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A B S T R A C T

Direct experimental characterization of indentation-induced martensitic microstructures in pseudoelastic shape
memory alloys (SMAs) is not possible, and thus there is a lack of evidence and understanding regarding the
microstructure pattern and related features. To fill this gap, in this work we employ the phase-field method
to provide a detailed and systematic analysis of martensitic phase transformation during nanoindentation. A
recently-developed finite-element-based computational model is used for this purpose, and a campaign of large-
scale 3D simulations is carried out. First, the orientation-dependent indentation response in CuAlNi (a widely
studied SMA) is examined. A detailed investigation of the predicted microstructures reveals several interesting
features, some of them are consistent with theoretical predictions and some can be (to some extent) justified
by experiments other than micro/nanoindentation. The results also highlight the key role of finite-deformation
effects and elastic anisotropy of the phases on the model predictions. Next, a detailed study of indentation-
induced martensitic transformation in NiTiPd (a potential low-hysteresis SMA) with varying Pd content is
carried out. In terms of hysteresis, the results demonstrate the prevailing effect of the transformation volume
change over phase compatibility in the conditions imposed by nanoindentation and emphasize on the dominant
role of the interfacial energy at small scales. Results of such scope have not been reported so far.
1. Introduction

Shape memory alloys (SMAs) are a class of smart materials that have
gained tremendous attention in research and industry mainly owing
to their unique capabilities of pseudoelasticity and shape memory ef-
fect [1,2], which stem from the crystallographically reversible marten-
sitic transformation [3]. With the increasing development of SMA
miniaturized applications [4–7], it is of utmost importance to deepen
the understanding of the mechanical behavior of SMAs at micro/nano-
scale regimes [8]. One of the popular experimental techniques in
this context is the instrumented micro/nanoindentation [9,10]. Over
the last two decades, the micro/nanoindentation technique has been
extensively applied to SMA materials to characterize, for instance, the
small-scale mechanical properties [11–14], size effects [15,16], and
microstructural changes induced by martensitic transformation [17,
18].

In general, the interpretation of the indentation tests, apart from
the measured load–indentation depth curve, relies upon the surface
profile of the residual imprint [19] and the post-mortem microstruc-
tural analysis [20]. In SMAs, using advanced imaging techniques, such
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as atomic force microscopy (AFM), e.g., [21], scanning electron mi-
croscopy (SEM), e.g., [22], or transmission electron microscopy (TEM),
e.g., [17,18], valuable information regarding the deformation behavior
and the microstructure can be obtained. Chief among them, TEM in
combination with electron diffraction measurements have been utilized
to analyze the characteristic changes in the remnant microstructure
beneath the indenter and to identify the mechanism underlying the
inelastic deformation. However, TEM method is only operative on thin
foils, the microstructure of which may not genuinely represent the
martensitic microstructure in bulk materials [22]. At the same time,
AFM and SEM micrographs can only reflect the surface morphology
of the sample and deliver no information about the through-depth
microstructure.

On top of the limitations and challenges imposed by the mea-
surement techniques, one major issue in the indentation testing of
SMAs arises when the material is in the pseudoelastic state. Different
from conventional elastoplastic metals or self-accommodated (pseudo-
plastic) SMAs, the inelastic deformation and the evolved martensitic
microstructure disappear (completely or partially) during unloading
as a result of the reverse transformation, especially in the case when
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shallow spherical indents are made [23,24]. Accordingly, since no rem-
nant microstructure exists, material characterization is mostly based
on the analysis of the load–indentation depth response. In this respect,
attempts have been made to probe the indentation-induced microstruc-
ture, e.g., via tuning the alloy composition such that both austenite and
martensite phases are stable at room temperature, and thereby reverse
transformation is suppressed during unloading [14,18]. It is also note-
worthy to point out that the stress-induced phase transformation in
nanoindentation experiments is typically influenced by the inevitable
generation of dislocation plasticity [25–27], which may occur in view
of the large strains and strain gradients beneath the indenter (typically,
in the case of sharp Berkovich tip, or spherical tips at high loads).
Thus, restricting the dislocation plasticity represents another major
experimental issue in the study of martensitic phase transformation in
SMAs subject to nanoindentation. We conclude this discussion by stress-
ing that no experimental evidence of indentation-induced martensitic
microstructure, in the sense of 3D spatial arrangement of martensite
variants, has been reported in the literature to date, in particular, for
pseudoelastic SMAs.

In light of the experimental issues discussed above, modeling can be
viewed as a cornerstone to gain a deeper understanding of the marten-
sitic microstructure in nanoindentation. Existing modeling approaches
in this area cover a broad range of spatial scales, spanning from atom-
istic up to macroscopic scale. Atomistic models, e.g., those based on the
molecular dynamics (MD) techniques, while able to rigorously resolve
the atomic-level interactions within the material phases, are limited to
very small spatial scales (up to few tens of nanometers) and temporal
scales (up to hundreds of picoseconds), e.g., [28–31]. Micromechanical
crystal-plasticity-like models [32–34] and macroscopic models [25,35,
36], on the other hand, are applicable at higher scales, i.e., scales
at which the spatial heterogeneity of the martensite phase (including
the formation of different martensite variants and the associated phase
boundaries) is justifiably not taken into consideration.

Meso-scale modeling using the phase-field method can be regarded
as the most suitable modeling strategy for the problem at hand. The
phase-field method is a powerful and ubiquitous modeling tool that
is based on the notion of diffuse interfaces and enables a detailed
description of the microstructural features. The method has thus been
widely used to study the microstructure evolution in various material
systems, see [37] for a recent review. Among them, evolution of
martensitic microstructure has been the subject of a substantial number
of phase-field models, including those implemented using the spectral
(FFT-based) methods, e.g., [38–44], and the finite-element method,
e.g., [45–51].

There seem to be, however, only a few applications of the phase-
field method to nanoindentation problems [52–54]. This short list
includes the authors’ previous work on multivariant martensitic trans-
formation [55] and its extension to account for rate-independent dissi-
pation effects [56]. Note that all the five studies referenced above are
restricted to 2D analyses, mainly due to the high computational cost
and complexity associated with 3D computations.

While there has been a significant progress in the development of
phase-field models suitable for large-scale 3D computations, the major-
ity of the models are tailored to the popular FFT-based spectral solvers.
Such models, despite being computationally highly efficient, are in
general limited to a periodic unit cell, and thus complex geometries and
arbitrary boundary conditions (including contact interactions) cannot
be applied. On the other hand, while the finite-element method is not
restricted by the geometry and boundary conditions, finite-element-
based models able to cope with large-scale 3D computations have been
scarcely reported. In the present context, as far as we could ascertain,
the only existing models are those in [47,57], the latter employing the
framework of isogeometric analysis.

In our recent work [50], we have developed a phase-field-based
computational model for 3D analysis of martensitic microstructure in
2

SMAs. The model is characterized by the following features: (i) the
constitutive description is formulated within the finite-strain frame-
work with the Hencky-type anisotropic elastic strain energy and the
double-obstacle potential defining the interfacial energy, (ii) the vari-
ational formulation is based on the incremental energy minimization
framework, (iii) the penalty method is used to regularize the inequality
constraints imposed on the order parameters (note the double-obstacle
potential), as well as those related to unilateral contact (note the con-
tact interaction with the indenter), and finally (iv) the finite-element
method is used for the spatial discretization, and this is combined with
an efficient parallelization (so that large-scale problems can be effec-
tively solved). While individually none of the above features is truly
distinctive as compared to other existing phase-field models, it is the
combination of all these features that makes our computational model
suitable for 3D analysis of microstructure evolution in nanoindentation.
The model can thus be considered unique, as it represents the only
application of the phase-field method to this class of problems.

The focus of our previous work [50] has been mostly on the com-
putational aspects. In particular, basic features and capabilities of
the model have been demonstrated through the analysis of the mi-
crostructure evolution during nanoindentation and its computational
robustness has been verified. At the same time, no detailed analysis
of the microstructure evolution and mechanical behavior has been
attempted.

The same model is employed in this work with the main aim of
addressing two specific problems. The first problem concerns the effect
of crystal orientation on the nanoindentation response in a CuAlNi
single crystal (a widely studied SMA material with well-documented
material parameters). This effect has been investigated experimentally
(though for a different SMA material, namely NiTi) and a strong
orientation dependence of the mechanical response and the residual
imprints has been found [14,22,28]. The findings, however, could not
be supported by the evidence of martensitic microstructure evolution,
and only recently some indications have been given by MD simula-
tions [31]. The second problem is motivated by the peculiar martensitic
transformation behavior in low-hysteresis SMAs. Certain compositions
in these alloys give rise to special (twinless) microstructural patterns
and lead to a very low transformation hysteresis [58–60], a feature that
is of critical importance for numerous practical applications [61]. Upon
exploiting the nanoindentation setting, the goal is to study this aspect
in NiTiPd single crystal with varying Pd content. As far as we are aware,
the only reported modeling study on this matter is that by Salman
et al. [62] who studied microstructure evolution driven by the self-
accommodation mechanism (in the absence of external loads) in NiTiPd
by using a small-strain phase-field model. Finally, we also show the
impact of some characteristic model features on the simulation results
and highlight their key roles in effectively predicting the microstructure
evolution.

2. Phase-field model for nanoindentation problem

In this section, we present the computational model that will be
next used for the simulation of indentation-induced martensitic trans-
formation in SMA single crystals. The finite-strain phase-field model
of multivariant martensitic transformation is introduced in Section 2.1
and its finite-element implementation and computational treatments
are briefly discussed in Section 2.2. A more detailed description of the
model can be found in Tůma et al. [50]. Finally, in Section 2.3, the
setup of the indentation problem and the material parameters adopted
in the simulations are discussed.

2.1. Model formulation

Within the phase-field method, each phase 𝑖 is characterized by
a continuous variable called order parameter, denoted here by 𝜂𝑖.

Considering austenite (parent phase) and 𝑁 variants of martensite, the
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model must account for 𝑁 + 1 order parameters, which are subject to
the following constraints

0 ≤ 𝜂𝑖 for 𝑖 = 0,… , 𝑁 and
𝑁
∑

𝑖=0
𝜂𝑖 = 1. (1)

In the present setting, the order parameters can be understood as the
phase volume fractions, and are used to interpolate the material prop-
erties across the diffuse interfaces. An alternative approach is to use the
order parameters to construct special interpolating polynomials [52,
63], typically, jointly with the so-called double-well potential, rather
than the double-obstacle potential [64] used here for the interfacial
energy, cf. Eq. (6).

