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Abstract. An in-situ nanoindenter with a flat tip was employed to conduct buckling tests of a single nanowire with simultaneous SEM imaging.
A series of SEM images allowed us to calculate deflection. The deflection was confronted with the mathematical model of elastica. The
post-buckling behaviour of nanowires is conducted in the framework of the nonlinear elasticity theory. Results show the significant effect of
geometrical parameters on the stability of buckled nanowires.
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1. INTRODUCTION
The Euler Buckling Formula (EBF), which gives the critical
value of the compressive load required to buckle a long slen-
der rod, is widely used mainly by structural and mechanical
engineers [1]. Jacob Bernoulli formulated (1691) the elastica
problem, and, about fifty years later, Daniel Bernoulli discovered
the related energy functional stating the minimal principle of
elastica. The problem was solved by Leonhard Euler (1744) [2].
Currently, it is known as the elastica theory. It presents enormous
potential as an interesting issue for mathematicians (dynamics
of a pendulum analogy), engineers (designing), and historians of
mathematics (development of elliptic functions), [1]. The load
at which loss of stability and bifurcation occurs is the critical
buckling load. The deflection path after bifurcation is called the
post-buckling path [3].

EBF finds practical applications on the macroscopic level, e.g.
in deep-sea cable and pipe laying operations [4], in mechani-
cal engineering designing stable mechanisms [5], wind turbine
towers design [6], and the behaviour of nitinol rods provides
an excellent match with the elastica theory [7]. Also, Hiroshi
Yoshihara and Makoto Maruta conducted buckling tests of slen-
der wood elements in order to determine critical load using the
elastica theory [8]. On the other hand, on the microscopic or
nano-scale levels, the non-linear elastic stability processes be-
come a subject of interest worth mentioning [8–11], as well
as, in some areas of biomechanics, i.e. a model for the DNA
writhing [12, 13]. It is also demonstrated that for a small radius
of the nanotubes the buckling mode falls into the regime of Euler
beam buckling [14].
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In our view, a field for further, more adequate studies results
from a better description that should account for scale and
surface energy effects.

The increasing demand for nanomaterials with extraordinary
properties, e.g. elastic ones, requires mechanical behaviour de-
scription. Microscopy measurements have significant meaning in
examining the buckling of nanostructures. For instance, atomic
force microscopy (AFM) is used to obtain the force-distance
curve of nanotubes while buckling [9, 14, 15]. In situ transmis-
sion electron microscopy (TEM) also provides information on
the characterisation of buckling [10]. The experimental inves-
tigation of buckling on the nanoscale is challenging due to the
troublesome manipulation at such a small scale. The exami-
nation of the various characteristics of nanostructures such as
optical and electrical ones [16, 17], magnetic properties [18], vi-
bration analysis [19], energy absorption [20, 21], or viscoelastic
behaviour [18]. Several studies have been conducted to analyse
the buckling of the nanostructures, i.e. [9, 22, 23]. Setoodeh et
al. presented an exact analytical and efficient expression for the
post-buckling configurations of single-walled carbon nanotubes
(CNTs) [22]. The analytical and numerical solutions were ob-
tained for the nonlinear post-buckling problem. Finally, the non-
local theory was presented, and a solution for various nonlocal
parameter values was introduced. Thongyothee and Chucheep-
sakul [23] investigated the post-buckling configurations of
a nanorod. Based on the elastica theory, the governing equations
of nanorods, including both nonlocal elasticity and surface stress,
were presented [23]. The results show that nanorods with the
nonlocal elasticity effect undergo increasingly large deformation.
In the studies mentioned above, researchers mainly concentrated
on numerical analysis. However, a relatively small number of
papers focus on the experimental confirmation of modelling re-
sults. For example, Obrokhotov et al. measured the buckling of
Ag-Ga nanoneedles grown on AFM tip [15]. The measurements
include AFM force-distance curves. The comparison of exper-
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imentally measured buckling of a nanoneedle with the elastica
model was carried out using the generalised elastica approach.
The resulting best-fit F-D curve varies with the changes in the
value of Young’s modulus. The method facilitates providing an
estimate of Young’s modulus. However, the deflection measure-
ment in various states of post-buckling is not calculated. Pathak
et al. reported on the mechanical behaviour of a dense brush of
small-diameter (1–3 nm) carbon nanotubes (CNTs) [14].

