velocities of the new SH elastic surface wave were 

developed. The newly discovered SH elastic surface wave inherits 

many of extraordinary properties of SPP electromagnetic waves 

such as: strong subwavelength concentration of the wave field in 

the proximity of the guiding interface, low phase and group 

velocity etc. Therefore, the proposed new SH ultrasonic surface 

waves can potentially be used in: a) near-field subwavelength 

acoustic imaging, b) acoustic sensors with extremely large mass 

sensitivity, c) wave trapping (zero group and energy velocity) and 

d) non-reciprocal and topological waveguides.  
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I. INTRODUCTION  

The subject of this study will be a remarkable discovery of a 
new type of elastic surface waves propagating at the interface 
between two elastic half-spaces, one of which is a metamaterial.  

The newly discovered Shear Horizontal (SH) elastic surface 
waves have only one component of mechanical displacement in 
the direction perpendicular to the direction of propagation and 
parallel to the interface.  

At the beginning it will be instructive to ask the following 
question: "How often new types of elastic surface waves appear 
in the theory of elastodynamics"? The answer to this question 
can be discerned from Table 1 presented above [1-9].  

 

TABLE I.  MAIN TYPES OF ELASTIC SURFACE WAVES 

DISCOVERED IN RECENT 140 YEARS  

 
Indeed, according to Table 1 the discovery of the newest type 

of elastic surface waves (2022) and the precedent type of surface 
waves (1971) is separated by a time gap of 51 years.  

The newest type of SH elastic surface waves discovered in 
2022 is characterized by one crucial feature, i.e., the newly 
discovered elastic surface waves are exact analogue of 
electromagnetic surface wave of the Surface-Plasmon-Polariton 
type, which propagate at the metal-dielectric interface [10-12].  

These two types of waves have similar: 1) distribution of 
wave fields, 2) dispersion equations etc. A very intriguing 
property of the new SH ultrasonic wave is that it slows down, 
i.e., the phase and group velocities tend to zero as the wave 
frequency approaches the surface resonant frequency 𝜔 → 𝜔𝑠𝑝 

(see Figs. 2 and 3). This property is crucial in potential 
applications of the new SH ultrasonic wave in near-field 
acoustic microscopy with subwavelength resolution.  

The newest SH elastic surface waves discovered in 2022 
have a number of unique properties, such as:  

 

No Discovered by 
Year of 

discovery 
Waveguide 

1 Lord Rayleigh 1885 elastic half-space 

2 A.E.H. Love 1911 
layered elastic half-
space 

3 H. Lamb 1917 free plate 

4 R. Stoneley 1924 
interface between 
two elastic half-
spaces 

5 J.G. Sholte 1947 
interface between 
elastic half-space 
and liquid  

6 
J.L. Bleustein, Y. 

Gulyaev 
1968 

piezoelectric half-
space 

7 
C. Maerfeld, P. 

Tournois 
1971 

interface between 
two piezoelectric 
half-spaces 

8 P. Kiełczyński 2022 
interface between 
metamaterial and 
elastic half-space  
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1) deeply subwavelength (~𝜆/20) penetration depth  

2) high concentration of energy in the vicinity of the guiding  
      interface  

3) very low phase and group velocities tending simultaneously  
      to zero (→ 0)  

4) relatively simple mathematical model.  

Consequently, the newly discovered (2022) elastic surface 
waves have a huge potential for novel applications, such as:  

1. near-field subwavelength acoustic imaging 

2. sensors with giant sensitivity 

3. wave trapping (zero group and energy velocity) 

4. non-reciprocal and topological waveguides. 

