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INFECTION SPREADING IN CELL CULTURE AS A REACTION-DIFFUSION
WAVE

Latifa Ait Mahiout1, Nikolai Bessonov2, Bogdan Kazmierczak3,
Georges Sadaka4 and Vitaly Volpert5,6,7,*

Abstract. Infection spreading in cell culture occurs due to virus replication in infected cells and its
random motion in the extracellular space. Multiplicity of infection experiments in cell cultures are
conventionally used for the characterization of viral infection by the number of viral plaques and the
rate of their growth. We describe this process with a delay reaction-diffusion system of equations for
the concentrations of uninfected cells, infected cells, virus, and interferon. Time delay corresponds to
the duration of viral replication inside infected cells. We show that infection propagates in cell culture
as a reaction-diffusion wave, we determine the wave speed and prove its existence. Next, we carry out
numerical simulations and identify three stages of infection progression: infection decay during time
delay due to virus replication, explosive growth of viral load when infected cells begin to reproduce
it, and finally, wave-like infection progression in cell culture characterized by a constant or slowly
growing total viral load. The modelling results are in agreement with the experimental data for the
coronavirus infection in a culture of epithelial cells and for some other experiments. The presence of
interferon produced by infected cells decreases the viral load but does not change the speed of infection
progression in cell culture. In the 2D modelling, the total viral load grows faster than in the 1D case
due to the increase of plaque perimeter.
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4 Laboratoire de Mathématiques Raphaël Salem, Université de Rouen Normandie, CNRS UMR 6085, Avenue de l’Université,
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1. Introduction

1.1. Infection progression in cell culture

Virus replication occurs inside host cells due to a complex multi-stage process resulting in production of
new virions expelled from the infected cell into the extracellular space [3]. Each cell can produce hundreds
or even thousands of new virus particles often dying after that, which depends on cell type and on specific
properties of viral infection. Let us note that some viruses, including the coronavirus SARS-CoV-2, develop
special mechanisms influencing cell cycle and provide a more efficient replication [17].

Experimental or clinical assessment of the progression of viral infection implies the evaluation of virus con-
centration in the infected tissue by means of conventional multiplicity of infection (MOI) assays (see, e.g.,
[6, 7, 11, 14, 16] and the references therein). After several consecutive dilutions, the virus-containing solution is
poured in a cell culture leading to the formation of virus plaques. The number of such plaques determines the
virus concentration measured in plaque forming units (PFU). The plaques consist of dead or modified cells, and
it forms due to virus replication inside the cells and its random motion (diffusion) between cells. The plaque
growth rate characterizes the efficacy of virus penetration inside the cells, the intensity of its production and
transmission between cells, thus, the virus virulence.

In spite of the importance and wide use of these experiments, there are relatively few modelling works devoted
to the infection progression in cell culture taking into account spatial distributions of cells and virus particles. A
reaction-diffusion model of plaque growth is considered in [22] in the case of reversible host infection. The plaque
growth rate is determined by the method of linearization (cf. Sect. 3.1). Numerical simulations of viral plaque
growth described by a reaction-diffusion model with time delay are presented in [10]. This model is different in
comparison with the model (1.1)–(1.3) considered below, and these different approaches are complementary (see
Discussion for more detail). Existence of solutions of an initial-boundary value problem for a reaction-diffusion
model of viral infection is proved in [12]. Individual based models of viral infection spreading in cell cultures
are developed in [1, 15].

In this work we continue to study viral plaque growth with a delay reaction-diffusion system of equation, in
line with the previous investigations but with a different model, which seems to us more appropriate, and more
complete results. The model is presented in the next section and the main results in Section 1.3.

1.2. Model formulation

We consider the system of equations

𝜕𝑈

𝜕𝑡
= −𝑎𝑈𝑉, (1.1)

𝜕𝐼

𝜕𝑡
= 𝑎𝑈𝑉 − 𝛽𝐼, (1.2)

𝜕𝑉

𝜕𝑡
= 𝐷

𝜕2𝑉

𝜕𝑥2
+ 𝑏𝐼𝜏 − 𝜎𝑉 (1.3)

describing virus spread in cell culture. Here 𝑈 is the concentration of uninfected cells, 𝐼 of infected cells, 𝑉 of
virus, 𝐼𝜏 (𝑥) = 𝐼(𝑥, 𝑡− 𝜏). Below in this work we will also consider a more complete model taking into account
interferon production by infected cells, and a 2D formulation of this model.

If we neglect death of infected cells (𝛽 = 0), and we will see below that this assumption is appropriate for
some experiments, then from equations (1.1), (1.2), we get 𝑈 + 𝐼 = 𝑤0, where 𝑤0 is some constant. In this case
we can reduce system (1.1)–(1.3) to the following system of two equations:

𝜕𝐼

𝜕𝑡
= 𝑎(𝑤0 − 𝐼)𝑉, (1.4)

𝜕𝑉

𝜕𝑡
= 𝐷

𝜕2𝑉

𝜕𝑥2
+ 𝑏𝐼𝜏 − 𝜎𝑉. (1.5)
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In the study of travelling wave solution, we substitute

𝐼(𝑥, 𝑡) = 𝑤(𝑥− 𝑐𝑡), 𝑉 (𝑥, 𝑡) = 𝑣(𝑥− 𝑐𝑡)

and obtain the following system of equations:

𝑐𝑤′ + 𝑎(𝑤0 − 𝑤)𝑣 = 0, (1.6)
𝐷𝑣′′ + 𝑐𝑣′ + 𝑏𝑤(𝜉 + 𝑐𝜏)− 𝜎𝑣 = 0 (1.7)

with respect to functions 𝑤(𝜉) and 𝑣(𝜉) having limits at infinity:

𝑤(∞) = 𝑣(∞) = 0, 𝑤(−∞) = 𝑤0, 𝑣(−∞) =
𝑏𝑤0

𝜎
· (1.8)

In the analytical part of the work we will study the existence of solutions of this problem, and the speed of wave
propagation. Numerical simulations will be carried out for system (1.1)–(1.3) in a bounded interval, and for a
more complete system containing also the interferon concentration.

1.3. The contents and main results

Viral infection can spread in cell culture as a reaction-diffusion wave. We will study in this work the properties
of infection waves. One of their main characteristics is the speed of propagation. In order to determine it, we
will use the linearization method applicable in the so-called monostable case where the waves exist for all speeds
greater than or equal to the minimal speed. In general, this method allows the estimation of the minimal wave
speed from below, that is, 𝑐* ≤ 𝑐0, where 𝑐* is the linearization speed and 𝑐0 is the minimal speed (see [20] and
the references therein). However, it is not known a priori whether it gives the exact value of the minimal wave
speed. For example, for a single reaction-diffusion equation with the logistic nonlinearity, 𝑐0 = 𝑐*, but for some
other nonlinearities, it is possible to have the exact inequality 𝑐0 > 𝑐*. We will prove that for system (1.6), (1.7)
the waves exist for all speeds greater than or equal to the linearization speed 𝑐*. Therefore, it gives indeed the
minimal speed. In Section 2 we obtain this result for the model with cell diffusion, and in Section 3 without cell
diffusion, passing to the limit as the diffusion coefficient tends to 0.

The wave existence is proved for the model without cell death (𝛽 = 0) where it can be reduced to a monotone
system of two equations. Wave existence is known for monotone systems without time delay (see [20] and the
references therein). Time delay in equation (1.5) enters in such a way that the system still satisfies the maximum
principle and the comparison theorems allowing the proof of wave existence. Namely, we will use the method
of upper and lower functions. However, the presence of time delay changes some spectral properties of the
corresponding differential operators, and the wave existence is proved under the additional condition that 𝜏 is
limited from above.

The analytical results on the wave existence and the speed of propagation are completed by numerical
simulations of system (1.1)–(1.3) in Section 4. They allow us to identify three stages of infection progression.
In the beginning, during time delay in virus replication, the total viral load decreases, while the viral particles
introduced initially diffuse in the culture infecting the surrounding cells. At the second stage, infected cells
begin to produce new virus particles, and there is an explosive growth of their concentration. The third stage
of infection progression is characterized by wave propagation along the cell culture. If infected cells die, then
the total viral load remains constant. In the case without cell death, the total viral load grows linearly in time
proportionally to the wave speed. We compared these numerical results with the experimental data from the
literature for coronavirus and poliovirus [11,16]. In the 2D simulations, the total viral load increases faster than
in the 1D case because the rate of cell infection increases proportionally to the plaque perimeter. We complete
the numerical part of this work with a model including the interferon production by the infected cells. Interferon
slows down virus replication and decreases the total viral load. However, the speed of infection wave in the cell
culture remains the same.
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2. Existence of waves

Consider the problem

𝐷1𝑤
′′ + 𝑐𝑤′ + 𝑎(𝑤0 − 𝑤)𝑣 = 0, (2.1)

𝐷2𝑣
′′ + 𝑐𝑣′ + 𝑏𝑤(𝜉 + 𝑐𝜏)− 𝜎𝑣 = 0 (2.2)

with respect to functions 𝑤(𝜉) and 𝑣(𝜉) having limits at infinity:

𝑤(∞) = 𝑣(∞) = 0, 𝑤(−∞) = 𝑤0, 𝑣(−∞) =
𝑏𝑤0

𝜎
· (2.3)

It differs from the previous one by the presence of the diffusion term in the first equation.
We will study the existence of solutions of problem (2.1)–(2.3) and the corresponding values of speed 𝑐. As

usual in the monostable case, there is a minimal wave speed 𝑐0 which will be determined from the linearized
problem under the condition that its solution monotonically decreases at infinity. If the wave speed is less
than 𝑐0, the solutions of the linear problem oscillate and change sign. Therefore, they do not have biological
significance. The determination of the minimal wave speed 𝑐0 is quite straightforward. However, the proof of
wave existence for all 𝑐 ≥ 𝑐0 is much more involved. We will use the method of upper and lower functions, and
we will begin with an auxiliary problem (2.4)–(2.6) presented below, where the term 𝑐𝜏 with an unknown speed
𝑐 in equation (2.2) is replaced by a given constant ℎ. First, we will prove the wave existence for ℎ = 0, then for
ℎ > 0, and will conclude with ℎ = 𝑐𝜏 . In Section 3, we will consider the limiting case 𝐷1 → 0 and obtain wave
existence for problem (1.6)–(1.8).