Under compression with spherical indenters of different radii,
CNT brushes exhibit a higher modulus (∼ 17− 20 GPa) and
orders of magnitude higher resistance to buckling than vapour
phase deposited CNT brushes or carbon walls. Although the dis-
cussion above provides essential information about the buckling
behaviour of 1D nanostructures, there is no exact characterisa-
tion of the bifurcation process. The demonstrated paper results
of SEM observations attempt to fill this gap, at least partially.
Then, SEM images are used to obtain normalised displacement-
deflection curves of post-buckled nanowires. The results are the
subject of analysis vis-à-vis Euler’s elasticas.

2. MATERIALS AND METHODS
The manufacturing process should be designed and elaborated to
fulfil the EBF application perspective for nanostructural instabil-
ity analysis. Therefore, we describe how the forest-like structure
of Co nanowires can be fabricated and investigated. For instance,
an in-situ nanoindenter may be employed for a single nanowire
buckling test with in situ SEM imaging. The proposed procedure
results in three steps:
(a) electrodeposition of metal in the porous membrane,
(b) dissolution of the template to unveil metal nanowires,
(c) compression of a single nanowire with the use of a flat tip

nanoindenter.
Figure 1 shows the production of the Co nanowire arrays by

template-assisted electrodeposition. The commercially available
polycarbonate (PC) membranes purchased at Sterlitech Corpora-

Fig. 1. Single Co nanowire production: a) Cross-section of polycar-
bonate (PC) membrane: empty pores in membrane with pre-sputtered
gold contact layer; b) template-assisted electrodeposition process of
Co nanowires in electrochemical cell with a three-electrode system;
c) filled pores in PC membrane – formed nanowires; d) forest-like Co
nanowires after membrane dissolution attached to gold layer as sub-
strate; e) single standing Co nanowire after FIB-milling of its vicinity

tion were used as a template. One side of the PC membranes was
covered with an Au layer (300 nm) to close the pores and pro-
vide electrical contact for the non-conductive membrane, which
served as a working electrode. The process was performed at
a three-electrode setup with a platinum sheet and Ag/AgCl as
a counter and the reference electrodes. We used the membranes
with a pore diameter of 50 nm and a thickness of 6 µm, which
determined the nanowire diameter and maximal length. The
process was performed at the potentiostat mode at a cathodic
potential equal to –1 V vs Ag/AgCl. Potentiostat AUTO LAB
PGSTAT302N controlled it with the current accuracy of 0.01 µA.
Before the nanowire growth, the membranes were wetted in
distilled water while the counter electrode was ultrasonically
cleaned. The electrolyte was composed of 0.50 M CoSO4 7H2O
and 0.65 g/l H3BO3 and prepared from chemicals of analytical
grade and deionised water (resistivity > 18 MΩ cm) from the
Millipore system. The electrolyte temperature was kept at 25◦C
with pH = 3.8 adjusted using diluted H2SO4 and NaOH. The
nanowire length was controlled by deposition time, and the elec-
trical charge was reduced into the nanochannels, or one of these
factors played the controlling role.

To receive free-standing nanowires, we dissolved the polycar-
bonate membrane using dichloromethane. The scanning electron
microscopy (SEM) images revealed a matrix of nanowires as
a forest-like structure. The nanowires were left up to solvent
evaporation to avoid damage and deviation from the perpendicu-
lar direction caused by dichloromethane flow.

Investigation of the as-obtained nanowire was performed
using a ZEISS Crossbeam 350 scanning electron microscope
(SEM) equipped with an in-situ Alemnis nanoindenter with a flat
tip of diameter 5 µm. The Series of SEM images were taken dur-
ing the buckling, and deformation was observed. Images were
saved with constant time intervals. Total deformation was mea-
sured by comparison with the scale provided by SEM software in
horizontal and vertical directions. The nanowires mounted in the
nanoindenter are perpendicular to the electron beam direction.
The SEM table is then tilted to 15 degrees to enable observation
and precise tip movement. Therefore, 15 degrees SEM table
tilt was taken into account for the vertical direction, and mea-
sured wire end displacement was divided by cos (15◦) to obtain
the actual distance. There was no such need for the horizon-
tal direction. Measured deflection and corresponding nanowire
end displacement were compared with mathematical models
of elastica. The force was not measured due to experimental
hardware limitations. For the procedure described above, there
are a couple of factors causing measurement uncertainty: (a) due
to one direction of observation, it is not clear how precisely the
pre-compressed nanowire is perpendicular to the substrate; (b)
due to one direction of observation, it is not clear what the exact
direction of maximal deformation is; (c) for length and diameter
measurements, it is not clear at which point there is a substrate
– nanowire transition. Therefore, the sample was observed in
SEM from various directions to find a wire as vertical as pos-
sible. The marker was made with a focused ion beam (FIB) to
enable identifying the wire of interest. After nanowire compres-
sion, the sample was again observed with SEM to acquire the
direction of deformation. Finally, the diameter was measured at