The deformation gradient 𝐅 = ∇𝝋, with 𝝋 denoting the deformation
apping between the reference and the current configurations, is the
rimary kinematic variable in the finite-strain theory, and admits a
ultiplicative decomposition into the elastic part 𝐅e and the transfor-
ation part 𝐅t, i.e., 𝐅 = 𝐅e𝐅t. In general, there is some flexibility in

he definition of the transformation part 𝐅t, see [48,65] for the related
iscussion. In the present model, 𝐅t is defined as a linear combination
f the transformation stretch (Bain strain) tensors 𝐔t

𝑖 , i.e.,

t =
𝑁
∑

𝑖=0
𝜂𝑖𝐔t

𝑖 . (2)

s usual, the undeformed austenite is taken as the reference config-
ration, thus for the pure austenite state, i.e., 𝜂0 = 1, we have 𝐅t =
t
0 = 𝐈, where 𝐈 is the second-order identity tensor. The transformation

tretches 𝐔t
𝑖 (𝑖 = 1,… , 𝑁) are known from the crystallography.

Isothermal conditions are assumed throughout this work. While
hermomechanical coupling effects are known to be important in SMAs
at least at the macroscopic scale) [66–68], they are often neglected
n phase-field modeling of martensitic transformation [42,45–47]. In
eneral, incorporation of thermomechanical couplings in the phase-
ield framework does not pose any major difficulty, however, it is out
f the scope of the current study.

The total Helmholtz free energy  is defined as the sum of the
hemical energy 𝐹chem, elastic strain energy 𝐹el and interfacial energy
int, integrated over the entire body domain 𝐵,

= ∫𝐵

(

𝐹chem + 𝐹el + 𝐹int
)

d𝑉 . (3)

he chemical energy is expressed as

chem =
𝑁
∑

𝑖=0
𝜂𝑖𝐹

0
𝑖 , (4)

ith 𝐹 0
𝑖 as the chemical energy related to the phase 𝑖 (constant in

sothermal conditions). The elastic strain energy 𝐹el is adopted as a
uadratic function of the elastic logarithmic strain 𝐇e,

el =
1
2
(det 𝐅t)𝐇e ⋅ L𝐇e, 𝐇e = 1

2
log𝐂e, (5)

here 𝐂e = (𝐅e)T𝐅e is the elastic right Cauchy–Green tensor, and
=

∑𝑁
𝑖=0 𝜂𝑖L𝑖 is the fourth-order elastic stiffness tensor obtained by

oigt-type averaging of the stiffness tensors L𝑖 of individual phases.
he choice of the logarithmic strain energy (5) is motivated by its
uperior performance compared to the popular St. Venant–Kirchhoff
odel (formulated in terms of the elastic Green strain tensor 𝐄e =

1
2 (𝐂

e − 𝐈)), in particular, under large compressive stresses, which is
the case in the indentation problem studied in this paper. This issue
is discussed in detail in [69].

Finally, the double-obstacle potential [64] is adopted for the inter-
facial energy,

𝐹int =
𝑁
∑

𝑖=0

𝑁
∑

𝑗=𝑖+1

4𝛾𝑖𝑗
𝜋𝓁𝑖𝑗

(

𝜂𝑖𝜂𝑗 − 𝓁2
𝑖𝑗∇𝜂𝑖 ⋅ ∇𝜂𝑗

)

, (6)

where 𝛾𝑖𝑗 and 𝓁𝑖𝑗 denote, respectively, the interfacial energy density
(per unit area) and the interface thickness parameter associated with
3

the diffuse interface between phases 𝑖 and 𝑗. The interfacial energy in
he form (6) results in the theoretical (unstressed) interface thickness
𝑖𝑗 = 𝜋𝓁𝑖𝑗 . Note that, compared to the more popular double-well
otential [64], the double-obstacle potential brings several advantages.
t leads to an exact elastic response and less diffuse interfaces, and on
op of that, it naturally provides a barrier against the occurrence of a
purious third phase within a diffuse binary interface, see the detailed
iscussion in [70]. Moreover, when the double-obstacle potential is
ombined with linear weighting, as in Eqs. (2) and (4), phase nucleation
roceeds spontaneously and no special treatment is needed to trigger
ucleation.

The formulation of the model is completed with the specification
f the global dissipation potential . A viscous-type dissipation is em-
loyed, which is formulated in terms of the rate of the order parameters
𝑖, i.e.,

= ∫𝐵

( 𝑁
∑

𝑖=0

�̇�2𝑖
2𝑚𝑖

)

d𝑉 , (7)

where 𝑚𝑖 is the mobility parameter related to the phase 𝑖. Eq. (7)
implies that the effective mobility of the interface between phases 𝑖
and 𝑗 is equal to 𝑚𝑖𝑗 = 𝑚𝑖𝑚𝑗∕(𝑚𝑖 + 𝑚𝑗 ) [55].

To arrive at the governing equations of the evolution problem,
variational formulation of the model is established following the

pproach developed by Hildebrand and Miehe [46], see also [48]. To
his end, a global rate-potential 𝛱 is formulated and is minimized with

respect to the rates �̇� and �̇�, where 𝜼 = {𝜂0, 𝜂1,… , 𝜂𝑁}. Thus, we have

𝛱 = ̇ + → min
�̇�,�̇�

(8)

subject to the constraints specified by Eq. (1). Minimization of the rate-
potential 𝛱 with respect to �̇� implies mechanical equilibrium, while

inimization of 𝛱 with respect to �̇� yields the evolution equation
for the order parameters in the form of the classical Ginzburg–Landau
equation, e.g., [71].

In the indentation problem studied in this paper, the load is applied
through the contact interaction between the body and the indenter.
Hence, the potential of the external loads, which enters the rate-
potential 𝛱 in the general case, vanishes here and is thus absent in
Eq. (8).

2.2. Finite-element implementation

Details of the computational treatment of the model can be found
in [50]. Below, we briefly describe the most important aspects.

The rate-problem discussed above is transformed to its incremental
(finite-step) form by applying the backward Euler scheme. Spatial
discretization is performed by the finite-element method, and standard
isoparametric four-noded tetrahedral elements with piecewise linear
basis functions are used for both the displacements and the order
parameters. In the numerical studies reported in Section 3, the CuAlNi
and the NiTiPd alloys are considered, both undergoing a cubic-to-
orthorhombic phase transformation involving 6 martensite variants.
Accordingly, each finite-element node possesses, in addition to 3 dis-
placements, 6 order parameters as global degrees of freedom.

The indentation load is exerted through frictionless contact with a
rigid spherical indenter. Unilateral contact conditions are enforced at
the nodes of the potential contact surface using the standard penalty
method [72]. Our previous 2D and 3D studies [50,55] have shown
that the penalty method performs reasonably well. In particular, it has
been observed that within a wide range of contact penalty parameters,
the computational performance (i.e., the convergence behavior of the
global Newton scheme and of the iterative solver) is not visibly affected.
The penalty method is also used to enforce the inequality constraints
on the order parameters, see Eq. (1), and it performs similarly well.

The resulting coupled nonlinear equations are solved using the
Newton’s method and a monolithic solution strategy. Note that, in the
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context of phase-field modeling, an adequately fine finite-element mesh
is required to correctly resolve the diffuse interfaces and capture the
subtle features of the evolved microstructure, which naturally leads to
large-scale computational problems. As a result, a large system of linear
equations has to be solved at each Newton iteration, and this highlights
the need for scalable iterative solvers with appropriate precondition-
ers. Computer implementation is therefore done in Firedrake [73],
a finite-element package with the access to a variety of solvers and
preconditioners available in PETSc library [74]. To efficiently handle
the linear problems, we opt to employ the GMRES iterative solver [75]
in combination with a geometric multigrid preconditioner [76]. Multi-
grid methods exploit a hierarchy of discretizations (in the present
implementation, four levels of discretization), and rely on an itera-
tive data projection procedure (prolongation/restriction operators) and
smoothing steps across different levels of discretization. For brevity, we
skip the detailed description of the multigrid method used, see further
details in [50].

All the simulations are performed on the Karolina supercomputer of
the IT4Innovations National Supercomputing Center in Ostrava, Czech
Republic. Karolina supercomputer consists of 720 standard computing
nodes, each equipped with two 64-core AMD EPYC 7H12 processors
(2.6 GHz, 256 GB RAM) [77]. Each simulation is run on four computing
nodes.

2.3. Problem setup and material parameters

In all the simulations, a cuboid computational domain of the size
400×400×280 nm3 is considered. A structured finite-element mesh with
pproximately 31 million elements (4-noded tetrahedral elements with
he edge size of ℎ = 1.9 nm) and approximately 48 million degrees of
reedom is used. The top surface is indented by a spherical indenter of
he radius of 𝑅 = 200 nm (recall that the indenter is assumed rigid
nd contact is treated as frictionless). At the same time, the out-of-
lane displacements of the lateral and bottom surfaces are restrained.
he indentation loading is exerted by prescribing the position of the

ndenter with the speed of 𝑣 = 3 nm/s.
Two SMA materials are considered in the simulations, namely

uAlNi and NiTiPd, both undergoing a cubic-to-orthorhombic transfor-
ation with 𝑁 = 6 martensite variants involved. The transformation

tretch tensors characterizing the martensite variants 1 and 2 (shown
ere as a representative case) take the form,

t
1,2 =

⎛

⎜

⎜

⎝

(𝛼 + 𝛾)∕2 0 ±(𝛼 − 𝛾)∕2
0 𝛽 0

±(𝛼 − 𝛾)∕2 0 (𝛼 + 𝛾)∕2

⎞

⎟

⎟

⎠

, (9)

n an orthonormal basis parallel to the axes of the cubic austenite unit
ell, with 𝛼, 𝛽 and 𝛾 denoting the stretch parameters. The transforma-
ion stretch tensors associated with the other variants, 𝐔t

3,… ,𝐔t
6, are

obtained by applying the proper rotations from the symmetry point
group of the cubic austenite to 𝐔t

1, see Tables 3.1 and 4.2 in [3].
Concerning CuAlNi, the stretch parameters are adopted as 𝛼 =

1.0619, 𝛽 = 0.9178 and 𝛾 = 1.0230 [78]. Full elastic anisotropy of
austenite and martensite phases is accounted for, where the elastic
constants of the cubic austenite phase (𝑐11 = 142, 𝑐44 = 96, 𝑐12 = 126, all
in GPa) and orthorhombic martensite phase (𝑐11 = 189, 𝑐22 = 141, 𝑐33 =
205, 𝑐44 = 54.9, 𝑐55 = 19.7, 𝑐66 = 62.6, 𝑐12 = 124, 𝑐13 = 45.5, 𝑐23 = 115, all
in GPa) are taken from the available experimental data [79,80].