Along with problem (2.1)–(2.3) consider the auxiliary problem

𝐷1𝑢
′′
1 + 𝑐𝑢′1 + 𝑎(𝑤0 − 𝑢1)𝑢2 = 0, (2.4)

𝐷2𝑢
′′
2 + 𝑐𝑢′2 + 𝑏𝑢1(𝜉 + ℎ)− 𝜎𝑢2 = 0 (2.5)

with respect to functions 𝑢1(𝜉) and 𝑢2(𝜉) having limits at infinity:

𝑢1(∞) = 𝑢2(∞) = 0, 𝑢1(−∞) = 𝑤0, 𝑢2(−∞) =
𝑏𝑤0

𝜎
· (2.6)

Here ℎ is a real constant.
We will use the method of upper and lower functions constructed as solutions of the corresponding linear

problem:

𝐷1𝑣
′′
1 + 𝑐𝑣′1 + 𝑎𝑤0𝑣2 = 0, (2.7)

𝐷2𝑣
′′
2 + 𝑐𝑣′2 + 𝑏𝑣1(𝜉 + ℎ)− 𝜎𝑣2 = 0 (2.8)

with respect to functions 𝑣1(𝜉) and 𝑣2(𝜉) having limits at infinity:

𝑢1(∞) = 𝑢2(∞) = 0. (2.9)

We look for its solution in the form

𝑣1(𝑥) = 𝑝𝑒−𝜆𝑥, 𝑣2(𝑥) = 𝑞𝑒−𝜆𝑥 (2.10)

assuming that 𝑝, 𝑞, 𝜆 > 0.
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2.1. Minimal wave speed for ℎ = 0

Consider, first, the case ℎ = 0. Substituting (2.10) into equations (2.7), (2.8), we get

𝐷1𝜆
2𝑝− 𝑐𝜆𝑝 + 𝑎𝑤0𝑞 = 0, (2.11)

𝐷2𝜆
2𝑞 − 𝑐𝜆𝑞 + 𝑏𝑝− 𝜎𝑞 = 0. (2.12)

Let us begin with the case 𝐷1 = 𝐷2 = 1 in order to get an explicit expression for the minimal wave speed.
Multiplying the first equation by 𝑞, the second by 𝑝 and subtracting, we get

𝑎𝑤0𝑞
2 + 𝜎𝑝𝑞 − 𝑏𝑝2 = 0.

Hence,

𝑞

𝑝
= − 𝜎

2𝑎𝑤0
±

√︃(︂
𝜎

2𝑎𝑤0

)︂2

+
𝑏

𝑎𝑤0
· (2.13)

Since 𝑝 and 𝑞 are positive, we take the sign plus in this equality. We obtain from (2.11):

𝜆1 =
𝑐

2
−

√︃
𝑐2

4
+

𝜎

2
−

√︂
𝜎2

4
+ 𝑎𝑏𝑤0, 𝜆2 =

𝑐

2
+

√︃
𝑐2

4
+

𝜎

2
−

√︂
𝜎2

4
+ 𝑎𝑏𝑤0·

Denote

𝑐01 = 2

√︃√︂
𝜎2

4
+ 𝑎𝑏𝑤0 −

𝜎

2
·

Then 𝜆2 ≥ 𝜆1 > 0 for 𝑐 ≥ 𝑐01. Consider now the case 𝐷1 ̸= 𝐷2. In what follows we will denote the minimal
speed by 𝑐0. Notation 𝑐01 used here indicates that this value is obtained for 𝐷1 = 𝐷2 = 1.

Lemma 2.1. There exists a value 𝑐0 > 0 such that for 𝑐 > 𝑐0 the system of equations (2.11), (2.12) with respect
to 𝜆 has exactly three real positive solutions 𝜆1, 𝜆2, 𝜆3, 𝜆1 < 𝜆2 < 𝜆3, and 𝜆1,2 ∈ (0, 𝑐/𝐷1).

Proof. Equating the determinant of this system to 0, we get the equation

𝜆(𝐷1𝜆− 𝑐)(𝐷2𝜆
2 − 𝑐𝜆− 𝜎) = 𝑎𝑏𝑤0. (2.14)

Denote by 𝐹 (𝜆, 𝑐) the function in the left-hand side of this equation. Then 𝐹 (𝜆*𝑖 , 𝑐) = 0, where

𝜆*1 =
𝑐

2𝐷2
−

√︃
𝑐2

4𝐷2
2

+
𝜎

𝐷2
< 0, 𝜆*2 = 0, 𝜆*3 =

𝑐

𝐷1
, 𝜆*4 =

𝑐

2𝐷2
+

√︃
𝑐2

4𝐷2
2

+
𝜎

𝐷2
·

Let us note 𝜆*3 can be less, equal or larger than 𝜆*4. Set 𝜆𝑚 = min(𝜆*3, 𝜆
*
4). Then 𝐹 (𝜆, 𝑐) > 0 and 𝜕𝐹 (𝜆, 𝑐)/𝜕𝑐 ≥

𝜖 > 0 for all 0 < 𝜆 < 𝜆𝑚, 𝑐 > 0, and some 𝜖, that can be checked by straightforward calculations. Since
𝐹 (0, 𝑐) = 𝐹 (𝜆𝑚, 𝑐) = 0, then the function 𝐹 (𝜆, 𝑐) has a maximum 𝐹𝑚(𝑐) in the interval 0 < 𝜆 < 𝜆𝑚. Since
𝐹𝑚(𝑐) is an increasing function, then there exists a value 𝑐0 such that 𝐹𝑚(𝑐) > 𝑎𝑏𝑤0 for 𝑐 > 𝑐0 and 𝐹𝑚(𝑐) < 𝑎𝑏𝑤0

for 𝑐 < 𝑐0. The assertion of the lemma follows. �

2.2. Wave existence for ℎ = 0

Lemma 2.2. Suppose that 𝑐 > 𝑐0. Then for any 𝑘1, 𝑘2 > 0, the function 𝑧(𝑥) = (𝑧1(𝑥), 𝑧2(𝑥)), where

𝑧1(𝑥) = min(𝑣1(𝑥), 𝑤0), 𝑧2(𝑥) = min(𝑣2(𝑥), 𝑏𝑤0/𝜎),

𝑣1(𝑥) = 𝑘1𝑒
−𝜆1𝑥 + 𝑘2𝑒

−𝜆2𝑥, 𝑣2(𝑥) = 𝑞
(︀
𝑘1𝑒

−𝜆1𝑥 + 𝑘2𝑒
−𝜆2𝑥

)︀
,

𝑝 = 1, 𝑞 is given by (2.13), provides the upper function (solution) for system (2.4), (2.5) for ℎ = 0.
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Proof. Consider functions 𝑣1(𝑥), 𝑣2(𝑥) from the formulation of the theorem for some positive values 𝑘1, 𝑘2, and
𝑞. They provide a positive solution of system (2.7), (2.8) converging to 0 at ∞ and unbounded as 𝑥 → −∞.
Substituting them in equations (2.4), (2.5), we get:

𝐷1𝑣
′′
1 + 𝑐𝑣′1 + 𝑎(𝑤0 − 𝑣1)𝑣2 = −𝑎𝑣1𝑣2 < 0,

𝐷2𝑣
′′
2 + 𝑐𝑣′2 + 𝑏𝑣1(𝜉)− 𝜎𝑣2 = 0.

Therefore, (𝑣1(𝑥), 𝑣2(𝑥)) is an upper function for system (2.4), (2.5). Next, the function 𝑢1 = 𝑤0, 𝑢2 = 𝑏𝑤0/𝜎
is a solution of system (2.4), (2.5). Hence, the function (𝑧1(𝑥), 𝑧2(𝑥)) defined in the formulation is an upper
function for this system. �

Lemma 2.3. Solution (𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡)) of the system

𝜕𝑢1

𝜕𝑡
= 𝐷1

𝜕2𝑢1

𝜕𝑥2
+ 𝑐

𝜕𝑢1

𝜕𝑥
+ 𝑎(𝑤0 − 𝑢1)𝑢2, (2.15)

𝜕𝑢2

𝜕𝑡
= 𝐷2

𝜕2𝑢2

𝜕𝑥2
+ 𝑐

𝜕𝑢2

𝜕𝑥
+ 𝑏𝑢1(𝑥)− 𝜎𝑢2 (2.16)

considered on the whole axis 𝑥 ∈ R, with the initial condition 𝑢1(𝑥, 0) = 𝑧1(𝑥), 𝑢2(𝑥, 0) = 𝑧2(𝑥), where
(𝑧1(𝑥), 𝑧2(𝑥)) is the upper function from Lemma 2.2, is positive for all 𝑡 ≥ 0 and monotonically decreases
as a function of 𝑡 (component-wise) for each 𝑥 fixed.

Proof. It is sufficient to note that (2.15), (2.16) is a monotone system satisfying the comparison theorem.
Therefore, the solution with an upper function as initial condition decreases in time. It remains positive since
𝑢1 = 𝑢2 = 0 is a stationary solution of this system and 𝑧𝑖(𝑥) > 0 for 𝑥 ∈ R, 𝑖 = 1, 2. �

Lemma 2.4. Suppose that 𝑐 > 𝑐0. Then there exists a solution (𝑣1(𝑥), 𝑣2(𝑥)) of system (2.4), (2.5) such that
𝑣𝑖(𝑥0) < 0 and 𝑣𝑖(𝑥) > 0 for all 𝑥 ≥ 𝑥1, 𝑖 = 1, 2 and some 𝑥0, 𝑥1, 𝑥1 > 𝑥0.