2 Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143648, 2022



Experimental investigation of Euler’s elastica: in-situ SEM nanowire post-buckling

the ends and in the middle of the nanowire. The measurements
were made three times, and an average with standard deviation
was calculated.

3. APPLICATION OF EULER‘S ELASTICA THEORY
According to the Euler–Bernoulli beam theory, the nanowire is
assumed to be a slender, elastic, incompressible beam of constant
length l, simply supported. The concentrated compressive load
F has been applied to the nanowire.

Figure 2 depicts the changes in the curvature of the nanowire
due to the compression, α is the initial angle, u1 wire end dis-
placement and u2 the mid-span deflection. The differential equa-
tion for the elastica at given point X [24]:

θ
′′(s)+λ

2 sinθ(s) = 0, (1)

where: θ is the angle of inclination of the tangent t to the elastica

at X , s is the curvilinear coordinate and s ∈< 0, l >, λ =

√
F
B

where F and B are force and bending stiffness, respectively. λ

can be defined also as λ =
2mK(k)

l
[24].

Fig. 2. The configuration of a nanowire due to the compression

For a simply supported beam, we can define the following
boundary conditions:

θ
′(0) = θ

′(l) = 0. (2)

The analytical solution of the geometrically nonlinear equa-
tion (2) is possible using the elliptic integrals and the final form
of the solution is as follows [24]:

x =−s+
2
λ

{
E [am(sλ +K(k),k) ,k]−E[am(K(k),k)k]

}
, (3)

y =−2k
λ

cn(sλ +K(k)) , (4)

where: x, y are coordinates and x,y ∈< 0, l >, E(x,k) =
x∫

0

√
1− k sin2 t dt is the incomplete elliptic integral of the

second kind, k = sin
α

2
, α = θ(0) and 0 ≤ α ≤ π , K(k) =

π
2∫

0

dφ√
1− k2 sin2

φ

is the complete elliptic integral of the first

kind, φ = arcsin

 sin
θ

2
k

, am(x,k) is the Jacobi amplitude

function of modulus k, cn(x,k) = cos(am(x,k)) is the Jacobi
cosine amplitude function.

The displacement of the end of the wire can be expressed
as [24]:

u1(l) = 2l
(

1− E(k)
K(k)

)
. (5)

The mid-span deflection can be evaluated as:

u2(l/2) =
kl

mK(k)
, (6)

where m = 1,3,5, . . .
Figure 3 represents the relationship between the normalised

mid-span deflection (u2/l) and normalised displacement of the
end of the nanowire (u1/l). Various post-buckling shapes of
elastica can be observed.

Fig. 3. The relationship between the normalised mid-span deflection
(u2/l) and normalised displacement of the end of the nanowire (u1/l)

together with various post-buckling shapes

4. RESULTS AND DISCUSSION
The experimental method of obtaining a relationship between
nanowire end displacement and mid-span deflection is based
on SEM images of buckling. The theoretical curve is received
using equations (5) and (6). The nanowires viewed in the SEM
chamber appear in the first bifurcation mode; therefore, m = 1
is considered. Figure 4 shows the mid-span deflection versus the
displacement of the end of the nanowire. Results are presented
for three various nanowires with different length to diameter ra-

tios
(

l
d

)
, namely, nanowire a:

l
d
= 12.8; nanowire b:

l
d
= 28.4;

nanowire c:
l
d
= 46.3. The dimensions of tested nanowires are

la = 0.835 µm, da = 0.065 µm; lb = 2.648 µm, db = 0.093 µm;
lc = 4.185 µm, dc = 0.090 µm.