Concerning NiTiPd, several compositions of varying Pd content
(Ni50−𝑥Ti50Pd𝑥, with 𝑥 denoting the Pd content ranging from 7 to 25
at. %) are considered. The crystallographic lattice parameters of the
austenite and martensite phases, and thus the stretch parameters, vary
depending on the Pd content. The corresponding data are taken from
the experimental work of Delville et al. [59]. At the same time, cubic
elastic anisotropy is assumed for both austenite and martensite phases,
with the elastic constants of austenitic NiTi (𝑐11 = 162, 𝑐44 = 34,
4

𝑐12 = 129, all in GPa) [81], regardless of the Pd content. This choice
is dictated by the fact that no reliable experimental data are available
on the elastic constants of the NiTiPd austenite and martensite phases
for different Pd contents.

The following model parameters are used in all the simulations.
Interfacial energy densities are selected as 𝛾0𝑖 = 𝛾am = 0.2 J/m2 for
the austenite–martensite interfaces and 𝛾𝑖𝑗 = 𝛾mm = 0.02 J/m2 for
the martensite–martensite interfaces, following earlier studies [82]. The
chemical energy of the austenite phase 𝐹 0

0 = 𝐹a = 0 and martensite
phases 𝐹 0

𝑖 = 𝐹 0
m = 5 MPa are adopted. This set of chemical energies is

equivalent to a (uniform) temperature in the temperature range of pseu-
doelasticity, implying that the austenite phase is stable in stress-free
conditions. The mobility parameters are set as 𝑚𝑖 = 𝑚 = 0.1 (MPa s)−1.
Note that, since the mobility parameter 𝑚 is the only parameter in the
model that involves the unit of time, only the ratio between 𝑚 and the
indentation speed 𝑣 is a relevant parameter that characterizes the rate
effects (this means that any combination of 𝑣 and 𝑚 that yields the same
ratio would lead to the same simulation results). Finally, the interface
thickness parameter is assumed as 𝓁 = 1.5 nm, which corresponds to the
theoretical interface thickness of 𝜆 = 𝜋𝓁 = 4.7 nm, and thus an interface
thickness-to-element size ratio of 𝜆∕ℎ ≈ 2.5. The parameter 𝓁 has been
justifiably assumed following our preliminary analysis and in light of
our prior modeling experience with phase-field modeling of martensitic
transformation. Indeed, the ratio 𝜆∕ℎ together with the mesh density
used are sufficient to capture the subtle microstructural features, while
a finer mesh density does not qualitatively affect the simulation results,
see [50] for the related discussion.

3. Simulation results and discussion

A detailed discussion of the simulation results is reported in this
section. The objective of the study in Section 3.1 is to thoroughly
analyze the evolution of martensitic transformation in a CuAlNi single
crystal during nanoindentation. In Section 3.2, the study is performed
for NiTiPd, and the role of the Pd content is investigated with the focus
on kinematic compatibility and transformation hysteresis.

3.1. CuAlNi single crystal under nanoindentation

Microstructure evolution in a [111]-oriented CuAlNi (i.e., with the
[111] axis of the cubic austenite lattice aligned with the indentation
direction) is investigated first. The analysis is then extended to study
the impact of crystal orientation on the nanoindentation response.
Finally, a parametric study is carried out with the aim to assess the
role of important model features, specifically, elastic anisotropy and
finite-strain kinematics, on the simulation results.

3.1.1. Microstructure evolution in a [111]-oriented CuAlNi
Fig. 1 depicts the mechanical response in terms of the indentation

load 𝑃 versus the indentation depth 𝛿 together with representative
snapshots of the microstructure evolution. The domain occupied by
each martensite variant is identified by a distinct color and repre-
sents the spatial distribution of the corresponding order parameter
𝜂𝑖 (trimmed to 𝜂𝑖 ≥ 0.5). The domain occupied by the austenite is
transparent.

The transformation initiates at the indentation depth of 𝛿 ≈ 5 nm.
The nucleation event occurs in two stages, first, the nucleation of
martensite variants 2, 4 and 6, which constitute the kernel of the
transformed domain (see snapshot ‘a’ in Fig. 1(b)), followed by the
nucleation of the remaining variants surrounding the kernel at the
indentation depth of 𝛿 ≈ 7 nm. The nucleation event is not accompanied
by rapid changes in the 𝑃–𝛿 response, rather, a gradual transition
between the elastic and transformation branches is observed, in agree-
ment with the nanoindentation experiments on SMA single crystals,
e.g., [27,83]. As the load increases, the microstructure develops more
complex patterns, in particular, twin laminates are formed between
various pairs of martensite variants, e.g., the pairs (1,3), (2,4) and (3,6).
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Fig. 1. The load–indentation depth (𝑃 –𝛿) response (a) and the snapshots of the microstructure evolution (b) in a [111]-oriented CuAlNi single crystal. The dashed curve in panel
(a) represents the elastic response. In panel (b), the austenite is shown as transparent, while each martensite variant is identified by a distinct color and the respective domain is
represented by the volume fraction 𝜂𝑖 ≥ 0.5.
The twin laminates are clearly visible from the internal view of the
microstructure, and the orientation of the twin planes agrees with the
crystallographic theory of martensite [3]. These aspects are discussed
more in Section 3.1.2.

The transformed domain continues to grow slightly at the early
stage of unloading (compare snapshots ‘d’ and ‘e’ in Fig. 1(b)). This is
a consequence of the viscous evolution law resulting from the viscous-
type dissipation potential (7). In view of this, after unloading starts,
the driving forces for the interface propagation do not change their
sign immediately, hence the interfaces continue to propagate in the
prior direction for some time, until the driving forces decrease to
zero and change their sign. A similar effect is observed in atomistic
simulations of martensite reorientation in SMAs [84]. Thereafter, the
reverse transformation commences via the shrinkage of the martensite
domains. When the indentation depth is at 𝛿 ≈ 3 nm during unloading,
the indenter separates from the top surface (thus 𝑃 = 0), while a
remnant microstructure is still present (the corresponding microstruc-
ture is not shown here), and ultimately annihilates as time proceeds
further. During the whole loading–unloading process, the microstruc-
ture exhibits an overall three-fold symmetry appearance, see Fig. 5(b),
originating from the [111] orientation of the crystal, though the local
microstructural features do not strictly fulfill the symmetry condition.

The post-processing applied to show the microstructure in Fig. 1
(i.e., trimming to 𝜂𝑖 ≥ 0.5 and a transparent domain of the austenite)
allows a better visualization of the microstructure and discloses the
interaction between the domains of martensite variants. Nevertheless,
such visualization does not reflect the diffuse character of the resulting
microstructure. Fig. 2 presents snapshots of the individual transformed
domains of selected martensite variants (1, 2 and 4) represented by the
actual field of the respective order parameters 𝜂𝑖. It follows that the
microstructure is more diffuse at the bottom of the transformed domain.
The more diffuse region is visible already at the early stage of transfor-
mation (see snapshot ‘b’ in Fig. 2), indicating that it does not result from
the interaction of the transformed domain with the bottom boundary
of the computational domain. According to our experience [50], a
sufficiently small interface thickness parameter 𝓁 (and thus a finer
mesh) would be needed to avoid such overly diffuse regions.

To understand the mechanism behind the variant selection, a sim-
plified analysis based on the Schmid factor corresponding to uniaxial
compression can be performed [85,86]. The transformation Schmid
5

Table 1
The transformation Schmid factors 𝑚𝑖 corresponding to
uniaxial compression, see Eq. (10), calculated for all
martensite variants and four crystal orientations. The
largest Schmid factors for each orientation are shaded.

[001] [011] [111] [123]

𝑚1 −0.043 0.020 −0.014 −0.015

𝑚2 −0.043 0.020 0.012 −0.001

𝑚3 0.082 0.020 −0.014 −0.032

𝑚4 0.082 0.020 0.012 0.043
𝑚5 −0.043 −0.062 −0.014 −0.050
𝑚6 −0.043 −0.023 0.012 −0.017

factor is calculated as

𝑚𝑖 = (𝐔t
𝑖 − 𝐈) ⋅ �̄�, 𝑖 = 1,… , 6, (10)

where 𝐔t
𝑖 is the transformation stretch tensor of variant 𝑖, see Eq. (9),

𝐈 is the identity tensor, so that 𝐔t
𝑖 − 𝐈 represents a strain measure, and

�̄� = −𝐭 ⊗ 𝐭 characterizes the stress state (uniaxial compression), with
𝐭 denoting the unit vector specifying the crystal axis along which the
indentation is applied. The calculation results are presented in Table 1,
which also includes the results corresponding to other crystal orienta-
tions, see the related discussion in Section 3.1.2. Table 1 suggests that
the selection of the martensite variants can be reasonably predicted
by this simple analysis. According to Table 1, variants 2, 4 and 6,
i.e., those with the largest Schmid factor 𝑚2 = 𝑚4 = 𝑚6 = 0.012, are
the favorable variants for the [111] crystal orientation. As shown in
Fig. 1 and discussed above, these variants appear prior to the other
variants and form the kernel of the transformed domain. On the other
hand, the remaining variants (with negative Schmid factors 𝑚1 = 𝑚3 =
𝑚5 = −0.014) appear at a later stage of the evolution to accommodate
the incompatibility caused by the developed microstructure.

It can be seen in Fig. 1(b) that the transformed domain occupies a
significant part of the computational domain, and thus one may expect
that the boundary conditions influence the microstructure evolution
and the 𝑃 –𝛿 response. To clarify this issue, we have performed a simu-
lation with a twice larger computational domain (800 × 800 × 560 nm3),
while all the other parameters, in particular, the indenter radius 𝑅
and the maximum indentation depth 𝛿max, are kept unchanged. The
element size ℎ is also kept unchanged in the central part where the
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Fig. 2. Snapshots of the transformed domains of variants 1, 2 and 4 represented by the respective fields of the order parameters 𝜂𝑖 in a [111]-oriented CuAlNi single crystal. Each
column of snapshots corresponds to a specific indentation depth 𝛿 during loading, see the respective labels in Fig. 1(a).
microstructure develops, while it is significantly larger in the outer
part, so that the problem involves approximately 100 million degrees
of freedom. Fig. 3 compares the resulting 𝑃–𝛿 response and the mi-
crostructure at the maximum indentation depth 𝛿max = 22 nm with
those obtained from the reference simulation. It can be seen that, except
a slight difference in the size of the transformed domain, no visible
difference can be found in the microstructures (also concerning the
internal microstructure). This is an important finding which confirms
that the microstructure can be reliably predicted by using a relatively
small computational domain. At the same time, the 𝑃–𝛿 responses are
markedly different, which is mainly due to the different interactions
with the domain boundaries, as can be reckoned by comparing the
corresponding elastic responses, see the dashed curves in Fig. 3(a).
This suggests that the 𝑃 –𝛿 response corresponding to a half-space (or a
sufficiently large computational domain) could actually be estimated
by adding the missing elastic deflection to the 𝑃 –𝛿 response of the
reference simulation. This is not pursued here, as our main goal is the
analysis of microstructure evolution.