Proof. We begin with the linearized system (2.7), (2.8). The function

𝑣1(𝑥) = 𝑘1𝑒
−𝜆1𝑥 + 𝑘2𝑒

−𝜆2𝑥 , 𝑣2(𝑥) = 𝑞
(︀
𝑘1𝑒

−𝜆1𝑥 + 𝑘2𝑒
−𝜆2𝑥

)︀
provides its solution converging to 0 as 𝑥 → ∞ for any 𝑘1 and 𝑘2. Let us note that 𝜆1 < 𝜆2 since we suppose
that 𝑐 > 𝑐0.

For any 𝑘1 and 𝑘2 such that
𝑘1 < 0, 𝑘2 > 0, 𝑘1 + 𝑘2 < 0 (2.17)

we have
𝑣1(0) < 0, 𝑣2(0) < 0, 𝑣1(𝑥) > 0, 𝑣2(𝑥) > 0 for 𝑥 sufficiently large. (2.18)

Set 𝑘𝑖 = 𝜖𝑘0
𝑖 , 𝑖 = 1, 2, where 𝑘0

𝑖 satisfy the conditions 𝑘0
1 < 0, 𝑘0

2 > 0, 𝑘0
1 +𝑘0

2 < 0. Then (2.17) and (2.18) hold for
any 𝜖. If we decrease 𝜖, then solution of the nonlinear system (2.4), (2.5) approaches the solution of the linear
system (2.7), (2.8). Hence, there are solutions of system (2.4), (2.5) satisfying the assertion of the theorem.

In order to have a more explicit proof of the existence of such solutions, we will use the implicit function
theorem. Let us write system (2.4), (2.5) as follows:

𝐷1𝑢
′′
1 + 𝑐𝑢′1 + 𝑎𝑤0𝑢2 − 𝛾𝑎𝑢1𝑢2 = 0, (2.19)

𝐷2𝑢
′′
2 + 𝑐𝑢′2 + 𝑏𝑢1 − 𝜎𝑢2 = 0 (2.20)

(ℎ = 0). Then for 𝛾 = 0 we obtain the linear system (2.7), (2.8), and for 𝛾 = 1 the system (2.4), (2.5). We
consider system (2.19), (2.20) on the half-axis 𝑥 ≥ 0 with the boundary condition

𝑢1(0) = 𝑢0
1, 𝑢2(0) = 𝑢0

2. (2.21)
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It follows from the implicit function theorem that problem (2.19)–(2.21) has a solution for 𝛾 sufficiently small
(see below). Set 𝑤𝑖(𝑥) = 𝛾𝑢𝑖(𝑥), 𝑖 = 1, 2. Then

𝐷1𝑤
′′
1 + 𝑐𝑤′1 + 𝑎𝑤0𝑤2 − 𝑎𝑤1𝑤2 = 0, (2.22)
𝐷2𝑤

′′
2 + 𝑐𝑤′2 + 𝑏𝑤1 − 𝜎𝑤2 = 0, (2.23)
𝑤1(0) = 𝛾𝑢0

1, 𝑤2(0) = 𝛾𝑢0
2. (2.24)

Thus, for all sufficiently small 𝛾, we obtain a solution of system (2.4), (2.5) on the half-axis 𝑥 > 0 satisfying the
boundary condition (2.24).

It remains to verify that we can apply the implicit function theorem to problem (2.19)–(2.21). In what follows,
we will consider the corresponding operator

𝐿

(︂
𝑢1

𝑢2

)︂
=

{︂
𝐷1𝑢

′′
1 + 𝑐𝑢′1 + 𝑎𝑤0𝑢2 − 𝛾𝑎𝑢1𝑢2 = 0

𝐷2𝑢
′′
2 + 𝑐𝑢′2 + 𝑏𝑢1 − 𝜎𝑢2 = 0

acting from the space �̇�2
∞(R+) =

{︀
𝑢 = (𝑢1, 𝑢2) ∈ 𝐻2

∞(R+), 𝑢1(0) = 𝑢2(0) = 0
}︀

into 𝐿2
∞(R+) [19]. We recall

that the norm in these spaces are defined by the equalities

‖𝑢‖𝐿2
∞(R+) = sup

𝑥≥0
‖𝑢‖𝐿2[𝑥,𝑥+1], ‖𝑢‖𝐻2

∞(R+) = sup
𝑥≥0

‖𝑢‖𝐻2[𝑥,𝑥+1].

First of all, we show that 𝜆 = 0 does not belong to the essential spectrum of the operator 𝐿, that is, this
operator satisfies the Fredholm property. The essential spectrum is determined as the set of all complex 𝜆 for
which the problem

𝐷1𝑣
′′
1 + 𝑐𝑣′1 + 𝑎𝑤0𝑣2 = 𝜆𝑣1, (2.25)

𝐷2𝑣
′′
2 + 𝑐𝑣′2 + 𝑏𝑣1 − 𝜎𝑣2 = 𝜆𝑣2 (2.26)

considered on the whole axis, has a nonzero bounded solution. Assuming that 𝜆 = 0 and applying the Fourier
transform, we obtain the equalities(︀

−𝐷1𝜉
2 + 𝑐𝑖𝜉

)︀
𝑣1 + 𝑎𝑤0𝑣2 = 0,

(︀
−𝐷2𝜉

2 + 𝑐𝑖𝜉 − 𝜎
)︀
𝑣2 + 𝑏𝑣1 = 0,

where 𝑣1 and 𝑣2 are the Fourier transforms of the corresponding functions. Equating the determinant of the
matrix of this system to 0, we get(︀

−𝐷1𝜉
2 + 𝑐𝑖𝜉

)︀(︀
−𝐷2𝜉

2 + 𝑐𝑖𝜉 − 𝜎
)︀
− 𝑎𝑏𝑤0 = 0.

Hence
𝐷1𝜉

2
(︀
𝐷2𝜉

2 + 𝜎
)︀
− 𝑐2𝜉2 − 𝑎𝑏𝑤0 = 0, 𝑐𝑖𝜉

(︀
𝐷1𝜉

2 + 𝐷2𝜉
2 + 𝜎

)︀
= 0.

From the second equation we conclude that 𝜉 = 0. Then the first equation leads to a contradiction since
𝑎, 𝑏, 𝑤0 > 0. Thus, we conclude that the essential spectrum does not contain the origin.

Next, consider the eigenvalue problem for equations (2.25), (2.26) on the half-axis 𝑥 ≥ 0 with the boundary
conditions 𝑣1(0) = 𝑣2(0) = 0. This problem has a unique (up to a constant factor) nonzero solution for 𝜆 = 0.
Indeed, it is sufficient to set 𝑘1 = −𝑘2 in order to satisfy the boundary conditions. Moreover, a similar solution
can be constructed for all sufficiently small real 𝜆.

Let us recall that the index 𝜅 of a Fredholm operator is defined as 𝜅 = 𝛼 − 𝛽, where 𝛼 is the dimension of
the kernel of the operator and 𝛽 is the codimension of the image, that is, the number of solvability conditions
of the non-homogeneous problem. Both numbers 𝛼 and 𝛽 are constant inside each connected component of
the complex plane where the operator satisfies the Fredholm property, except possibly for some isolated points
(eigenvalues). We will show in Lemma 2.5 below that 𝛽 = 0, that is, the non-homogeneous problem is solvable
for any right-hand side. In this case, we can apply the implicit function theorem ([20], Thm. 1.20, Chap. 4,
p. 233). The lemma is proved. �
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Remark. In the construction of the lower function, it is sufficient that it is positive on some interval. However,
it can be verified that it is positive on the half-axis 𝑥 ≥ 0. Indeed, its positiveness on bounded intervals follows
from the fact that it is close to the solution of the linear problem. Its behavior at infinity is determined by the
exponential with the minimal exponent 𝜆1. For a more detailed analysis, we can consider weighted spaces with
the exponential weight exp(𝜆1𝑥) and apply the implicit function theorem in the weighted space.

Lemma 2.5. The problem

𝐷1𝑣
′′
1 + 𝑐𝑣′1 + 𝑎𝑤0𝑣2 = 𝑓1, (2.27)

𝐷2𝑣
′′
2 + 𝑐𝑣′2 + 𝑏𝑣1 − 𝜎𝑣2 = 𝑓2, (2.28)

𝑣1(0) = 0, 𝑣2(0) = 0 (2.29)

is solvable in 𝐻2
∞(R+) for any 𝑓1, 𝑓2 ∈ 𝐿2

∞(R+).

Proof. It is sufficient to verify solvability of this problem for 𝑓1 = 0, 𝑓2 ̸= 0 and for 𝑓1 ̸= 0, 𝑓2 = 0. Let 𝑓1 = 0.
Then we can express 𝑣2 from (2.27) and substitute into (2.28), (2.29). Assuming for brevity that 𝑎𝑤0 = 1, we
obtain the following problem:

𝑎1𝑣
′′′′
1 + 𝑎2𝑣

′′′
1 + 𝑎3𝑣

′′ + 𝑎4𝑣
′ + 𝑎5𝑣 = 𝑓2, 𝑣1(0) = 0, 𝐷1𝑣

′′
1 (0) + 𝑐𝑣′1(0) = 0,

where
𝑎1 = −𝐷1𝐷2, 𝑎2 = −𝑐(𝐷1 + 𝐷2), 𝑎3 = 𝜎𝐷1, 𝑎4 = 𝜎𝑐, 𝑎5 = 𝑏.

This problem is solvable if and only if 𝑓2 is orthogonal to all solutions in 𝐻2 of the homogeneous formally adjoint
problem ([19], Thm. 4.4, Chap. 6, p. 245 and [21]). The formally adjoint problem is obtained by the change of
𝑐 to −𝑐. Returning back to problem (2.27)–(2.29), we get a formally adjoint problem. Similar to Lemma 2.2 we
find solutions of this problem. However, their solutions are growing at ∞ since 𝜆1, 𝜆2 < 0 if 𝑐 < 0. Thus, the
homogeneous formally adjoint problem has only zero solution, and problem (2.27)–(2.29) is solvable for any 𝑓2.
Similarly, it can be proved in the case 𝑓1 ̸= 0, 𝑓2 = 0. �

Lemma 2.6. Suppose that 𝑐 > 𝑐0. Then the function 𝜁(𝑥) = (𝜁1(𝑥), 𝜁2(𝑥)), where

𝜁1(𝑥) = max(𝑣1(𝑥), 0), 𝜁2(𝑥) = max(𝑣2(𝑥), 0),

and the function (𝑣1(𝑥), 𝑣2(𝑥)) is a solution in Lemma 2.4, is a lower function (solution) for system (2.4), (2.5)
(ℎ = 0).