The maximum displacement of the end of the nanowire is
the largest for nanowire a and δ lamax =

u1

la
= 0.557 while the

other nanowires reach values δ lbmax =
u1

lb
= 0.367 and δ lcmax =
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Fig. 4. Elastica-determined u1/l-u2/l curves and experimental results

u1

lc
= 0.475. The maximum mid-span deflection value in the

case of the nanowire a was reached quite fast and remained
on a similar level until the end of the experiment. In this case,
the experimental deflection was quite close to the theoretical
one. Higher values of u1 and consequently u2 were obtained
due to a no longer satisfied assumption of sliding joint at the
moving end of the nanowire. Therefore, it is very complicated to
maintain the same boundary conditions in the practical test as in
the numerical model. Therefore, further work on the nanowire
attachment to the indenter tip is required.

It should be noticed that only the experimental u1/l− u2/l
curve of nanowire a intersects the theoretical curve for this
nanowire (for u1/l = 0.313).

However, in the case of nanowires b and c, the mid-span de-
flection was increasing until the end of the buckling test. There
is a more significant difference between the mid-span deflection
of nanowire a and nanowire b than between nanowire b and
nanowire c. That happened due to the difference in the aspect
ratio of nanowires. Nanowires with a relatively minor aspect
ratio, which equals the ratio of length to nanowire diameter, may
undergo shell buckling rather than column (Euler) buckling [11].
Feliciano et al. report no column buckling for carbon nanotube
aspect ratio ∼ 7. However, for l/d ∼ 20, Euler buckling oc-
curs [25]; therefore, mid-span deflection for nanowires is much
smaller than for the other tested nanowires with an aspect ratio
above 20.

The deflection values regarding nanowire b and nanowire
c were higher than expected from the theoretical analysis. It
might be due to simplifications applied in this model. The model
assumes that the rod is incompressible but slightly compressed.
Normal and shearing forces are neglected, although they occur in
reality. We present an elastic approach; nevertheless, generally,
the plastic effects can also appear.

The deformation has to possess specific regularity proper-
ties. Furthermore, discontinuous deformation would correspond
to a fracture, indicating a need to complement the model and
consider more important factors, such as scale effect or surface
energy.

Figure 5 illustrates the difference in theoretical and experi-
mental values of mid-span deflection. The difference between ex-
perimental and theoretical results is the lowest for nanowire with
the smallest aspect ratio. During the first half of the compression,
the error is positive, and then it begins to decline, reaching the
negative value. However, it may indicate model instability. For
example, concerning nanowires b and c, the difference between
experiment and theoretical mid-span deflection values increased
at the beginning of compression and then slowly declined.

Fig. 5. The difference in theoretical and experimental values
of the mid-span deflection

In Figure 6, three buckling configurations have been rep-
resented. The deformed elastic lines have been plotted using

Fig. 6. Three buckling stages: a) scheme of compression of a single
nanowire with the use of a flat tip nanoindenter b) SEM images with
marked predicted deformed elastic lines (yellow lines) c) elastic lines

by Wolfram Mathematica for given initial angle of the nanowire,
respectively α = 0◦, α = 50◦ and α = 83◦
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Wolfram Mathematica Software for three values of the initial
angle of inclination α and marked on the images of a nanowire
captured inside an SEM chamber. The values of α angle were
measured from the SEM images and implemented to the Math-
ematica as specific values, namely, {0◦,50◦,83◦}. The elastica
for given m and α can be plotted using equations (3) and (4). In
this analysis, the span lengths and diameters of nanowires were
the same as measured. According to the previous reports, [26]
E = 75 GPa gives Young’s modulus mechanical properties in
this simulation. The experiment results demonstrated a pretty
good agreement with those plotted in Mathematica.

However, it should be noted that in real boundary conditions
the case corresponds partially to simply supported beam and
double clamp. In this paper, the simply supported, double-pinned
beam is considered. In the case of double clamp boundary con-
ditions, the equations describing the deformed shape of elastica
differ [29]. In further studies, the mixed boundary conditions
should be taken into account.

5. CONCLUSIONS
Based on the nonlinear elasticity theory, this research studied
the post-buckling behaviour of simply supported nanowires.
Nanowires with various length-to-diameter ratios were exam-
ined, and the effect of geometrical parameters was discussed.
The results demonstrated that the mid-span deflection increases
by increasing the length-to-diameter ratio. Also, it is observed
that the displacement of the end of the nanowire is aspect-ratio
dependent. It was shown that, in general, Euler’s Buckling For-
mula should apply in predicting the shape of elastica (Fig. 5).
Still, it needs to be improved concerning calculating the exact
deflection value in the nanoscale.
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