An additional simulation has also been performed in which all the
dimensions are scaled by a factor of 2.5 with respect to the reference
simulation (i.e., computational domain size is 1000 × 1000 × 700 nm3,
indenter radius 𝑅 = 500 nm, element size ℎ = 4.7 nm, interface thickness
parameter 𝓁 = 3.75 nm). To ensure the same effective mobility of the
interfaces, the mobility parameter 𝑚 has been decreased 2.5 times,
thus 𝑚 = 0.04 (MPa s)−1 [50]. The results are reported in Fig. 4. It
follows that the normalized 𝑃–𝛿 response is very close to that of the
reference simulation, and the prominent features of the microstructure
are well reproduced. Extra domains of martensite variants, however,
appear at the bottom surface. It has been verified that these extra
domains emerge as a result of an overly diffuse microstructure at the
bottom surface, and indicate that the interface thickness parameter
𝓁 = 3.75 nm is exceedingly large. Nevertheless, the results show that
the microstructural features predicted for the relatively small indenter
radius 𝑅 = 200 nm are representative also for larger indenter radii.

3.1.2. Effect of crystal orientation
In addition to the [111]-oriented CuAlNi reported in the previous

section, simulations have been performed for three additional crystal
6

orientations, namely [001] and [011], and a non-principal [123] orien-
tation with no crystallographic symmetry. In Fig. 5, the 𝑃 –𝛿 responses
and the microstructures at the maximum indentation depth 𝛿max are
compared for the four different orientations. The maximum indentation
depth 𝛿max is set such that the transformed domain does not directly
interact with the boundaries of the computational domain. Accordingly,
in view of the distinct microstructure patterns evolved, 𝛿max is set
differently for each orientation. A quick glance at the results in Fig. 5
reveals that the 𝑃 –𝛿 responses and the microstructures obtained are
strongly influenced by the crystal orientation. A detailed analysis of
the results is presented below.

As shown in Fig. 5(a), the 𝑃 –𝛿 responses obtained for [001] and
[111] orientations exhibit the most compliant and the stiffest behav-
iors, respectively, while those of [011] and [123] are in between and
are quite close to each other. The analysis of the 𝑃 –𝛿 responses is com-
plemented by examining some contact-related quantities, in particular,
the indentation hardness, which is calculated as

𝐻 = 𝑃∕𝐴p, (11)

with 𝑃 denoting the load and 𝐴p the projected contact area, see
Table 2. To enable a meaningful comparison, the data provided in
Table 2 relate to the same indentation depth 𝛿 = 22 nm, with 𝑃 and
𝐴p being the corresponding instantaneous values. It follows that the
maximum hardness 𝐻 = 16.9 GPa belongs to the [111] orientation,
and the minimum hardness 𝐻 = 10.9 GPa to the [001] orientation.
An important point that needs to be highlighted is that the values of
the hardness calculated here are larger than those typically reported
in the nanoindentation experiments of SMAs, e.g., [14,83]. This is
attributed to the small size of the transformed domain (related to the
limited size of the computational domain) and, thereby, the decisive
role of the interfacial energy contribution. As a result, a relatively high
indentation load is required to induce the microstructure, see [55] for
the related discussion. The overprediction of the hardness is also due
to the effect of boundary conditions, as illustrated in Fig. 3. Finally, we
note that the stress-induced martensitic transformation is here the only
inelastic deformation mechanism, while plasticity (dislocation slip),
even if limited, may contribute to the lower hardness observed in the
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Fig. 3. Effect of the size of the computational domain: the load–indentation depth (𝑃 –𝛿) response (a) and the microstructure at the maximum indentation depth 𝛿max = 22 nm (b)
are compared for the reference case (with the computational domain of the size 400 × 400 × 280 nm3) and for a twice larger computational domain, both with the indenter radius
𝑅 = 200 nm. The dashed curves in panel (a) represent the elastic responses. The outer box in the left figure in panel (b) depicts the extent of the larger domain relative to the
reference domain.
Fig. 4. Effect of the indenter radius 𝑅: the normalized load–indentation depth (𝑃∕𝑅2–𝛿∕𝑅) response (a) and the microstructure at the maximum indentation depth (b) are compared
for the reference case (with the computational domain of the size 400 × 400 × 280 nm3 and the indenter radius 𝑅 = 200 nm) and for the case with a 2.5 times larger computational
domain (1000 × 1000 × 700 nm3) and indenter radius (𝑅 = 500 nm). Note that in the latter case, the element size ℎ and the interface thickness 𝓁 are also scaled by the factor of 2.5
with respect to the reference simulation. The dashed curve in panel (a) represents the normalized elastic response (identical in both cases).
experiments. Actually, at very small scales, activity of plastic slip may
be limited due to the strengthening effect of dislocation starvation [87]
and strain gradients [88]. In fact, a (nearly) complete deformation
recovery has been reported in the nanoindentation experiments on
NiTi [36], while, depending on the indenter radius, both complete and
incomplete recovery have been reported in [27]. Inclusion of plasticity
would be a natural next step to enhance the model, e.g., [47,51,89],
but it is beyond the scope of this work.

Another quantity included in Table 2 is the ratio between the
projected contact area 𝐴p and the nominal contact area 𝐴n, the latter
determined by simple geometry as 𝐴n = 𝜋𝛿(2𝑅 − 𝛿), and thus 𝐴n =
26.1 × 103 nm2 for 𝛿 = 22 nm. In the context of plasticity, the 𝐴p∕𝐴n
ratio, known as 𝑐2, is related to the amount of pile-up/sink-in and
characterizes the degree of strain hardening, e.g., [90,91]. Table 2
indicates that the 𝐴p∕𝐴n ratio is weakly influenced by the crystal
orientation, however, analogous to the hardness 𝐻 , it shows the largest
and smallest values for [111] and [001] orientations, respectively.
7

Table 2
Contact-related quantities calculated for different crystal orientations. The values
correspond to the same indentation depth 𝛿 = 22 nm, i.e., the maximum indentation
depth for [111]-oriented CuAlNi, see Fig. 5(a).

[001] [011] [111] [123]

Indentation load, 𝑃 [𝜇N] 195 285 324 273
Projected contact area, 𝐴p [103 nm2] 17.9 18.3 19.1 18.8
𝐴p∕𝐴n ratio, 0.69 0.70 0.73 0.72
Hardness, 𝐻 [GPa] 10.9 15.6 16.9 14.5

We stress again that we are not aware of any experiments on CuAlNi
single crystal that could be used to verify quantitatively the predicted
mechanical response for different crystal orientations.

Next, we elaborate more on the impact of the crystal orientation
on the microstructure. Fig. 5(b) clearly shows the diversity in the
microstructure patterns evolved for different orientations. Despite the
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Fig. 5. Effect of crystal orientation: the load–indentation depth (𝑃 –𝛿) response (a) and the microstructure at the maximum indentation depth 𝛿max (b) in CuAlNi. Note the different
𝛿max for different orientations. The orientation of the small cube in the top row of panel (b) indicates the orientation of the cubic lattice of the austenite.
presence of all variants for all the orientations, the general shape of
the transformed domain, the arrangement of the martensite variants,
and their interaction with each other is markedly affected by the
orientation. It is visible from the top view that the transformed domain
for [001], [011] and [111] orientations possesses an overall four-, two-
and three-fold symmetry, respectively. To investigate the microstruc-
tures in more detail, representative snapshots of the microstructure
evolution for different orientations are illustrated in Fig. 6. The internal
features of the microstructures are displayed by removing one quarter
segment of the transformed domain. Fig. 6 reveals that, for each crystal
orientation, a particular set of martensite variants constitute the kernel
of the transformed domain. In most cases, the generated variants are
correctly predicted by the Schmid analysis (those with the highest
Schmid factors, see Table 1).

From the internal view of the microstructures in Fig. 6, twin lami-
nates can be observed at several places. The laminates comprise layers
of two martensite variants separated by (approximately) parallel inter-
faces, i.e., twin planes. Although the formation of the laminates does
not disrupt the overall symmetry of the microstructure, it breaks the
local symmetry between the variants involved in twinning. This, in
particular, can be seen for the [011] and [111] microstructures with
fully-developed twin laminates.

Upon identification of the twin plane orientations, it has been found
out that in all cases, the developed twins are either type II or compound
twins, while no twin laminates with type I twins have been detected.
This finding is consistent with the experiments on CuAlNi, which
confirmed the preference for type II and compound twins under com-
pression [92,93]. Recall that in the present model the interfacial energy
𝐹int, see Eq. (6), is isotropic, and thus does not distinguish between
twins of different types. Fig. 7 shows representative twin laminates
extracted from the individual microstructures and compared to the
prediction by crystallographic theory [3]. In the simulated microstruc-
tures, the characteristic twin spacing results from the interplay between
the interfacial energy and the elastic microstrain energy [48,82]. The
spacing in the images illustrating the predictions by crystallographic
theory has been adjusted manually.

3.1.3. Effect of elastic anisotropy
The goal of this section is to highlight the impact of elastic anisotropy

on the simulation results. In the previous section, we addressed the
problem of microstructure evolution for different crystal orientations,
where the elastic anisotropy of cubic symmetry for the austenite phase
8

and of orthorhombic symmetry for the martensite phases have been
accounted for (this case is referred to as ‘full anisotropy’ in the sequel).
The same problem is here approached considering two additional cases,
i.e., the case with the cubic elastic anisotropy for both austenite and
martensite phases, with the elastic constants of the austenitic CuAlNi
(referred to as ‘homogeneous cubic’ in the sequel), and the case with
isotropic elasticity. In the latter case, the corresponding shear and bulk
moduli (𝜇 = 39 GPa and 𝜅 = 128 GPa) are obtained by applying the
Voigt–Reuss–Hill averaging [94] to the elastic constants of austenitic
CuAlNi.