The proof of the lemma directly follows from Lemma 2.4 and the construction of the function 𝜁(𝑥).

Theorem 2.7. Suppose that 𝑐 > 𝑐0 and ℎ = 0. Then problem (2.4)–(2.6) has a monotonically decreasing
(component-wise) solution.

Proof. We will use the method of upper and lower functions. The existence of an upper function 𝑧(𝑥) follows
from Lemma 2.2, and the existence of a lower function 𝜁(𝑥) from Lemma 2.6. Due to the asymptotic behavior
of these functions at infinity (cf. Lem. 2.2), we can choose a real number 𝑥0 such that

𝜁(𝑥) < 𝑧(𝑥 + 𝑥0), 𝑥 ∈ R,

where this inequality is understood component-wise. Consider the solution �̂�(𝑥, 𝑡) = (�̂�1(𝑥, 𝑡), �̂�2(𝑥, 𝑡)) of system
(2.15), (2.16) with the initial condition �̂�(𝑥, 0) = 𝑧(𝑥 + 𝑥0). Then �̂�(𝑥, 𝑡) is a monotonically decreasing function
with respect to 𝑡 for each 𝑥 (component-wise), and

𝜁(𝑥) < �̂�(𝑥, 𝑡), 𝑥 ∈ R, 𝑡 ≥ 0.
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Therefore, there exists a limiting function

𝑈(𝑥) = lim
𝑡→∞

𝑢(𝑥, 𝑡).

It satisfies problem (2.4)–(2.6), and it is monotonically decreasing with respect to 𝑥. �

Corollary 2.8. Problem (2.4)–(2.6) has a monotonically decreasing (component-wise) solution for 𝑐 = 𝑐0.

Proof. The existence of such solution can be proved passing to the limit as 𝑐 → 𝑐0. �

2.3. The case ℎ ̸= 0

Substitute solution (2.10) into equations (2.7), (2.8):

𝐷1𝜆
2𝑝− 𝑐𝜆𝑝 + 𝑎𝑤0𝑞 = 0, (2.30)

𝐷2𝜆
2𝑞 − 𝑐𝜆𝑞 + 𝑏𝑝𝑒−𝜆ℎ − 𝜎𝑞 = 0. (2.31)

Equating the determinant of this system to 0, we obtain the equation with respect to 𝜆:(︀
𝐷1𝜆

2 − 𝑐𝜆
)︀(︀

𝐷2𝜆
2 − 𝑐𝜆− 𝜎

)︀
= 𝑎𝑏𝑤0𝑒

−𝜆ℎ. (2.32)

Equation (2.32) with respect to 𝜆 has from two to four solutions (Fig. 1, right). We are interested in its
positive solutions in the interval 0 < 𝜆 < 𝑐/𝐷1. The positivity of 𝜆 provides decay of functions (2.10) at infinity.
From equation (2.30) we deduce that 𝑞/𝑝 = 𝜆(𝑐 − 𝐷1𝜆)/(𝑎𝑤0). Therefore, 𝑝 and 𝑞 have the same sign if 𝜆
belongs to the indicated interval.

It can be easily verified that the function 𝐹 (𝜆, 𝑐) = (𝐷1𝜆
2 − 𝑐𝜆)(𝐷2𝜆

2 − 𝑐𝜆 − 𝜎) decreases with respect to
𝑐 in the interval 0 < 𝜆 < 𝑐/𝐷1. Therefore, there exists such value 𝑐0 that equation (2.32) has a single solution
𝜆0 in the interval 0 < 𝜆 < 𝑐/𝐷1 for 𝑐 = 𝑐0, there are no such solutions for 𝑐 < 𝑐0, and there are two solutions
𝜆1, 𝜆2, 0 < 𝜆1 < 𝜆0 < 𝜆2 for 𝑐 > 𝑐0. Hence, the following lemma holds.

Lemma 2.9. There exists a value 𝑐0 > 0 such that for 𝑐 > 𝑐0 the system of equations (2.30), (2.31) with respect
to 𝜆 has exactly three real positive solutions 𝜆1, 𝜆2, 𝜆3, 𝜆1 < 𝜆2 < 𝜆3, and 𝜆1,2 ∈ (0, 𝑐/𝐷1).

We can now proceed to the construction of upper and lower functions. Lemmas 2.2 and 2.3 remain applicable.
Therefore, we can affirm the existence of an upper function. Some changes should be done in the proof of
Lemma 2.5.

Lemma 2.10. There exists ℎ0(𝑐) > 0 such that for all ℎ ∈ (0, ℎ0(𝑐)] the problem

𝐷1𝑣
′′
1 + 𝑐𝑣′1 + 𝑎𝑤0𝑣2 = 𝑓1, (2.33)

𝐷2𝑣
′′
2 + 𝑐𝑣′2 + 𝑏𝑣1(𝑥 + ℎ)− 𝜎𝑣2 = 𝑓2, (2.34)

𝑣1(0) = 0, 𝑣2(0) = 0 (2.35)

is solvable in 𝐻2
∞(R+) for any 𝑓1, 𝑓2 ∈ 𝐿2

∞(R+).

Proof. Two properties should be verified: (1) the essential spectrum does not cross the origin if ℎ decreases from
the given value to 0. Then the index of the operator 𝜅 does no change, and 𝜅 = 1 as for ℎ = 0. Moreover, its 𝛼
and 𝛽 characteristics can change only in isolated points, (2) 𝛼 = 1. Then 𝛽 = 0.

The essential spectrum is determined as the set of all complex 𝜆 for which the problem

𝐷1𝑣
′′
1 + 𝑐𝑣′1 + 𝑎𝑤0𝑣2 = 𝜆𝑣1, (2.36)

𝐷2𝑣
′′
2 + 𝑐𝑣′2 + 𝑏𝑣1(𝑥 + ℎ)− 𝜎𝑣2 = 𝜆𝑣2 (2.37)
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considered on the whole axis, has a nonzero bounded solution. Assuming that 𝜆 = 0 and applying the Fourier
transform, we obtain the equalities(︀

−𝐷1𝜉
2 + 𝑐𝑖𝜉

)︀
𝑣1 + 𝑎𝑤0𝑣2 = 0,

(︀
−𝐷2𝜉

2 + 𝑐𝑖𝜉 − 𝜎
)︀
𝑣2 + 𝑏𝑣1𝑒

−𝑖𝜉ℎ = 0,

where 𝑣1 and 𝑣2 are the Fourier transforms of the corresponding functions. Equating the determinant of the
matrix of this system to 0, we get(︀

−𝐷1𝜉
2 + 𝑐𝑖𝜉

)︀(︀
−𝐷2𝜉

2 + 𝑐𝑖𝜉 − 𝜎
)︀
− 𝑎𝑏𝑤0𝑒

−𝑖𝜉ℎ = 0

(cf. (2.32)). Hence,

𝐷1𝜉
2
(︀
𝐷2𝜉

2 + 𝜎
)︀
− 𝑐2𝜉2 − 𝑎𝑏𝑤0 cos(𝜉ℎ) = 0, 𝑐𝜉

(︀
𝐷1𝜉

2 + 𝐷2𝜉
2 + 𝜎

)︀
+ 𝑎𝑏𝑤0 sin(𝜉ℎ) = 0. (2.38)

There is such ℎ0 > 0 that this system does not have solutions for any 0 ≤ ℎ < ℎ0. Indeed, if 𝑎𝑏𝑤0ℎ < 𝑐𝜎,
then the second equation has a unique solution 𝜉 = 0. Then the first equation leads to a contradiction. Hence,
ℎ0 ≥ 𝑐𝜎/(𝑎𝑏𝑤0).

It remains to verify that the homogeneous problem (2.33)–(2.35) has a unique linearly independent solution.
Since equation (2.32) has three positive solutions 𝜆1 < 𝜆2 < 𝜆3, general solution of system (2.33), (2.34) has
the following form:

𝑣(𝑥) = 𝑘1

(︂
𝑝1

𝑞1

)︂
𝑒−𝜆1𝑥 + 𝑘2

(︂
𝑝2

𝑞2

)︂
𝑒−𝜆2𝑥 + 𝑘3

(︂
𝑝3

𝑞3

)︂
𝑒−𝜆3𝑥,

where 𝑞𝑖/𝑝𝑖 = (𝜆2
𝑖 −𝑐𝜆𝑖)/(𝑎𝑤0), 𝑖 = 1, 2, 3. Since the right-hand sides of these equalities are different for different

𝜆𝑖, then there are two linearly independent vectors (𝑝𝑖, 𝑞𝑖). From the boundary condition 𝑣(0) = 0, we express
𝑘1 and 𝑘2 through 𝑘3 and obtain a unique linearly independent solution of the problem (2.33)–(2.35). Since
𝜆1 < 𝜆2, 𝜆3, then the sign of the solution at infinity is determined by the sign of 𝑝1 (the same as 𝑞1). The lemma
is proved. �

Remark. Let us note that for ℎ sufficiently large, system of equations (2.38) can have a solution (Fig. 1, left)
signifying that the essential spectrum passes through the origin. Moreover, equation (2.32) can have two positive
solutions in the interval 0 < 𝜆 < 𝑐 (Fig. 1, right). From equations (2.38) we get the equality

𝜉2
(︀
𝐷1𝜉

2 + 𝑐2
)︀(︁(︀

𝐷2𝜉
2 + 𝜎

)︀2
+ 𝑐2

)︁
= (𝑎𝑏𝑤0)2.

It has a single solution 𝜉2 depending on 𝑐. Having found this solution, we can determine a sequence of values
of ℎ for which equations (2.38) have solution. The minimal positive ℎ = ℎ0 from this sequence satisfies the
condition of the lemma.