II. PHYSICAL MODEL  

The geometry of the waveguide supporting new SH elastic 
surface waves is sketched in Fig.1. The waveguide consists of 
two semi-infinite elastic half-spaces, one of which is a 
conventional elastic material (𝑥2 ≥ 0) and the second an elastic 
metamaterial (𝑥2 < 0)  with a negative elastic compliance 

𝑠44
(1)(𝜔) < 0, which is a function of angular frequency 𝜔. By 

contrast, the densities (𝜌1, 𝜌2) > 0 in both half-spaces as well as 

the elastic compliance 𝑠44
(2) > 0  in the conventional elastic 

material are positive and frequency independent (see Fig.1).  
Two elastic half-spaces, rigidly bonded at the interface 𝑥2 =

0, are uniform in the direction 𝑥3, therefore all field quantities 
of the new SH elastic surface wave will vary only along the 
transverse direction 𝑥2, i.e., as a function of distance from the 
guiding interface 𝑥2 = 0. It is assumed that both half-spaces of 
the waveguide are linear and lossless.  
 

 

Fig. 1. Cross-section of the waveguide supporting the newly proposed SH 

elastic surface waves, propagating in the direction 𝑥1 , with exponentially 

decaying fields in the transverse direction 𝑥2. The conventional elastic half-

space (𝑥2 ≥ 0) is rigidly bonded to the metamaterial elastic half-space (𝑥2 < 0) 

at the interface 𝑥2 = 0. Mechanical displacement 𝑢3  of the new SH elastic 

surface waves is polarized along 𝑥3.  

A. Elastic compliance 𝑠44
(1)(𝜔) in the metamaterial half- 

       space (𝑥2 < 0)  

The important assumption made throughout this paper is 

about the elastic compliance 𝑠44
(1)(𝜔) in the metamaterial half-

space ( 𝑥2 < 0 ). Namely, it is assumed that 𝑠44
(1)(𝜔) , as a 

function of angular frequency 𝜔 , is given explicitly by the 
following formula:  

 

                           𝑠44
(1)
(𝜔) = 𝑠0 (1 −

𝜔𝑝
2

𝜔2
)                                (1)  

 
where: 𝜔𝑝  is the angular frequency of the local mechanical 

resonators in the metamaterial and 𝑠0  is its reference elastic 
compliance for 𝜔 → ∞.  

It is not difficult to notice that the elastic compliance 𝑠44
(1)(𝜔) 

given by Eq.1, is formally identical to the dielectric function 
𝜀(𝜔)  in Drude's model of metals [13], in which the angular 
frequency 𝜔𝑝 is named the angular frequency of bulk plasmon 

resonance [14].  
Similarly, the density 𝜌1  of the metamaterial half-space 

(𝑥2 < 0) corresponds to the magnetic permeability 𝜇 in Drude's 
model of metals. 

The second elastic half-space (𝑥2 > 0) is a conventional 

elastic material with a positive compliance 𝑠44
(2)
> 0 and density 

𝜌2 that are both frequency independent.  

III. THEORY  

Love surface waves have only one SH (shear-horizontal) 
component of the mechanical displacement 𝑢3  polarized 
perpendicular to the direction of propagation 𝑥1 and parallel to 
the surface (along the 𝑥3 axis), see Fig.1.  

A. Mechanical Displacement and Shear Stresses  

The energy of the new SH surface wave is concentrated in 
the proximity of the interface. For the new wave to be a surface 
wave, its mechanical displacement 𝑢3  should decrease 
exponentially with increasing distance from the interface (𝑥2 =
0), namely:  

1) variation of 𝑢3
(1)

 along with the shear stress 𝜏23
(1)

 in the lower 

elastic metamaterial half-space (𝑥2 < 0):  

       𝑢3
(1)(𝑥1, 𝑥2, 𝑡) = 𝐴 ∙ 𝑒𝑥𝑝(𝑞1𝑥2) ∙ 𝑒𝑥𝑝[𝑗(𝐾𝑥1 −𝜔𝑡)]        (2)  

        𝜏23
(1) =

1

𝑠44
(1)𝐴 ∙ 𝑞1 ∙ 𝑒𝑥𝑝(𝑞1𝑥2) ∙ 𝑒𝑥𝑝[𝑗(𝐾𝑥1 − 𝜔𝑡)]          (3)  

2) variation of 𝑢3
(2)

 along with the shear stress 𝜏23
(2)

 in the upper 

conventional elastic half-space (𝑥2 > 0):  