The effect of elastic anisotropy on the microstructure is depicted
in Fig. 8, where the snapshots are taken at the maximum indentation
depth 𝛿max, as in Fig. 5. From the comparison of the microstructures
between the full anisotropy and the homogeneous cubic cases, it can be
seen that the overall appearance of the microstructures is quite similar.
Some small differences, however, are noticeable. This, in particular,
concerns the microstructures for the [011] orientation, for instance, the
absence of the martensite variant 6 within the kernel of the transformed
domain in the homogeneous cubic case, or the difference in the twin
spacing (e.g., the average twin spacing is about 22 nm in the full
anisotropy case, while it is about 19 nm in the homogeneous cubic
case). At the same time, it is immediate to notice significant microstruc-
tural differences between the isotropic case and the other two cases.
The differences are mainly concerned with the overall shape of the
transformed domain, and the spatial arrangement of the martensite
variants.

Upon investigating the 𝑃 –𝛿 responses, it has been found out that
almost for all orientations, the homogeneous cubic and isotropic cases
exhibit the stiffest and the most compliant mechanical behavior, respec-
tively, where the difference is the maximum for the [111] orientation
(about 40% of the load 𝑃 at the maximum indentation depth 𝛿max =
22 nm). Moreover, in each elasticity case, the 𝑃–𝛿 curves of different
orientations exhibit the same ordering as those in full anisotropy, see
Fig. 5(a). The corresponding plots are not provided here for brevity.

3.1.4. Effect of finite-strain kinematics
In this section we demonstrate the crucial role of finite-strain kine-

matics on the results obtained. To this end, the model is reformulated
in the small-strain framework and is employed to simulate the mi-
crostructure evolution for different crystal orientations. The material
parameters are the same as those introduced in Section 2.3, in partic-
ular, full elastic anisotropy is taken into account. The reformulation
of the model from the finite-strain to the small-strain framework is

straightforward, however, it is briefly outlined here for completeness.
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Fig. 6. Microstructure evolution (during loading and unloading) in CuAlNi for different crystal orientations. To display the internal features of the microstructure, one quarter of
the transformed domain is removed. The orientation of the small cube in the top row indicates the orientation of the cubic lattice of the austenite.
Fig. 7. Comparison between the orientation of the twin planes resulting from the simulations (left images, shown in the reference configuration) and those predicted by the
crystallographic theory (right images, with the twin spacing adjusted manually). The twin laminates have been extracted from the respective microstructures at the maximum
indentation depth 𝛿max, see Fig. 6.
In the small-strain model, the total strain 𝜺 = 1
2 (∇𝐮 + (∇𝐮)T) admits

an additive decomposition into the elastic part 𝜺e and transformation
part 𝜺t, i.e., 𝜺 = 𝜺e + 𝜺t. The elastic strain energy is then expressed as a
quadratic function of the elastic strain 𝜺e = 𝜺 − 𝜺t, cf. Eq. (5),

𝐹el =
1
2
(𝜺 − 𝜺t) ⋅ L(𝜺 − 𝜺t), 𝜺t =

𝑁
∑

𝑖=1
𝜂𝑖𝜺t

𝑖 , (12)

where 𝜺t
𝑖 denotes the transformation strain of the martensite variant 𝑖

and is defined as 𝜺t
𝑖 = 𝐔t

𝑖 − 𝐈, see Eq. (9). The other energy components
remain the same as those in the finite-strain model.
9

Fig. 9 compares the microstructures predicted by the finite- and
small-strain models for different crystal orientations. It follows that,
indeed, the effect of the finite-strain kinematics is striking. Although
some microstructural features, namely the overall symmetry of the
microstructure and the formation of all martensite variants, are repro-
duced in the small-strain simulations, strong discrepancies are observed
with respect to those of finite-strain simulations. Interestingly, no twin
laminates have been formed in the small-strain simulations, instead, the
microstructures have developed bulky martensite domains.
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Fig. 8. The effect of elastic anisotropy on the microstructure in CuAlNi. The snapshots are taken at the maximum indentation depth 𝛿max (different for each orientation, see Fig. 5).
In the reference case of full anisotropy, distinct elastic anisotropy of all phases is accounted for. In the homogeneous cubic case, cubic anisotropy of the austenite is adopted for
all phases. In the isotropic case, all phases have the same isotropic elastic properties.
Fig. 9. The effect of finite-strain kinematics on the microstructure in CuAlNi: predictions of the small-strain theory (top row) are compared to the kinematically exact finite-strain
theory (reference case, bottom row). The snapshots are taken at the maximum indentation depth 𝛿max (different for each orientation, see Fig. 5).
The main difference between the small- and finite-strain theory is
in the way the rotations are handled, and this may be the reason
behind the significant difference between the microstructures predicted
by the two theories, as discussed in detail by Finel et al. [95]. Actually,
the lack of fine twin laminates in our small-strain simulations bears
10
qualitative similarities to the results reported in [95] for a different
problem, where microtwins disappear in the small-strain setting, but
persist in the finite-strain setting.

In addition to the microstructures, as expected, the 𝑃 –𝛿 responses
are also affected by the choice of the deformation kinematics. The
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Table 3
The transformation stretch parameters (𝛼, 𝛽, 𝛾) and the largest transformation Schmid factors, see Eq. (10), corresponding
to uniaxial tension (superscript ‘tens’) and uniaxial compression (superscript ‘comp’) calculated for NiTiPd with different Pd
contents. The crystallographic data for different Pd contents have been taken from the work of Delville et al. [59]. Note that
the Pd content does not influence the sets of favored martensite variants with the largest Schmid factors.

7% Pd 9% 10% 11% 18% 20% 25%

𝛼 0.9970 0.9988 0.9998 1.0001 1.0050 1.0060 1.0070
𝛽 0.9398 0.9341 0.9332 0.9280 0.9227 0.9244 0.9167
𝛾 1.0606 1.0635 1.0659 1.0674 1.0710 1.0691 1.0775

𝑚tens
[001] 0.0288 0.0311 0.0329 0.0338 0.0380 0.0376 0.0423

𝑚tens
[011] 0.0606 0.0635 0.0659 0.0674 0.0710 0.0691 0.0775

𝑚tens
[111] 0.0203 0.0204 0.0217 0.0209 0.0216 0.0209 0.0239

𝑚comp
[001] 0.0602 0.0659 0.0668 0.0720 0.0773 0.0756 0.0833

𝑚comp
[011] 0.0157 0.0174 0.0170 0.0191 0.0197 0.0190 0.0205

𝑚comp
[111] 0.0221 0.0228 0.0224 0.0239 0.0224 0.0212 0.0231
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effect is quantitatively different depending on the crystal orientation,
however, in all cases, it is less than 10% of the load 𝑃 at the maximum
indentation depth 𝛿max (the corresponding plots are not shown here for
brevity).

3.2. NiTiPd single crystal under nanoindentation: the role of the Pd content

In this section, we exploit the nanoindentation problem setup to
study the role of the Pd content in the transformation behavior of a
NiTiPd single crystal. In this alloy, the Pd content can be adjusted
such that a very low transformation hysteresis is achieved [58,59].
According to the geometrically nonlinear crystallographic theory of
martensite [96,97], the following conditions have to be satisfied so
that an SMA material exhibits a very low transformation hysteresis: (i)
no transformation volume change, mathematically expressed as 𝐽t =
et(𝐔t

𝑖) = 𝜆1𝜆2𝜆3 = 1, with 𝜆1 ≤ 𝜆2 ≤ 𝜆3 as the ordered eigenvalues
f the transformation stretch tensors 𝐔t

𝑖 , and (ii) phase compatibility,1
xpressed as 𝜆2 = 1, which implies that a compatible planar interface
an be formed between austenite and a single variant of martensite. It
as been observed in the experiment on ternary Ni-based SMAs under
emperature-induced phase transformation [58] that there is only a
eak correlation between the transformation volume change 𝐽t and

hermal hysteresis. At the same time, the change in 𝜆2 significantly
mpacts the microstructure evolution (i.e., as 𝜆2 approaches unity, the
aterial tends to develop twinless austenite–martensite microstructure)

nd, thereby, impacts the thermal hysteresis.
Using the crystallographic data reported by Delville et al. [59],

ee Table 1 therein, we provide in Table 3 the transformation stretch
arameters (𝛼, 𝛽, 𝛾) for different Pd contents. The stretch parameters
re then used to plot the graphs of the transformation volume change
t and the middle eigenvalue 𝜆2 as a function of the Pd content, see
ig. 12(a). It follows that the middle eigenvalue 𝜆2 is closest to unity
or the Pd content of 11%, while 𝜆2 > 1 and 𝜆2 < 1 for the Pd content,
espectively, greater and lower than 11%. At the same time, 𝐽t has
he largest deviation from unity for the Pd content of 11%, and hence
he largest transformation volume change. Having these characteristics
nd the above experimental findings in mind, the goal we pursue in
his study is to investigate whether and how the Pd content and the
wo low-hysteresis indicators (𝐽t and 𝜆2) impact the nanoindentation
esponse of NiTiPd.

As the starting point of this study, the microstructures obtained
or NiTiPd are compared to those of CuAlNi for different crystal ori-
ntations. For this comparison, we have chosen the microstructures
redicted for the Pd content of 11%. Nevertheless, as discussed later

1 The cofactor conditions are yet another set of compatibility conditions
called supercompatibility) that if satisfied lead to an extremely low transfor-
ation hysteresis [61,98]. However, these conditions are out of the scope of

he current study and will not be considered further on.
11
and shown in Fig. 11(c), the effect of the Pd content on the mi-
crostructure evolution is negligible and the resulting microstructures
for different Pd contents are substantially similar. For a more consistent
comparison, we consider CuAlNi with homogeneous cubic elasticity,
hence the same kind of elastic anisotropy is employed for both materi-
als, see Section 3.1.3. Fig. 10 shows that, although CuAlNi and NiTiPd
have similar microstructure patterns, they exhibit some significant dif-
ferences, for instance, in the shape of the individual martensite domains
or in the selection of the martensite variants in twin laminates. The
differences obviously stem from two sources, namely the elasticity and
the transformation stretches. Firstly, the two materials are character-
ized by different anisotropy (Zener) coefficients 𝐴 = 2𝑐44∕(𝑐11 − 𝑐12),

ith 𝐴 = 12 (highly anisotropic) for CuAlNi and 𝐴 = 2.1 (weakly
nisotropic) for NiTiPd. Secondly, the stretch parameters for NiTiPd
ie in a different range than those of CuAlNi. In particular, the stretch
arameter 𝛽 (which is equal to the second eigenvalue 𝜆2) in NiTiPd is
lose to unity, 𝛽 = 1 ± 0.0075, while 𝛽 = 0.9178 in CuAlNi. The effect
f crystal orientation on the load–indentation depth (𝑃 –𝛿) response in
iTiPd is similar to that in CuAlNi shown in Fig. 6(a), and thus it is
mitted here for brevity.