Theorem 2.11. Suppose that 𝑐 ≥ 𝑐0 and ℎ ≤ ℎ0(𝑐), where 𝑐0 is defined in Lemma 2.9 and ℎ0(𝑐) in Lemma 2.10.
Then problem (2.4)–(2.6) has a monotonically decreasing (component-wise) solution.

2.4. The case ℎ = 𝑐𝜏

In this case we get the equation

(𝐷1𝜆
2 − 𝑐𝜆)(𝐷2𝜆

2 − 𝑐𝜆− 𝜎) = 𝑎𝑏𝑤0𝑒
−𝑐𝜆𝜏 (2.39)

instead of equation (2.32). Since the function 𝐹 (𝜆, 𝑐) increases with respect to 𝑐 in the interval 0 < 𝜆 < 𝑐, and
the exponential in the right-hand side decreases, then the conclusions above about the existence of the minimal
speed 𝑐0 remain valid.
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Figure 1. Graphical solution of equations (2.38) (left): both functions vanish for the same
value of 𝜉. Graphical solution of equation (2.32) (right): there are two positive solutions in the
interval 0 < 𝜆 < 𝑐. The values of parameters are as follows: 𝑐 = 1, 𝜎 = 1, ℎ = 4.67, 𝑎𝑏𝑤0 =
3.9, 𝐷1 = 𝐷2 = 1.

Lemma 2.12. There exists a value 𝑐0 > 0 such that for 𝑐 > 𝑐0 the system of equations (2.39) with respect to
𝜆 has exactly three real positive solutions 𝜆1, 𝜆2, 𝜆3, 𝜆1 < 𝜆2 < 𝜆3, and 𝜆1,2 ∈ (0, 𝑐/𝐷1).

We now obtain the following theorem as a corollary of Theorem 2.11.

Theorem 2.13. Suppose that 𝑐 ≥ 𝑐0 and 𝜏 ≤ 𝜏0(𝑐), where 𝑐0 is defined in Lemma 2.9, 𝜏0(𝑐) = ℎ0(𝑐)/𝑐, and
ℎ0(𝑐) is defined in Lemma 2.10. Then problem (2.1)–(2.3) has a monotonically decreasing (component-wise)
solution.

3. Limiting model without diffusion

3.1. Analytical estimate of the wave speed

Linearizing system (1.6), (1.7) at ∞, we obtain the system

𝑐𝑤′ + 𝑎𝑤0𝑣 = 0, (3.1)
𝐷𝑣′′ + 𝑐𝑣′ + 𝑏𝑤(𝜉 + 𝑐𝜏)− 𝜎𝑣 = 0. (3.2)

We look for the solution in the form

𝑤(𝜉) = 𝑝𝑒−𝜆𝜉, 𝑣(𝜉) = 𝑞𝑒−𝜆𝜉.

Then

−𝑐𝑝𝜆 + 𝑎𝑤0𝑞 = 0, (3.3)

𝐷𝑞𝜆2 − 𝑐𝑞𝜆 + 𝑏𝑝𝑒−𝜆𝑐𝜏 − 𝜎𝑞 = 0. (3.4)

We express 𝑝 from equation (3.3) and substitute in equation (3.4):(︀
𝐷𝜆2 − 𝑐𝜆− 𝜎

)︀
𝑐𝜆𝑒𝜆𝑐𝜏 = −𝑎𝑏𝑤0. (3.5)
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Set 𝜇 = 𝑐𝜆. Then (︂
𝐷

𝜇2

𝑐2
− 𝜇− 𝜎

)︂
𝜇𝑒𝜇𝜏 = −𝑎𝑏𝑤0

and, hence,

𝑐2 =
𝐷𝜇3𝑒𝜇𝜏

𝜇(𝜇 + 𝜎)𝑒𝜇𝜏 − 𝑎𝑏𝑤0
≡ 𝐹 (𝜇).

There exits 𝑐0 > 0 such that this equation has two solutions 𝜇 for any 𝑐 > 𝑐0. The minimal wave speed 𝑐0 is
given by the equality

𝑐2
0 = min

𝜇>0

𝐷𝜇3𝑒𝜇𝜏

𝜇(𝜇 + 𝜎)𝑒𝜇𝜏 − 𝑎𝑏𝑤0
· (3.6)

Example. We find the minima of these functions for different values of 𝜏 and determine the wave speed:

𝜏 = 0 : 𝜇 = 4.57, 𝐹 (𝜇) = 0.00618, 𝑐 = 0.077 (numerical value 0.075),

𝜏 = 1 : 𝜇 = 1.89, 𝐹 (𝜇) = 0.00171, 𝑐 = 0.041 (numerical value 0.039),

𝜏 = 2 : 𝜇 = 1.29, 𝐹 (𝜇) = 0.00098, 𝑐 = 0.031 (numerical value 0.029).

The corresponding numerical values are obtained in numerical simulations of system (1.1)–(1.3) presented in
the next section.

We note from formula (3.6) that the wave speed depends on
√

𝐷, as usually for reaction-diffusion problems.
It depends on the product 𝑎𝑏, and this dependence is weak.

3.2. Existence of waves for 𝐷1 = 0

We begin with some estimates of solutions of problem (2.1)–(2.3) in order to consider the limiting case
𝐷1 → 0. We need to estimate the second derivative 𝑤′′ independently of 𝐷1. Consider this question in a more
general setting.

Proposition 3.1. Suppose that solution 𝑤(𝑥) of the system of equations

𝐷𝑤′′ + 𝑐𝑤′ + 𝐹 (𝑤, 𝑤ℎ) = 0 (3.7)

on the whole axis, where 𝑤 = (𝑤1, . . . , 𝑤𝑛), 𝐹 = (𝐹1, . . . , 𝐹𝑛), 𝐷 is a diagonal matrix with positive diagonal
elements 𝑑𝑖, 𝑤ℎ(𝑥) = 𝑤(𝑥 + ℎ) satisfies the estimate sup𝑥∈R |𝑤(𝑥)| ≤ 𝑀 , where 𝑀 is a positive constant
independent of the values 𝑑𝑖. Moreover, assume that |𝐹 |, |𝜕𝐹𝑖/𝜕𝑢𝑗 | ≤ 𝐾1 for |𝑤| ≤ 𝑀 , 𝑖, 𝑗 = 1, . . . , 𝑛 with some
positive constant 𝐾1 independent of 𝑑𝑖. Then the following estimate

sup
𝑥∈R

|𝑤′′(𝑥)| ≤ 𝐾2 (3.8)

holds for any fixed 𝑐 ≥ 𝜖 > 0 with some constant 𝐾2 independent of 𝑑𝑖 and depending on 𝜖.

Proof. Consider, for certainty, the first equation of system (3.7). Let 𝑥0 be the point of maximum of the function
𝑤′1(𝑥). Then 𝑤′′1 (𝑥0) = 0, and |𝑤′1(𝑥0)| ≤ 𝑀/𝜖. Let us note that the solution is supposed to be bounded.
Therefore, its derivative converges to 0 at infinity, at least along some sequence of 𝑥. The same estimate can
be obtained at each maximum of the derivative providing the estimate for all 𝑥 ∈ R. Similar estimates can
be obtained for other components of the vector 𝑤′(𝑥). Differentiating the first equation with respect to 𝑥 and
applying the same approach, we obtain the estimate of the second derivative. �

Theorem 3.2. Suppose that 𝑐 ≥ 𝑐0, where 𝑐0 is defined by equality (3.6), and 𝜏 ≤ 𝜏0(𝑐), where 𝜏0(𝑐), is defined
in Theorem 2.13. Then problem (1.6)–(1.8) has a monotonically decreasing (component-wise) solution.
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Proof. Let us note that the minimal speed 𝑐0 = 𝑐0(𝐷1) determined in Lemma 2.1 converges to the minimal
speed 𝑐0 = 𝑐0(0) in equality (3.6) as 𝐷1 → 0. Therefore, for any 𝑐 > 𝑐0(0) and 𝐷1 sufficiently small, 𝑐 > 𝑐0(𝐷1).
The existence of waves for such 𝐷1 > 0 follows from Theorem 2.13. We will consider below the limit 𝐷1 → 0 for
the fixed value of 𝑐 and, consequently, prove the wave existence for 𝐷1 = 0. Having proved the wave existence
for any 𝑐 > 𝑐0(0), we can conclude about the existence of waves for 𝑐 = 𝑐0(0) passing to the limit. In order to
prove the convergence of solutions as 𝐷1 → 0, we will begin with the convergence on compact subintervals of
the form [−𝐾, 𝐾], and pass to the limit 𝐾 →∞.

For 𝜀 ∈ (0, 1], let 𝐷1 = 𝜀 and (𝑤𝜀, 𝑣𝜀) denote the family of solutions from Theorem 2.13. As the system does
not depend explicitly on 𝜉, then we can for definiteness fix its position in the 𝜉-space by imposing the condition
𝑤𝜀(0) = 1

2𝑤0.
Consider a sequence {𝜀𝑙}𝑙=∞

𝑙=1 such that 𝜀𝑙 > 0 and lim𝑙→∞ 𝜀𝑙 = 0 and the corresponding sequence of solutions
(𝑤𝑙, 𝑣𝑙) := (𝑤𝜀𝑙

, 𝑣𝜀𝑙
), 𝑙 = 1, 2, . . . From Proposition 3.1, it follows that these solutions are uniformly bounded in

R together with their third derivatives independently of 𝐷1.
Using the Arzela–Ascoli lemma we conclude that on every interval 𝐼𝐾 = [−𝐾, 𝐾], 𝐾 > 0, we can find a

subsequence {𝑘𝑙}𝑙=∞
𝑙=1 and the corresponding subsequence {𝜀𝑘𝑙

}𝑙=∞
𝑙=1 such that the functions (𝑤𝑘𝑙

, 𝑣𝑘𝑙
) converge

to some limiting function (𝑤0, 𝑣0) together with their second derivatives Since all functions in the sequence
(𝑤𝑘𝑙

(𝜉), 𝑣𝑘𝑙
(𝜉)) tend to the same limits as 𝜉 → ±∞. This, together with the fact that their derivatives (up to

the third order) are uniformly bounded implies the convergence to the limiting function in 𝐶2(R). This limiting
function satisfies problem (1.6)–(1.8). The theorem is proved. �

4. Numerical simulations of infection progression

4.1. Three stages of infection progression

Numerical simulations of system (1.1)–(1.3) are carried out in a bounded interval 0 < 𝑥 < 𝐿 with the
homogeneous Neumann boundary conditions for 𝑉 : 𝑥 = 0, 𝐿 : 𝜕𝑉

𝜕𝑥 = 0, and the following initial conditions:

𝑈(𝑥, 0) = 𝑈0, 𝐼(𝑥, 𝑡) = 0, −𝜏 < 𝑡 ≤ 0,

𝑉 (𝑥, 0) = 𝑉0 for 0 ≤ 𝑥 ≤ 𝑥0 and 𝑉 (𝑥, 0) = 0 for 𝑥0 ≤ 𝑥 ≤ 𝐿.