    𝑢3
(2)(𝑥1, 𝑥2, 𝑡) = 𝐵 ∙ 𝑒𝑥𝑝(−𝑞2𝑥2) ∙ 𝑒𝑥𝑝[𝑗(𝐾𝑥1 − 𝜔𝑡)]       (4)  

    𝜏23
(2) =

1

𝑠44
(2)𝐵 ∙ (−𝑞2) ∙ 𝑒𝑥𝑝(−𝑞2𝑥2) ∙ 𝑒𝑥𝑝[𝑗(𝐾𝑥1 − 𝜔𝑡)]    (5)  

where: 𝑞1 and 𝑞2 are the transverse wavenumbers of the new SH 
elastic surface wave. They should be positive to ensure that the 
new SH wave is a surface wave. 𝐾 is the wave number (wave 
vector) of the new elastic surface wave and 𝜔 is the angular 
frequency. 𝐴 and 𝐵 are constants.  
 



B. Governing Equations  

The mechanical displacements of the surface wave: 𝑢3
(1)

 in 

the lower metamaterial elastic half space and 𝑢3
(2

 in the upper 

conventional elastic half-space satisfy the following equations 
of motion, respectively:  

                           
1

𝑣1
2

𝜕2𝑢3
(1)

𝜕𝑡2
=

𝜕2𝑢3
(1)

𝜕𝑥1
2 +

𝜕2𝑢3
(1)

𝜕𝑥2
2                              (6)  

                           
1

𝑣2
2

𝜕2𝑢3
(2)

𝜕𝑡2
=

𝜕2𝑢3
(2)

𝜕𝑥1
2 +

𝜕2𝑢3
(2)

𝜕𝑥2
2                              (7)  

C. Boundary Condidtions  

The continuity of a) mechanical displacement 𝑢3  and b) 
shear stress 𝜏23  on the interface (𝑥2 = 0) of two half-spaces, 
should be provided, namely:  

                        𝑢3
(1)|

𝑥2=0
= 𝑢3

(2)|
𝑥2=0

                                    (8)  

                        𝜏23
(1)|

𝑥2=0
= 𝜏23

(2)
|
𝑥2=0

                                     (9)  

D. Dispersion Equation  

By introducing Eq.2 into Eq.6 and Eq.4 into Eq.7, we obtain 
the analytical formulas for the transverse wavenumbers 𝑞1 and 
𝑞2  as a function of the longitudinal wavenumber 𝐾 . 
Subsequently, we substitute equations 2-5 to the boundary 
conditions Eqs.8 and 9. As a result, we obtain a system of two 
linear and homogeneous equations for the coefficients 𝐴 and 𝐵. 
Zeroing of the determinant of the system leads to the dispersion 
equation of a new elastic wave.  

After some algebraic manipulations, we arrive at the 
following dispersion equation for a new SH elastic surface 
wave:  

     𝐾(𝜔) = 𝜔 ∙ √
𝑠44
(2)
∙𝑠44
(1)(𝜔)

(𝑠44
(2)
+𝑠44

(1)(𝜔))
∙ √

𝑠44
(2)
∙𝜌1−𝑠44

(1)(𝜔)∙𝜌2

(𝑠44
(2)
−𝑠44

(1)(𝜔))
               (10)  

More details concerning the new SH wave and the derivation of 
the dispersion equation can be found in [15].  

E. Phase Velocity  

 

Fig. 2. Phase velocity of the new wave versus frequency.  

The analytical expression for the phase velocity 𝑣𝑝(𝜔) of 

the surface wave can be directly derived from Eq.10.  

      𝑣𝑝(𝜔) =
𝜔

𝐾
= √

(𝑠44
(2)
+𝑠44

(1)
(𝜔))

𝑠44
(2)
∙𝑠44
(1)
(𝜔)

∙ √
(𝑠44
(2)
−𝑠44

(1)
(𝜔))

(𝑠44
(2)
∙𝜌1−𝑠44

(1)
(𝜔)∙𝜌2)

       (11)  

F. Group velocity  

The analytical expression for the group velocity 𝑣𝑔𝑟(𝜔) of 

the new SH elastic surface wave has been developed by 
differentiating the formula (10) with respect to 𝜔.  