We now focus on the role of the Pd content in the transformation
ehavior of NiTiPd. Before delving into the main analysis, we examine
he impact of the Pd content on the transformation Schmid factors.
able 3 reports the largest transformation Schmid factors (among those
alculated for all the six martensite variants) corresponding to uniaxial
ension, with �̄� = 𝐭 ⊗ 𝐭, and uniaxial compression, with �̄� = −𝐭 ⊗ 𝐭,
f. Eq. (10). For a given orientation and loading, the largest Schmid
actor provides an estimate (in fact, an upper bound) of the maximum
ttainable transformation strain. It is seen that the Schmid factors
alculated for the [001] orientation for compression (and also for
ension) are characterized by the greatest impact of the Pd content.
uch impact may dominate the transformation behavior and obscure
ntirely the role of the Pd content in terms of phase compatibility
nd transformation volume change. We thereby limit our main analysis
o the [111] orientation, which exhibits the lowest impact of the Pd
ontent on the transformation Schmid factors.

Fig. 11 shows the effect of the Pd content on the 𝑃–𝛿 response and
icrostructure at the maximum indentation depth 𝛿max = 28 nm. We

tress again that the stretch parameters (𝛼, 𝛽, 𝛾), and thus the trans-
ormation stretch tensors 𝐔t

𝑖 , are the only varying input parameters,
hile the dependence of elastic constants, interfacial energy, and other
arameters on the Pd content is neglected, as the related data is not
vailable. At the first glance, the simulation results suggest a negligible
nfluence of the Pd content. Despite some small differences between
ndividual microstructures, see Fig. 11(c), a consistent and meaningful
rend of microstructure change is hardly visible. A quantitative exami-
ation based on the 𝑃 –𝛿 responses, however, reveals that the maximum
ndentation load (associated with 𝛿max) and the enclosed area of the
seudoelastic loop are directly influenced by the Pd content, although
he related differences are not large (less than 10%). Fig. 12(b) presents
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Fig. 10. The microstructures obtained for NiTiPd (with the Pd content of 11%) and CuAlNi for different crystal orientations. For each orientation, the snapshots are taken at
the same indentation depth. Both CuAlNi and NiTiPd alloys undergo the cubic-to-orthorhombic transformation, but the respective transformation stretch parameters (𝛼, 𝛽, 𝛾) are
different, which visibly influences the predicted microstructures.
Fig. 11. (a) The effect of the Pd content on the load–indentation depth (𝑃 –𝛿) response. (b) The overall view (top) and the internal features (bottom) of the microstructure for
11% Pd at the maximum indentation depth 𝛿max = 28 nm. (c) The effect of the Pd content on the fine features of the microstructure. The microstructures in panel (c) are displayed
through a vertical plane along the centerline of the computational domain (shown in panel (b)).
the detailed results in terms of the hysteresis and hysteresis/work ratio
as a function of the Pd content. Herein, hysteresis is defined as the
enclosed area of the pseudoelastic loop (equal to the energy dissipated
in the complete forward–reverse transformation cycle), and the work is
defined as the area below the loading branch. Interestingly, the graphs
in Fig. 12(b) demonstrate the maximum hysteresis for 11% Pd, which
is characterized by 𝜆2 = 1 and by the largest transformation volume
change. To establish a meaningful correlation, the hysteresis data are
plotted in Fig. 12(c) as a function of the transformation volume change
𝐽t. It can be seen (in particular for the hysteresis/work ratio) that
the graphs have a non-monotonic trend with the minimum at 𝐽t =
0.9942 (for 20% Pd), showing the optimum contraction that leads to
the lowest transformation hysteresis during nanoindentation. Note that
indentation induces compressive stresses beneath the indenter, hence a
12
negative volume change (𝐽t < 1), as in NiTiPd, should be favored by
the stress state.

Further analysis of the results reveals that no relevant connec-
tion can be established between the hysteresis data and the second
eigenvalue 𝜆2. This can be justified as follows. According to the crys-
tallographic theory, the effect of 𝜆2 is manifested through the change
in the microstructure pattern of planar austenite–martensite interfaces.
Specifically, twinned microstructure is developed for 𝜆2 ≠ 1 and twin-
less microstructure for 𝜆2 = 1. In the present simulations, the size of the
transformed domain is rather small. Therefore, the interfacial energy
acts as the main factor that governs the microstructure evolution,
and, in particular, prevents development of planar austenite–martensite
interfaces. As a result, the 𝜆2 indicator does not show the expected
impact on the microstructure and on the hysteresis.
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Fig. 12. (a) The graphs of the middle eigenvalue 𝜆2 and the transformation volume change 𝐽t = 𝜆1𝜆2𝜆3 as a function of the Pd content, with the corresponding crystallographic
data taken from [59]. (b,c) The graphs of the hysteresis and the hysteresis/work ratio as a function of (b) the Pd content and (c) the transformation volume change 𝐽t. Note that,
due to the lack of experimental data in the Pd range from 11% to 18%, an additional simulation has been performed for 14% Pd, where the crystallographic lattice parameters
of this hypothetical alloy are obtained by a linear interpolation. The corresponding points on the graphs are denoted by empty circles.
4. Conclusions

This paper presents the first attempt to use the phase-field method
for a physically-insightful 3D analysis of martensitic transformation
during nanoindentation. A finite-element-based phase-field model, de-
veloped recently by the authors [50], is employed for this purpose.
The focus of the study is on pseudoelastic SMA single crystals, namely
CuAlNi and NiTiPd.

A pronounced orientation dependence of the mechanical response
and microstructure has been captured for CuAlNi. A comprehensive
investigation of the microstructures revealed that: (i) consistent with
the experiments, the evolved twin laminates are either type II or
compound twins, (ii) the orientation of the twin planes is in agreement
with those calculated by the crystallographic theory of martensite, and
(iii) the selection of the martensite variants can be reasonably explained
by a simple Schmid factor analysis, all demonstrating the credibility of
the simulation results.

No appreciable differences have been detected in the microstruc-
tures predicted for NiTiPd with different Pd contents, despite the
visible differences in the transformation stretch parameters. It has been
found out that the maximum and minimum transformation hysteresis
in nanoindentation are obtained for the Pd content of 11% and 20%,
respectively. This peculiar observation implies the predominant influ-
ence of the transformation volume change 𝐽t over that of the middle
eigenvalue 𝜆2 and is in contrast with the general consensus reached by
the experimental observations (in temperature-induced transformation)
and advocated by the geometrically nonlinear crystallographic theory
of martensite. It can be argued that the overwhelming impact of the
interfacial energy, which stems from the limited size of the computa-
tional domain and, thereby, the relatively small size of the transformed
domain, explains the failure of the middle eigenvalue 𝜆2 in inducing a
meaningful impact on the microstructures and on the transformation
hysteresis.

Our study highlights also the key role of some specific model
features, including elastic anisotropy and finite-strain kinematics. It
follows that both features significantly impact the final results. More
importantly, the finite-strain kinematics proves to be a crucial element
for a reliable prediction of the microstructure pattern.

CRediT authorship contribution statement

Mohsen Rezaee-Hajidehi: Conceptualization, Methodology, Soft-
ware, Visualization, Writing – original draft, Writing – review & editing.
13
Karel Tůma: Conceptualization, Methodology, Software. Stanisław
Stupkiewicz: Conceptualization, Methodology, Writing – review &
editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

MRH has been supported by the National Science Centre (NCN)
in Poland through Grant No. 2021/43/D/ST8/02555. KT has been
supported by the ERC-CZ, Czech Republic grant LL2105 of the Ministry
of Education, Youth and Sport of the Czech Republic and by Charles
University Research, Czech Republic program No. UNCE/SCI/023. SS
has been supported by the National Science Centre (NCN) in Poland
through Grant No. 2018/29/B/ST8/00729. This work has also been
supported by the Ministry of Education, Youth and Sports of the Czech
Republic through the e-INFRA CZ project (ID:90140).

References

[1] Otsuka K, Wayman CM, editors. Shape memory materials. Cambridge University
Press; 1998.

[2] Mohd Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy
research, applications and opportunities. Mater Des 2014;56:1078–113.

[3] Bhattacharya K. Microstructure of martensite: Why it forms and how it gives rise
to the shape-memory effect. Oxford: Oxford University Press; 2003.

[4] Kohl M. Shape memory microactuators. Springer-Verlag; 2004.
[5] Bellouard Y. Shape memory alloys for microsystems: A review from a material

research perspective. Mater Sci Eng A 2008;481–482:582–9.
[6] Miyazaki S, Fu YQ, Huang WM, editors. Thin film shape memory alloys:

fundamentals and device applications. Cambridge University Press; 2009.
[7] Chluba C, Ge W, Lima de Miranda R, Strobel J, Kienle L, Quandt E, et al.

Ultralow-fatigue shape memory alloy films. Science 2015;348:1004–7.
[8] Karami M, Chen X. Nanomechanics of shape memory alloys. Mater Today Adv

2021;10:100141.
[9] Schuh CA. Nanoindentation studies of materials. Mater Today 2006;9(5):32–40.

[10] Fischer-Cripps AC. Nanoindentation. New York: Springer-Verlag; 2011.

http://refhub.elsevier.com/S0020-7403(23)00002-4/sb1
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb1
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb1
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb2
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb2
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb2
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb3
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb3
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb3
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb4
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb5
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb5
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb5
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb6
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb6
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb6
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb7
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb7
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb7
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb8
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb8
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb8
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb9
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb10


International Journal of Mechanical Sciences 245 (2023) 108100M. Rezaee-Hajidehi et al.
[11] Frick CP, Lang TW, Spark K, Gall K. Stress-induced martensitic transformations
and shape memory at nanometer scales. Acta Mater 2006;54:2223–34.

[12] Zhang HS, Komvopoulos K. Nanoscale pseudoelasticity of single-crystal Cu–
Al–Ni shape-memory alloy induced by cyclic nanoindentation. J Math Sci
2006;41:5021–4.