These initial conditions mean that cell culture initially contains only uninfected cells, and some initial viral
load is introduced at the left part of the computational interval. Numerical implementation of the problem is
presented in the appendix.

Figure 2 shows an example of numerical simulations of system (1.1)–(1.3) with the spatial distributions of
virus and infected cells in consecutive moments of time. The distance between the curves is not the same in
the beginning of the simulation because of decaying oscillations due to time delay. Analysing the evolution of
virus concentration distribution in space and in time, we can identify three stages of infection progression. At
the first stage, virus does not yet reproduce due to the time delay in its replication. It diffuses in space while
the total viral load decays because of its death. This first stage can be seen in Figure 4 as a linear decay of the
function log 𝑉𝑇 (𝑡), where 𝑉𝑇 (𝑡) =

∫︀ 𝐿

0
𝑉 (𝑥, 𝑡)d𝑥 is the total viral load. This decay corresponds to exponential

decrease of the function 𝑉𝑇 (𝑡). At the next stage, initially infected cells begin to reproduce new virus particles
leading to explosive growth of its total concentration. The last stage of infection progression corresponds to the
propagation of infection front with a constant speed and linear growth of the total virus load. It can be seen as
a logarithmic growth in Figure 4 (right).

If infected cells die after some time (𝛽 > 0), then their distribution has a spike-like shape, or a pulse moving
along the cell culture (Fig. 3, upper left). Virus distribution has a similar form. In this case, the total virus
concentration remains constant at the third stage of infection progression (Fig. 4, left).
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Figure 2. The distributions of virus concentration 𝑉 (left) and of infected cells 𝐼 (right) in
numerical simulations of system (1.1)–(1.3). Different curves correspond to consecutive moments
of time (every 2 time units). The values of parameters: 𝑎 = 10, 𝑏 = 5, 𝛽 = 0, 𝜎 = 0.4, 𝐷 =
0.001, 𝐿 = 2, 𝜏 = 10, 𝑈0 = 1, 𝑉0 = 10, 𝑥0 = 0.1. The arrows in the left image show three
stages of infection progression: virus concentration decay during time delay in its replication,
explosive growth in its concentration when infected cells begin to reproduce new viral particles,
propagation of infection wave along the cell culture.

4.2. Comparison with the experiments

Conventional multiplicity of infection (MOI) test is based on the experimental evaluation of virus spread
in cell culture. We describe the experimental results on the spread of coronavirus in the culture of cilia cells
[16] and of poliovirus [11]. Virus spread in the cilia cells occurs preferentially through the apical surface. The
dependence of virus titer on time 𝑉𝑇 (𝑡) has three stages: it decreases till time 10 h, then rapidly increases from
10 to 20 h, and finally its growth rate is slower after 20 h. The first stage corresponds to time delay of virus
replication inside cells. New viruses are not yet produced, and the initial viral load decays due to virus death.
Two other stages correspond to virus replication. During the second stage, the initial virus load (decreased in
the first stage) converges to the wave. The last stage corresponds to the wave propagation.

The choice of the model and parameters. Let us note that there are two different wave propagation regimes
from the point of view of virus production: with or without death of infected cells. If infected cells die (𝛽 > 0),
then they form a spike of a constant size during the wave propagation. Therefore, the total virus production
is also constant in this case, 𝑉𝑇 (𝑡) =

∫︀ 𝐿

0
𝑉 (𝑥, 𝑡)d𝑥 → const. This case corresponds to some experimental data

(Fig. 4, left) but not to coronavirus in the culture of cilia cells (Fig. 4, right).
Suppose now that infected cells do not die (𝛽 = 0). Then their concentration remains constant behind the

wave (𝐼 = 𝑤0). Since the wave propagates with a constant speed, then the total number of infected cells grows
linearly in time, 𝐼(𝑡) = 𝑐𝑡, where 𝑐 is the wave speed. Integrating equation (1.5) with respect to 𝑥 over the
interval [0, 𝐿], we obtain an approximate equation:

d𝑉𝑇

d𝑡
= 𝑐𝑏𝑡− 𝜎𝑉𝑇 , 𝑉𝑇 (0) = 𝑉0. (4.1)

Hence

𝑉𝑇 (𝑡) =
(︂

𝑉0 +
𝑐𝑏

𝜎2

)︂
𝑒−𝜎𝑡 +

𝑐𝑏

𝜎
𝑡− 𝑐𝑏

𝜎2
· (4.2)

Thus, 𝑉𝑇 (𝑡) has asymptotically linear growth. This analysis shows that we should consider infection spreading
without death of infected cells in order to describe the experimental results for coronavirus (Fig. 4, right) and
with death of infected cell for poliovirus (Fig. 4, left).
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Figure 3. Numerical simulations of system (1.1)–(1.3) in the case where infected cells die with
certain rate. Concentration distributions (upper left) are different in comparison with Figure 2:
the virus distribution (brown curve) and the concentration of infected cells (green curve) have a
specific pulse-like form. The same virus distribution as a function of 𝑥 and 𝑡 is shown in the right
figure. We can notice decaying oscillations of the maximal concentration. The corresponding
total viral load log 𝑉𝑇 (𝑡) also oscillates (lower figure). The values of parameters are as follows:
𝑎 = 10, 𝑏 = 100, 𝛽 = 1, 𝜎 = 1, 𝐷 = 0.001, 𝐿 = 2, 𝜏 = 5, 𝑈0 = 1, 𝑉0 = 10, 𝑥0 = 0.1. A small red
interval on the 𝑥-axis in the upper left figure shows the support of the initial viral load 𝑥0.

In the case of coronavirus, viral load decreases during first 10 h [16]. Hence, we set 𝜏 = 10 h. Virus diffusion
rate varies in the limit from 10−4 cm2/h to 10−3 cm2/h. We take the maximal value 𝐷 = 10−3 cm2/h. We will
discuss this choice below. The value of 𝜎 is determined by the decay rate of 𝑉𝑇 during the first stage. We get
𝜎 = 0.1 ÷ 0.2 1/h. There are two free parameters 𝑎 and 𝑏. The rate of 𝑉𝑇 growth during the second stage
strongly depends on 𝑏. The wave speed at the third stage depends on the product 𝑎𝑏 but this dependence is
weak. The initial viral load is taken from the experimental data.

Comparison of modelling and experiment. We describe this comparison in more detail in the case of
coronavirus in the culture of cilia cells (Fig. 4, right). The function log 𝑉𝑇 (𝑡) in modelling shows the same three
stages as in the experiment: exponential decay (linear in the log scale), exponential growth (linear in the log
scale), linear growth (logarithmic in the log scale). The value 𝑉𝑇 (0) is chosen in such a way that it coincides
with the experimental value. The value 𝑉𝑇 (𝑡1), 𝑡1 = 10 h is controlled by the value of 𝜎. We set 𝜎 = 0.1 in order
to have the modelling value larger than the experimental one in order to minimize the difference between them
for larger times. The growth rate at the second stage is determined by the parameter 𝑏. We choose it in such a
way that 𝑉𝑇 (𝑡2), 𝑡2 = 20 h is larger than the experimental value in order to minimize the difference later.
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Figure 4. Left: comparison of the experimental data (red dots) for the poliovirus virus [11]
with the function log 𝑉𝑇 (𝑡) obtained in numerical simulations of system (1.4), (1.5) (blue curve)
with the values of parameters 𝑎 = 0.01, 𝑏 = 80 000, 𝛽 = 0.1, 𝜎 = 1, 𝐷 = 0.001, 𝐿 = 2, 𝜏 =
2, 𝑈0 = 1, 𝑉0 = 45, 𝑥0 = 0.1. Right: comparison of the experimental data (red points) for
the SARS-CoV virus in the culture of epithelial cells [16] and log 𝑉𝑇 (𝑡) for the solution of
problem (1.1)–(1.3) (blue curve), and for the problem with distributed delay where ℎ = 1
(green curve), ℎ = 2 (yellow curve), and ℎ = 3 (purple curve) with the values of parameters
𝑎 = 0.01, 𝑏 = 80 000, 𝛽 = 0, 𝜎 = 0.1, 𝐷 = 0.001, 𝐿 = 2, 𝜏 = 10, 𝑈0 = 1, 𝑉0 = 5000, 𝑥0 = 0.1.
The lower curve is obtained for the model with interferon (4.4)–(4.7) with the same values of
parameters as in Figure 5.

At the last stage, the growth rate in modelling is less than in the experiment. Since the wave speed weakly
depend on parameters 𝑎 and 𝑏, their variation does not allow us to improve the accuracy. The wave speed is
proportional to

√
𝐷, but we take the maximal physically justified value of the diffusion coefficient. Therefore,

we cannot use it to increase the wave speed. If we increase 𝑏, then we can decrease the difference at 𝑡 = 50 h
but this will increase the difference at 𝑡 = 20 h and 𝑡 = 30 h.

Thus, comparison of modelling and experiment show that growth rate in modelling at the last stage is less
than in the experiment. Moreover, we can see from (4.2) that main term of log 𝑉𝑇 (𝑡) is log 𝑡 in the 1D model. It
is independent of the parameters of the model and cannot be increased for this model. We will see below that
the growth rate is larger in the 2D model.