𝑣𝑔𝑟(𝜔) =
𝑑𝜔

𝑑𝐾
=

1

𝑣𝑝(𝜔)

2∙((𝑠44
(2)
)
2
−(𝑠44

(1)(𝜔))
2

)

2𝑠44
(2)
𝑠44
(1)(𝜔)(𝑠44

(2)
∙𝜌1−𝑠44

(1)(𝜔)∙𝜌2)−𝜔𝑠44
(2)
 
𝑑𝑠44
(1)

(𝜔)

𝑑𝜔
 

{
 

 

(𝑠44
(2)
∙𝜌1−2𝑠44

(1)(𝜔)∙𝜌2)+2(𝑠44
(1)(𝜔))

2

 
(𝑠44
(2)

∙𝜌1−𝑠44
(1)

(𝜔)∙𝜌2)

(𝑠44
(2)

)
2
−(𝑠44

(1)
(𝜔))

2

}
 

 
    

                                                                                              (12)  

IV. RESULTS  

Numerical calculations were performed on the example of 
the waveguide structure in which the upper half-space is made 
of PMMA polimer and the lower half-space is based on ST 
Quartz with embedded local oscillators. We assume that, the 
frequency of the local oscillators equals 1 MHz. Losses in the 
waveguide structure are neglected. The exact values of the 
material parameters used in the calculations can be found in 
[15].  

A. Phase Velocity  

Using the formula (11), the graph of the phase velocity 
𝑣𝑝(𝜔)  as a function of frequency  𝑓 was calculated and 

presented in Fig. 2. In our calculations the surface resonant 

frequency 𝑓𝑠𝑝 = 𝑓𝑝 √1 + 𝑠44
(2)

𝑠0⁄⁄  is equal to 143.569 𝑘𝐻𝑧.  

B. Group Velocity  

Figure (3) shows the relation between the group velocity 
𝑣𝑔𝑟(𝜔) of the new wave and the wave frequency 𝑓. The group 

velocity was calculated using formula (12).  

 

Fig. 3. Group velocity of the new wave versus frequency.  



C. Dispersion Curve  

The dispersion curve (i.e., wave frequency 𝑓 versus 
wavenumber 𝐾) was evaluated using the formula (10). Figure 4 
shows a plot of the dispersion curve of a new SH elastic wave.  

 

Fig. 4. Dispersion curve (𝑓 − 𝐾) of new SH acoustic surface waves.  

B. Mechanical Displacement  

Figure 5 displays the distribution of the mechanical 
displacement 𝑢3(𝑥2) of the new SH elastic surface wave as a 
function of the distance |𝑥2| from the guiding interface.  

V. CONCLUSIONS  

Based on the results of research presented in this paper, we 
can draw the following conclusions:  

1. We proved that the new SH elastic surface waves can exist at 
the interface of two elastic half-spaces one of which is an elastic 

metamaterial with a negative compliance 𝑠44
(1)
(𝜔) ∙ 𝑠44

(2)
< 0  

2. The new SH elastic surface waves can be considered as an 
elastic analogue of the electromagnetic SPP waves, due to strong 
formal similarities of their mathematical models  

 

 

Fig. 5. Distribution of the mechanical displacement of the new elastic wave 
along the vertical axis 𝑥2.  

3. A very intriguing property of the new SH wave is that its 
phase and group velocities slow down and tend simultaneously 
to zero when the wave frequency approaches the surface 
resonant frequency 𝑓𝑠𝑝 (wave trapping)  

4. The new elastic surface wave is characterized by a strong 
concentration of energy in the proximity of the interface. From 
this reason, the newly discovered elastic surface wave can be 
applied in sensors with extremely large mass sensitivity and 
near-field acoustic microscopy  

5. Newly discovered SH elastic surface wave can enhance the 
evanescent waves, Due to this property, the new elastic waves 
can be applied in superlensing and subwavelength acoustic 
imaging.  
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