[13] Kan Q, Yan W, Kang G, Sun Q. Oliver–Pharr indentation method in determining
elastic moduli of shape memory alloys—a phase transformable material. J Mech
Phys Solids 2013;61:2015–33.

[14] Laplanche G, Pfetzing-Micklich J, Eggeler G. Orientation dependence of stress-
induced martensite formation during nanoindentation in NiTi shape memory
alloys. Acta Mater 2014;68:19–31.

[15] Amini A, Yan W, Sun Q. Depth dependency of indentation hardness dur-
ing solid-state phase transition of shape memory alloys. Appl Phys Lett
2011;99:021901.

[16] Montecinos S, Tognana S, Salgueiro W. Indentation size effect in 𝛽 CuAlBe and
Cu-2Be alloys. Acta Metall Sin-Eng Lett 2021;34:1669–78.

[17] Zheng H, Rao J, Pfetzing J, Frenzel J, Somsen C, Eggeler G. TEM observation
of stress-induced martensite after nanoindentation of pseudoelastic Ti50Ni48Fe2.
Scr Mater 2008;58:743–6.

[18] Pfetzing-Micklich J, Wieczorek N, Simon T, Maaß B, Eggeler G. Direct mi-
crostructural evidence for the stress induced formation of martensite during
nanonindentation of NiTi. Mater Sci Eng A 2014;591:33–7.

[19] Bolzon G, Maier G, Panico M. Material model calibration by indentation, imprint
mapping and inverse analysis. Int J Solids Struct 2004;41:2957–75.

[20] Rester M, Motz C, Pippan R. Microstructural investigation of the volume beneath
nanoindentations in copper. Acta Mater 2007;55:6427–35.

[21] Shaw GA, Stone DS, Johnson AD, Ellis AB, Crone WC. Shape memory effect in
nanoindentation of nickel–titanium thin films. Appl Phys Lett 2003;83:257–9.

[22] Laplanche G, Pfetzing-Micklich J, Eggeler G. Sudden stress-induced transforma-
tion events during nanoindentation of NiTi shape memory alloys. Acta Mater
2014;78:144–60.

[23] Ni W, Cheng YT, Grummon DS. Microscopic superelastic behavior of a
nickel-titanium alloy under complex loading conditions. Appl Phys Lett
2003;82:2811–3.

[24] Li P, Karaca HE, Cheng YT. Spherical indentation of NiTi-based shape memory
alloys. J Alloys Compd 2015;651:724–30.

[25] Muir Wood AJ, Clyne TW. Measurement and modelling of the nanoindentation
response of shape memory alloys. Acta Mater 2006;54:5607–15.

[26] Pfetzing-Micklich J, Wagner MFX, Zarnetta R, Frenzel J, Eggeler G, Markaki AE,
et al. Nanoindentation of a pseudoelastic NiTiFe shape memory alloy. Adv Eng
Mat 2010;12:13–9.

[27] Kumar S, Kumar IA, Marandi L, Sen I. Assessment of small-scale deformation
characteristics and stress-strain behavior of NiTi based shape memory alloy using
nanoindentation. Acta Mater 2020;201:303–15.

[28] Pfetzing-Micklich J, Somsen C, Dlouhy A, Begau C, Hartmaier A, Wagner MFX, et
al. On the crystallographic anisotropy of nanoindentation in pseudoelastic NiTi.
Acta Mater 2013;61:602–16.

[29] Chen X, Lu S, Zhao Y, Fu T, Huang C, Peng X. Molecular dynamic simulation
on nano-indentation of NiTi SMA. Mater Sci Eng A 2018;712:592–602.

[30] Doan DQ, Fang TH, Chen TH. Influences of grain size and temperature on tribo-
logical characteristics of CuAlNi alloys under nanoindentation and nanoscratch.
Int J Mech Sci 2020;185:105865.

[31] Ko WS, Jeon JB. Atomistic simulations on orientation dependent martensitic
transformation during nanoindentation of NiTi shape-memory alloys. Comput
Mater Sci 2021;187:110127.

[32] Pan H, Thamburaja P, Chau FS. Multi-axial behavior of shape-memory
alloys undergoing martensitic reorientation and detwinning. Int J Plast
2007;23:711–32.

[33] Dhala S, Mishra S, Tewari A, Alankar A. Analyses of orientation dependent
nanoindentation response of pseudoelastic NiTi alloy using a crystal plasticity
model. Mech Mater 2019;135:1–12.

[34] Hossain MA, Baxevanis T. A finite strain thermomechanically-coupled con-
stitutive model for phase transformation and (transformation-induced) plastic
deformation in NiTi single crystals. Int J Plast 2021;139:102957.

[35] Yan W, Sun Q, Feng XQ, Qian L. Analysis of spherical indentation of superelastic
shape memory alloys. Int J Solids Struct 2007;44:1–17.

[36] Amini A, Cheng C, Kan Q, Naebe M, Song H. Phase transformation evolution
in NiTi shape memory alloy under cyclic nanoindentation loadings at dissimilar
rates. Sci Rep 2013;3:3412.

[37] Tourret D, Liu H, LLorca J. Phase-field modeling of microstructure evo-
lution: Recent applications, perspectives and challenges. Prog Mater Sci
2022;123:100810.

[38] Wang Y, Khachaturyan AG. Three-dimensional field model and computer
modeling of martensitic transformations. Acta Mater 1997;45:759–73.

[39] Artemev A, Wang Y, Khachaturyan AG. Three-dimensional phase field model
and simulation of martensitic transformation in multilayer systems under applied
stresses. Acta Mater 2000;48:2503–18.

[40] Jin YM, Artemev A, Khachaturyan AG. Three-dimensional phase field model
of low-symmetry martensitic transformation in polycrystal: simulation of 𝜁 ′2
martensite in AuCd alloys. Acta Mater 2001;49:2309–20.
14
[41] Ahluwalia R, Lookman T, Saxena A, Albers RC. Landau theory for shape memory
polycrystals. Acta Mater 2004;52:209–18.

[42] Shu YC, Yen JH. Multivariant model of martensitic microstructure in thin films.
Acta Mater 2008;56(15):3969–81.

[43] Zhong Y, Zhu T. Phase-field modeling of martensitic microstructure in NiTi shape
memory alloys. Acta Mater 2014;75:337–47.

[44] Zhao P, Low TSE, Wang Y, Niezgoda SR. Finite strain phase-field microelasticity
theory for modeling microstructural evolution. Acta Mater 2020;191:253–69.

[45] Levitas VI, Levin VA, Zingerman KM, Freiman EI. Displacive phase transitions at
large strains: phase-field theory and simulations. Phys Rev Lett 2009;103:025702.

[46] Hildebrand FE, Miehe C. A phase field model for the formation and evolution of
martensitic laminate microstructure at finite strains. Phil Mag 2012;92:4250–90.

[47] Yeddu HK, Malik A, Ågren J, Amberg G, Borgenstam A. Three-dimensional
phase-field modeling of martensitic microstructure evolution in steels. Acta Mater
2012;60:1538–47.

[48] Tůma K, Stupkiewicz S, Petryk H. Size effects in martensitic microstructures:
Finite-strain phase field model versus sharp-interface approach. J Mech Phys
Solids 2016;95:284–307.

[49] Cissé C, Asle Zaeem M. Transformation-induced fracture toughening in CuAlBe
shape memory alloys: A phase-field study. Int J Mech Sci 2021;192:106144.

[50] Tůma K, Rezaee-Hajidehi M, Hron J, Farrell PE, Stupkiewicz S. Phase-field mod-
eling of multivariant martensitic transformation at finite-strain: computational
aspects and large-scale finite-element simulations. Comput Methods Appl Mech
Engrg 2021;377:113705.

[51] Xu B, Kang G, Kan Q, Yu C, Xie X. Phase field simulation on the cyclic
degeneration of one-way shape memory effect of NiTi shape memory alloy single
crystal. Int J Mech Sci 2020;168:105303.

[52] Clayton JD, Knap J. Phase field modeling of twinning in indentation of
transparent crystals. Modelling Simul Mater Sci Eng 2011;19:085005.

[53] Basak A, Levitas VI. Finite element procedure and simulations for a multiphase
phase field approach to martensitic phase transformations at large strains and
with interfacial stresses. Comput Methods Appl Mech Engrg 2019;343:368–406.

[54] Qi C, Jiang Y, Wang X, Lynch CS. Phase transition by nanoindentation in a
relaxor ferroelectric single crystal PMN-0.3 PT: A phase-field investigation. J
Appl Phys 2022;131:244101.

[55] Rezaee-Hajidehi M, Stupkiewicz S. Phase-field modeling of multivariant
martensitic microstructures and size effects in nano-indentation. Mech Mater
2020;141:103267.

[56] Rezaee-Hajidehi M, Stupkiewicz S. Micromorphic approach to phase-field model-
ing of multivariant martensitic transformation with rate-independent dissipation
effects. Int J Solids Struct 2021;222:111027.

[57] Dhote RP, Gomez H, Melnik RNV, Zu J. 3D coupled thermo-mechanical phase-
field modeling of shape memory alloy dynamics via isogeometric analysis.
Comput Struct 2015;154:48–58.

[58] Cui J, Chu YS, Famodu OO, Furuya Y, Hattrick-Simpers J, James RD, et al.
Combinatorial search of thermoelastic shape-memory alloys with extremely small
hysteresis width. Nature Mater 2006;5:286–90.

[59] Delville R, Kasinathan S, Zhang Z, Humbeeck JV, James RD, Schryvers D.
Transmission electron microscopy study of phase compatibility in low hysteresis
shape memory alloys. Phil Mag 2010;90:177–95.

[60] Evirgen A, Karaman I, Santamarta R, Pons J, Hayrettin C, Noebe RD. Relationship
between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf
and NiTiZr high temperature shape memory alloys. Acta Mater 2016;121:374–83.

[61] Gu H, Bumke L, Chluba C, Quandt E, James RD. Phase engineering and
supercompatibility of shape memory alloys. Mater Today 2018;21:265–77.

[62] Salman O, Finel A, Delville R, Schryvers D. The role of phase compatibility in
martensite. J Appl Phys 2012;111:103517.

[63] Levitas VI. Phase field approach for stress-and temperature-induced phase trans-
formations that satisfies lattice instability conditions. Part I. General theory. Int
J Plast 2018;106:164–85.

[64] Steinbach I. Phase-field models in materials science. Modelling Simul Mater Sci
Eng 2009;17:073001.

[65] Basak A, Levitas VI. Interfacial stresses within boundary between martensitic
variants: Analytical and numerical finite strain solutions for three phase field
models. Acta Mater 2017;139:174–87.