Distributed delay. In the case of distributed delay in the virus replication rate, equation (1.3) in system
(1.1)–(1.3) is replaced by the equation

𝜕𝑉

𝜕𝑡
= 𝐷

𝜕2𝑉

𝜕𝑥2
+ 𝐽ℎ(𝑥, 𝑡)− 𝜎𝑉, (4.3)

where

𝐽ℎ(𝑥, 𝑡) =
𝑏

2ℎ

∫︁ 𝑡−𝜏+ℎ

𝑡−𝜏−ℎ

𝐼(𝑥, 𝑠)d𝑠.

This integral describes distributed delay with a uniform distribution in the interval [𝑡 − 𝜏 − ℎ, 𝑡 − 𝜏 + ℎ]. We
recover the model with a point-wise delay in the limit of small ℎ. An example of numerical simulations of this
model is shown in Figure 4 (right). The total viral load has qualitatively similar behavior as in the case of
point-wise delay. However, virus reproduction begins earlier, and the total viral load becomes larger with the
increase of ℎ.
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Figure 5. Numerical simulations of system (4.4)–(4.7) with the virus concentration distribution
(left) and interferon distribution (right) in consecutive moments of time. The values parameters:
𝑎 = 0.01, 𝑏1 = 80 000, 𝑏2 = 13.5, 𝛽 = 0, 𝜎1 = 0.1, 𝜎2 = 3.5, 𝐷1 = 0.001, 𝐷2 = 0.16, 𝑉0 =
5000, 𝐶0 = 0, 𝑈0 = 1, 𝐼0 = 0, 𝑘1 = 1, 𝑘2 = 10−5, 𝜏1 = 10, 𝜏2 = 5, 𝑥0 = 0.1. The bold green line in
the right image corresponds to the initial concentration of interferon (equal 0).

4.3. Model with interferon

Infected cells produce interferon which downregulates virus replication. In this case, we complete system of
equations (1.1)–(1.3) by the equation for the interferon concentration 𝐶:

𝜕𝑈

𝜕𝑡
= −𝑎𝑈𝑉, (4.4)

𝜕𝐼

𝜕𝑡
= 𝑎𝑈𝑉 − 𝛽𝐼, (4.5)

𝜕𝑉

𝜕𝑡
= 𝐷1

𝜕2𝑉

𝜕𝑥2
+

𝑏1

1 + 𝑘1𝐶
𝐼𝜏1 − 𝜎1𝑉, (4.6)

𝜕𝐶

𝜕𝑡
= 𝐷2

𝜕2𝐶

𝜕𝑥2
+

𝑏2

1 + 𝑘2𝑉
𝐼𝜏2 − 𝜎2𝐶. (4.7)

The virus replication rate in equation (4.6) is inversely proportional to the interferon concentration 𝐶. On
the other hand, virus can slow down the interferon production [8, 13]. We take this effect into account in the
interferon production rate in equation (4.7). This term contain time delay 𝜏2 which is different, in general, from
the time delay in virus replication.

Figure 5 shows an example of numerical simulations of system (4.4)–(4.7). Virus propagation is qualitatively
similar to the case without interferon but the maximal virus concentration decreases. Interferon production
follows the progression of infected cells. Its concentration strongly grows at the first stage of infection progression,
then it propagates in space with damped oscillations. Let us note that the final value of virus concentration
decreases due to the interferon production. However, the speed of infection progression, that is the speed of
reaction-diffusion wave remains constant. Such behavior is specific for the monostable case for which the wave
speed is determined by linearization at the virus free equilibrium (Sects. 2 and 3). The corresponding total virus
load 𝑉𝑇 (𝑡) is shown in Figure 4 (right).

4.4. 2D simulations

We present in this section the 2D modification of the system (1.1)–(1.3) by introducing the following equations
for uninfected cells 𝑈 , infected cells 𝐼 and virus 𝑉 :

𝜕𝑉

𝜕𝑡
= 𝐷𝛥𝑉 + 𝑏𝐼𝜏 − 𝜎𝑉, (4.8)
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𝜕𝑈

𝜕𝑡
= −𝑎𝑈𝑉, (4.9)

𝜕𝐼

𝜕𝑡
= 𝑎𝑈𝑉 − 𝛽𝐼, (4.10)

where

𝐼𝜏 (𝑥, 𝑦, 𝑡) =

⎧⎪⎨⎪⎩
{︂

0 𝑡 ≤ 𝜏
𝐼(𝑥, 𝑦, 𝑡− 𝜏) 𝑡 > 𝜏

if 𝜏 > 0

𝐼(𝑥, 𝑦, 𝑡) if 𝜏 = 0

and we consider Neumann boundary condition for the variable 𝑉 : 𝜕𝑉
𝜕𝑛 = 0 , where 𝑛 denotes the normal

derivative. We consider here a 2D domain Ω = 𝒞(𝒪,ℛ), which is a ball of center 𝒪(0, 0) and a radius ℛ = 𝐿,
and we take the following initial condition: 𝑈(𝑥, 𝑦, 0) = 𝑈0 = 1, 𝐼(𝑥, 𝑦, 0) = 0 and

𝑉 (𝑥, 𝑦, 0) =
{︂

0.5𝑉0(1 + tanh(500(𝑅− 𝑟(𝑥, 𝑦)))) , 𝑟(𝑥, 𝑦) ≤ 𝑅
0 , 𝑟(𝑥, 𝑦) > 𝑅

where 𝑟(𝑥, 𝑦) =
√︀

𝑥2 + 𝑦2, and we set 𝑅 =
√︀

𝑥0/𝜋 in order to obtain the same initial viral load as in 1D.
Let us note that we consider a smooth function 𝑉 (𝑥, 𝑦, 0) in order to avoid problems due to discontinuity

of the solution on unstructured grid. Furthermore, we introduce a fine mesh near the radius 𝑅 and a coarser
mesh elsewhere (see (b) in Figs. 6, 8), and in order to not use a finer grid in all domain, we consider piecewise
quadratic (P2) finite-elements instead of piecewise linear (P1) finite-elements. At the end, these simulations were
done on a mesh with 79.468 triangles. We use the library PETSc8 (the Portable, Extensible Toolkit for Scientific
Computation) which is a suite of data structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations. The computations were performed on a Macbook pro
2.2 GHz Intel Core i7, 16 GB of DDR4 2400 MHz RAM and took 00:24:16 over 6 threads.

We compute the viral load 𝑉𝑇 (𝑡) =
∫︀
Ω

𝑉 (𝑥, 𝑦, 𝑡) d𝑥d𝑦 and we compare the results with the 1D results obtained
by FreeFEM code with the same parameters described above, for 𝛽 = 0 (Figs. 6, 7) and 𝛽 = 0.2 (Figs. 8, 9). In
both cases, the total viral load is larger in the 2D case in comparison with the 1D case because the quantity
of infected for the former grows in time due to the circular geometry. Though this difference does not seem
essential in Figures 6c and 8c due to the log scale, the total viral load is about 3 times larger in the 2D case.

5. Discussion

Experimental studies of viral infection progression in cell culture allow the assessment of the efficacy and
the mechanisms of virus penetration the host cells and its replication inside the cells, both processes being
important for the determination of virus virulence. The duration of time delay in virus replication, clearly
seen in the experiments, can depend on virus and host cells. This time delay can be taken into account in the
optimization of anti-viral treatment. Furthermore, interferon produced by infected cells downregulates virus
replication while some viruses (including coronavirus) can decrease the rate on interferon production [8, 13].
Such experiments represent a necessary stage for further investigation of viral infection in the human organism
where it interacts with the immune system essentially increasing the complexity of this process. Mathematical
modelling of infection development in cell cultures allows a better understanding of these processes and their
quantitative description.

Mathematical models of viral infection in cell culture. Viral plaque growth in cell culture can be
described as a reaction-diffusion wave which converts uninfected cells into infected and eventually dead cells due
to virus production and diffusion. Surprisingly, there are only few works where this process is modelled, some
of them with continuous models [10, 22] and some other with individual based models [1, 15]. The advantage

8https://www.mcs.anl.gov/petsc/.

https://www.mcs.anl.gov/petsc/


INFECTION SPREADING IN CELL CULTURE 809

Figure 6. Comparison between the results obtained in 1D (solid lines) and in 2D (dashed
lines) with FreeFEM (a) normalized solution 𝑉 (log scale), 𝐼 and 𝑈 at 𝑡 = 25𝑠, (b) zoom on the
center of the mesh used for the 2D case and (c) the total viral load log 𝑉𝑇 (𝑡) for 𝛽 = 0.

Figure 7. The cut of the normalized solutions of 𝑉 (a), 𝐼 (b) and 𝑈 (c) at 𝑡 = 25𝑠 for 𝛽 = 0.
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Figure 8. Comparison between the results obtained in 1D (solid lines) and in 2D (dashed
lines) with FreeFEM (a) normalized solution 𝑉 (log scale), 𝐼 and 𝑈 at 𝑡 = 25𝑠, (b) zoom on the
center of the mesh used for the 2D case and (c) the total viral load log 𝑉𝑇 (𝑡) for 𝛽 = 0.2.

Figure 9. The cut of the normalized solutions of 𝑉 (a), 𝐼 (b) and 𝑈 (c) at 𝑡 = 25𝑠 for 𝛽 = 0.2.
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of reaction-diffusion models is that they allow a theoretical investigation of infection waves, including their
existence and the speed of propagation. The only delay reaction-diffusion model we are aware of differs from
our model by the equation for infected cells [10]. It contains the first time delay taking into account latently
infected cells before they become infectious and the second time delay for the death of infected cells. This
second (negative) delay term needs to be controlled to avoid the negativity of solutions. Contrary to this pre-
vious work, we consider time delay in the virus replication term and, this term being positive, it preserves
the positiveness of solutions and the applicability of powerful mathematical methods based on the maximum
principle and comparison theorems. We use them to prove the existence of waves. Let us note that this question
is not only of pure mathematical interest because it allows us to determine the minimal wave speed, which
is particularly important for the description of behavior of solutions. We discuss this question in the next
paragraph.

Individual based models allow a more detailed description of intracellular regulation of virus replication and
interferon production. It is also possible to consider more complete continuous models and hybrid discrete-
continuous models [5]. There is an increasing interest for all these modelling approaches in relation with the
new coronavirus disease.
Existence and stability of waves. Existence of waves described by monotone reaction-diffusion systems is
studied in the case without time delay (see [20] and the references therein). In general, the introduction of
time delay essentially complicates the analysis of wave existence, as reviewed in [18]. In some cases, when the
maximum principle remains applicable, the wave existence can be proved by conventional methods, though it
may be more technically difficult and some additional conditions can be necessitated to be imposed. As such,
we prove the wave existence in the monostable case under the additional assumption that time delay is limited
from above. This condition is related to the location of the essential spectrum, and we do not know whether
the waves exist if it not satisfied. It is possible that oscillating waves emerge instead of monotone waves as it is
the case for some other models [18].

Let us recall that the wave existence is proved by the method of lower and upper functions. It implies also the
wave stability understood in a certain sense. If the decreasing solution provided by the upper function and the
increasing solution provided by the lower function have the same limit, then the limiting function is unique, and
all solutions between the upper and lower functions converge to the same wave. However, the uniqueness of the
limiting function is not proved, so we have only a partial (one-side) stability result. Furthermore, the existence
of waves for the minimal speed is proved passing to the limit of the waves with a larger speed. This method
does not provide the stability of the wave with the minimal speed. However, we know for the scalar equation
without time delay that the wave with the minimal speed is mostly interesting because solutions with initial
conditions with a finite support converge to it. We observe this convergence numerically for the problem studied
in the present work but neither local stability of the wave with the minimal speed nor global convergence to it
are not yet proved. Stability of waves for delay reaction-diffusion systems requires further investigations.
Infection spreading in the tissue. Infection spreading in cell culture is accompanied by the interferon
production by the infected cells, which is a part of the innate immune response. In the case of infection devel-
opment in tissues of the human organism, there are also cells of innate immune response, such as macrophages
and dendritic cells, and also the adaptive immune response determined by T and B lymphocytes. Both com-
ponents of the immune response also involve numerous cytokines and chemokines. Altogether, the process of
infection spreading becomes much more complex than in cell cultures. Some simplified models are consid-
ered in [2] for a single equation for virus concentration and in [4] for two equations for virus and immune
cells. These models allow the determination of some regimes of infection spreading. The model developed in
the present work provides an appropriate background for a more detailed and biologically justified investiga-
tion of viral infection development in the tissue of the organisms. This question will be studied in the future
works.
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Appendix A. Numerical implementation

A.1. Spatial discretization

We let Ω be a convex, plane domain, and 𝒯ℎ be a regular, quasi-uniform triangulation of Ω with triangles
of maximum size ℎ < 1. Setting 𝑊ℎ =

{︀
𝑣ℎ ∈ 𝐶0

(︀
Ω̄

)︀
; 𝑣ℎ|𝑇 ∈ P1(𝑇 ),∀𝑇 ∈ 𝒯ℎ

}︀
be a finite-dimensional, where

P1 is the set of all polynomials of degree ≤ 1 with real coefficients and denoting by ⟨·; ·⟩ the standard 𝐿2

inner product on Ω, we consider the weak formulation of system (4.8)–(4.10): find 𝑉ℎ, 𝑈ℎ, 𝐼ℎ ∈ 𝑊ℎ such that
∀𝜑𝑉

ℎ , 𝜑𝑈
ℎ , 𝜑𝐼

ℎ ∈ 𝑊ℎ, we have: ⟨︀
𝜕𝑡𝑉ℎ −𝐷𝛥𝑉ℎ − 𝑏𝐼𝜏ℎ + 𝜎𝑉ℎ; 𝜑𝑉

ℎ

⟩︀
= 0,⟨︀

𝜕𝑡𝑈ℎ + 𝑎𝑈ℎ𝑉ℎ; 𝜑𝑈
ℎ

⟩︀
= 0,⟨︀

𝜕𝑡𝐼ℎ − 𝑎𝑈ℎ𝑉ℎ + 𝛽𝐼ℎ; 𝜑𝐼
ℎ

⟩︀
= 0,

(A.1)

which gives after the integration by part:

⟨︀
𝜕𝑡𝑉ℎ − 𝑏𝐼𝜏ℎ + 𝜎𝑉ℎ; 𝜑𝑉

ℎ

⟩︀
+

⟨︀
𝐷∇𝑉ℎ;∇𝜑𝑉

ℎ

⟩︀
−

∫︁
Γ𝑛

𝐷
𝜕𝑉ℎ

𝜕𝑛
𝜕𝛾 = 0,

⟨︀
𝜕𝑡𝑈ℎ + 𝑎𝑈ℎ𝑉ℎ; 𝜑𝑈

ℎ

⟩︀
= 0,⟨︀

𝜕𝑡𝐼ℎ − 𝑎𝑈ℎ𝑉ℎ + 𝛽𝐼ℎ; 𝜑𝐼
ℎ

⟩︀
= 0,

(A.2)

We note that
∫︀
Γ𝑛

𝐷 𝜕𝑉ℎ

𝜕𝑛 𝜕𝛾 = 0 due to the Neumann boundary condition.

A.2. Time marching scheme

Our method is based on the explicit first order Euler scheme. For that, let us denote by
(︀
𝑉 𝑛+1

ℎ , 𝑈𝑛+1
ℎ , 𝐼𝑛+1

ℎ

)︀
and (𝑉 𝑛

ℎ , 𝑈𝑛
ℎ , 𝐼𝑛

ℎ ) the approximate values at time 𝑡 = 𝑡𝑛+1 and 𝑡 = 𝑡𝑛, respectively and by 𝛿𝑡 the time step
size. Then, owing to the system (A.2), the unknown fields at time 𝑡 = 𝑡𝑛+1 are defined as the solution of the
following system:⟨︀

𝑉 𝑛+1
ℎ + 𝜎 𝛿𝑡 𝑉 𝑛+1

ℎ ; 𝜑𝑉
ℎ

⟩︀
+

⟨︀
𝐷 𝛿𝑡 ∇𝑉 𝑛+1

ℎ ;∇𝜑𝑉
ℎ

⟩︀
=

⟨︀
𝑉 𝑛

ℎ − 𝑏 𝛿𝑡 𝐼𝑛+1
𝜏ℎ ; 𝜑𝑉

ℎ

⟩︀
, (A.3)⟨︀

𝑈𝑛+1
ℎ + 𝑎 𝛿𝑡 𝑈𝑛+1

ℎ 𝑉 𝑛+1
ℎ ; 𝜑𝑈

ℎ

⟩︀
=

⟨︀
𝑈𝑛

ℎ ; 𝜑𝑈
ℎ

⟩︀
, (A.4)⟨︀

𝐼𝑛+1
ℎ + 𝛽 𝛿𝑡 𝐼𝑛+1

ℎ ; 𝜑𝐼
ℎ

⟩︀
=

⟨︀
𝐼𝑛
ℎ + 𝑎 𝛿𝑡 𝑈𝑛+1

ℎ 𝑉 𝑛+1
ℎ ; 𝜑𝐼

ℎ

⟩︀
. (A.5)

Remark. – We first solve the equation (A.3) in order to obtain 𝑉 𝑛+1
ℎ , then we solve the equation (A.4) in

order to obtain 𝑈𝑛+1
ℎ and at the end we solve the equation (A.5) in order to obtain 𝐼𝑛+1

ℎ .
– All the solution of 𝐼𝑛+1

ℎ are saved between the interval [𝑘 · 𝜏, (𝑘 + 1) · 𝜏 ], 𝑘 ∈ N in order to be used for the
term 𝐼𝑛+1

𝜏ℎ

– We use the free software FreeFEM [9] that offers a large variety of triangular finite elements (linear and
quadratic Lagrangian elements, discontinuous 𝑃1, Raviart–Thomas elements, etc.) to solve partial differential
equations. It is an integrated product with its own high level programming language and a syntax close
to mathematical formulations, making the implementation of numerical algorithms very easy. Among the
features making FreeFEM an easy-to-use and highly adaptive software we recall the advanced automatic mesh
generator, mesh adaptation, problem description by its variational formulation, automatic interpolation
of data, color display on line, postscript printouts, etc. The FreeFEM programming framework offers the
advantage to hide all technical issues related to the implementation of the finite element method.
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Figure A.1. Comparison of the normalized solutions of 𝑉 , 𝐼 and 𝑈 at 𝑡 = 25𝑠 (a) in 1D and
of the viral load evolution (b) between the results obtained using C++ code and FreeFEM code
with 𝛽 = 0

Figure A.2. Comparison of the normalized solutions of 𝑉 , 𝐼 and 𝑈 at 𝑡 = 25𝑠 (a) in 1D and
of the viral load evolution (b) between the results obtained using C++ code and FreeFEM code
with 𝛽 = 0.2

A.3. 1D examples

The FreeFEM code was validated in the 1D case by the comparison with the C++ code based on implicit finite
difference method (Fig. 3). We start our simulation by considering the 1D domain Ω = [0, 𝐿] and we took the
following initial condition: 𝑈(𝑥, 0) = 𝑈0 = 1, 𝐼(𝑥, 0) = 0 and 𝑉 (𝑥, 0) = 𝑉0 for 0 ≤ 𝑥 < 𝑥0 and 0 otherwise.

We compute the viral load 𝑉𝑇 (𝑡) =
∫︀
Ω

𝑉 (𝑥, 𝑡) d𝑥 and we compare the results with the one obtained by the
C++ code for two cases 𝛽 = 0 (Fig. A.1) and 𝛽 = 0.2 (Fig. A.2). The other parameters of this simulation are
given as follows:

𝐿 = 2, 𝑥0 = 0.1, 𝐷 = 0.001, 𝑏 = 105, 𝜎 = 0.2, 𝑉0 = 6000, 𝑎 = 1, 𝛿𝑡 = 0.01, 𝜏 = 10𝑠, 𝑇𝑓 = 25𝑠.

We note that we obtain similar between the two codes and a small difference for the CPU time: 11 s with
FreeFEM code vs. 18 s with C++ code.
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