[66] Shaw JA, Kyriakides S. Thermomechanical aspects of NiTi. J Mech Phys Solids
1995;43:1243–81.

[67] Zhang X, Feng P, He Y, Yu T, Sun Q. Experimental study on rate dependence
of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips.
Int J Mech Sci 2010;52:1660–70.

[68] Yin H, Li M, Sun Q. Thermomechanical coupling in cyclic phase transition of
shape memory material under periodic stressing—Experiment and modeling. J
Mech Phys Solids 2021;149:104199.

[69] Rezaee-Hajidehi M, Tůma K, Stupkiewicz S. A note on Padé approximants of
tensor logarithm with application to Hencky-type hyperelasticity. Comput Mech
2021;68:619–32.

[70] Tůma K, Stupkiewicz S. Phase-field study of size-dependent morphology
of austenite–twinned martensite interface in CuAlNi. Int J Solids Struct
2016;97:89–100.

[71] Penrose O, Fife PC. Thermodynamically consistent models of phase-field type for
the kinetic of phase transitions. Physica D 1990;43:44–62.

http://refhub.elsevier.com/S0020-7403(23)00002-4/sb11
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb11
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb11
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb12
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb12
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb12
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb12
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb12
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb13
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb13
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb13
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb13
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb13
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb14
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb14
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb14
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb14
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb14
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb15
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb15
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb15
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb15
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb15
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb16
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb16
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb16
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb17
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb17
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb17
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb17
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb17
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb18
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb18
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb18
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb18
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb18
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb19
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb19
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb19
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb20
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb20
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb20
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb21
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb21
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb21
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb22
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb22
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb22
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb22
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb22
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb23
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb23
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb23
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb23
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb23
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb24
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb24
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb24
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb25
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb25
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb25
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb26
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb26
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb26
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb26
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb26
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb27
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb27
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb27
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb27
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb27
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb28
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb28
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb28
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb28
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb28
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb29
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb29
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb29
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb30
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb30
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb30
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb30
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb30
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb31
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb31
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb31
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb31
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb31
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb32
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb32
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb32
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb32
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb32
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb33
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb33
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb33
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb33
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb33
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb34
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb34
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb34
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb34
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb34
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb35
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb35
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb35
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb36
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb36
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb36
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb36
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb36
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb37
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb37
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb37
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb37
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb37
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb38
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb38
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb38
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb39
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb39
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb39
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb39
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb39
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb40
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb40
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb40
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb40
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb40
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb41
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb41
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb41
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb42
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb42
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb42
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb43
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb43
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb43
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb44
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb44
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb44
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb45
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb45
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb45
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb46
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb46
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb46
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb47
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb47
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb47
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb47
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb47
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb48
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb48
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb48
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb48
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb48
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb49
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb49
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb49
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb50
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb50
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb50
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb50
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb50
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb50
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb50
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb51
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb51
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb51
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb51
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb51
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb52
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb52
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb52
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb53
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb53
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb53
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb53
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb53
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb54
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb54
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb54
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb54
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb54
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb55
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb55
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb55
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb55
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb55
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb56
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb56
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb56
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb56
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb56
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb57
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb57
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb57
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb57
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb57
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb58
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb58
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb58
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb58
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb58
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb59
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb59
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb59
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb59
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb59
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb60
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb60
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb60
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb60
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb60
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb61
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb61
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb61
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb62
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb62
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb62
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb63
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb63
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb63
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb63
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb63
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb64
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb64
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb64
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb65
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb65
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb65
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb65
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb65
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb66
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb66
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb66
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb67
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb67
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb67
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb67
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb67
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb68
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb68
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb68
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb68
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb68
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb69
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb69
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb69
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb69
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb69
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb70
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb70
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb70
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb70
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb70
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb71
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb71
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb71


International Journal of Mechanical Sciences 245 (2023) 108100M. Rezaee-Hajidehi et al.
[72] Wriggers P. Computational contact mechanics. Berlin Heidelberg New York:
Springer; 2006.

[73] Rathgeber F, Ham DA, Mitchell L, Lange M, Luporini F, McRae ATT, et al.
Firedrake: automating the finite element method by composing abstractions.
ACM Trans Math Software 2016;43:1–27.

[74] Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, et al. PETSc
users manual. Technical report ANL-95/11 - Revision 3.11, Argonne National
Laboratory; 2019.

[75] Saad Y, Schultz MH. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J Sci Stat Comput 1986;7:856–69.

[76] Trottenberg U, Oosterlee CW, Schüller A. Multigrid. San Diego: Academic Press;
2001.

[77] IT4Innovations. Karolina supercomputer webpage. 2021, URL https://docs.it4i.
cz/karolina/introduction/.

[78] Otsuka K, Shimizu K. Morphology and crystallography of thermoelastic Cu-Al-
Ni martensite analyzed by the phenomenological theory. Trans Japan Inst Met
1974;15:103–8.

[79] Suezawa M, Sumino K. Behaviour of elastic constants in Cu-Al-Ni alloy in the
close vicinity of Ms-point. Scr Metall 1976;10:789–92.

[80] Yasunaga M, Funatsu Y, Kojima S, Otsuka K, Suzuki T. Measurement of elastic
constants. Scr Metall 1983;17:1091–4.

[81] Mercier O, Melton K, Gremaud G, Hägi J. Single-crystal elastic constants of
the equiatomic NiTi alloy near the martensitic transformation. J Appl Phys
1980;51:1833–4.

[82] Petryk H, Stupkiewicz S, Maciejewski G. Interfacial energy and dissipation in
martensitic phase transformations. Part II: Size effects in pseudoelasticity. J Mech
Phys Solids 2010;58:373–89.

[83] Yan W, Amini A, Sun Q. On anomalous depth-dependency of the hardness of NiTi
shape memory alloys in spherical nanoindentation. J Mater Res 2013;28:2031–9.

[84] Wang B, Kang G, Yu C, Gu B, Yuan W. Molecular dynamics simulations on
one-way shape memory effect of nanocrystalline NiTi shape memory alloy and
its cyclic degeneration. Int J Mech Sci 2021;211:106777.

[85] Shield TW. Orientation dependence of the pseudoelastic behavior of single
crystals of Ci-Al-Ni in tension. J Mech Phys Solids 1995;43:869–95.
15
[86] Zhang XY, Brinson L, Sun QP. The variant selection criteria in single-crystal
CuAlNi shape memory alloys. Smart Mater Struct 2000;9:571.

[87] Greer JR, Oliver WC, Nix WD. Size dependence of mechanical properties
of gold at the micron scale in the absence of strain gradients. Acta Mater
2005;53:1821–30.

[88] Fleck NA, Muller GM, Ashby MF, Hutchinson JW. Strain gradient plasticity:
theory and experiment. Acta Metall Mater 1994;42:475–87.

[89] Rezaee-Hajidehi M, Sadowski P, Stupkiewicz S. Deformation twinning as a
displacive transformation: Finite-strain phase-field model of coupled twinning
and crystal plasticity. J Mech Phys Solids 2022;163:104855.

[90] Hill R, Storåkers B, Zdunek AB. A theoretical study of the Brinell hardness test.
Proc R Soc Lond Ser A 1989;423:301–30.

[91] Petryk H, Stupkiewicz S, Kucharski S. On direct estimation of hardening exponent
in crystal plasticity from the spherical indentation test. Int J Solids Struct
2017;112:209–21.

[92] Novak V, Šittner P, Ignacova S, Černoch T. Transformation behavior of prism
shaped shape memory alloy single crystals. Mater Sci Eng A 2006;438:755–62.

[93] Ge Y, Vronka M, Veřtát P, Karlik M, Hannula SP, Heczko O. Deformation
twinning with different twin-boundary mobility in 2H martensite in Cu-Ni-Al
shape memory alloy. Acta Mater 2022;226:117598.

[94] Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A
1952;65:349–54.

[95] Finel A, Le Bouar Y, Gaubert A, Salman U. Phase field methods: microstructures,
mechanical properties and complexity. C R Phys 2010;11:245–56.

[96] Ball JM, James RD. Proposed experimental tests of a theory of fine microstructure
and the two-well problem. Philos Trans R Soc Lond A Math Phys Eng Sci
1992;338:389–450.

[97] James RD, Zhang Z. A way to search for multiferroic materials with ‘‘unlikely’’
combinations of physical properties. In: Planes A, Mañosa L, Saxena A, editors.
Magnetism and structure in functional materials. Springer; 2005, p. 159–75.

[98] Chen X, Srivastava V, Dabade V, James RD. Study of the cofactor condi-
tions: conditions of supercompatibility between phases. J Mech Phys Solids
2013;61:2566–87.

http://refhub.elsevier.com/S0020-7403(23)00002-4/sb72
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb72
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb72
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb73
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb73
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb73
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb73
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb73
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb74
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb74
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb74
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb74
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb74
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb75
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb75
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb75
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb76
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb76
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb76
https://docs.it4i.cz/karolina/introduction/
https://docs.it4i.cz/karolina/introduction/
https://docs.it4i.cz/karolina/introduction/
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb78
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb78
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb78
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb78
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb78
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb79
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb79
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb79
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb80
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb80
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb80
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb81
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb81
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb81
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb81
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb81
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb82
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb82
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb82
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb82
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb82
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb83
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb83
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb83
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb84
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb84
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb84
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb84
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb84
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb85
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb85
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb85
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb86
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb86
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb86
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb87
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb87
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb87
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb87
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb87
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb88
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb88
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb88
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb89
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb89
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb89
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb89
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb89
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb90
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb90
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb90
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb91
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb91
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb91
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb91
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb91
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb92
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb92
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb92
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb93
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb93
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb93
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb93
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb93
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb94
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb94
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb94
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb95
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb95
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb95
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb96
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb96
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb96
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb96
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb96
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb97
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb97
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb97
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb97
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb97
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb98
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb98
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb98
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb98
http://refhub.elsevier.com/S0020-7403(23)00002-4/sb98

	Indentation-induced martensitic transformation in SMAs: Insights from phase-field simulations
	Introduction
	Phase-field model for nanoindentation problem
	Model formulation
	Finite-element implementation
	Problem setup and material parameters

	Simulation results and discussion
	CuAlNi single crystal under nanoindentation
	Microstructure evolution in a [111]-oriented CuAlNi
	Effect of crystal orientation
	Effect of elastic anisotropy
	Effect of finite-strain kinematics

	NiTiPd single crystal under nanoindentation: the role of the Pd content

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


