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Abstract: The rapidly growing production and usage of lithium-ion batteries (LIBs) dramatically
raises the number of harmful wastes. Consequently, the LIBs waste management processes, taking
into account reliability, efficiency, and sustainability criteria, became a hot issue in the context of
environmental protection as well as the scarcity of metal resources. In this paper, we propose for the
first time a functional material—a magnetorheological fluid (MRF) from the LIBs-based liquid waste
containing heavy metal ions. At first, the spent battery waste powder was treated with acid-leaching,
where the post-treatment acid-leaching solution (ALS) contained heavy metal ions including cobalt.
Then, ALS was used during wet co-precipitation to obtain cobalt-doped superparamagnetic iron
oxide nanoparticles (SPIONs) and as an effect, the harmful liquid waste was purified from cobalt. The
obtained nanoparticles were characterized with SEM, TEM, XPS, and magnetometry. Subsequently,
superparamagnetic nanoparticles sized 15 nm average in diameter and magnetization saturation
of about 91 emu g−1 doped with Co were used to prepare the MRF that increases the viscosity by
about 300% in the presence of the 100 mT magnetic fields. We propose a facile and cost-effective
way to utilize harmful ALS waste and use them in the preparation of superparamagnetic particles
to be used in the magnetorheological fluid. This work describes for the first time the second life of
the battery waste in the MRF and a facile way to remove the harmful ingredients from the solutions
obtained after the acid leaching of LIBs as an effective end-of-life option for hydrometallurgical
waste utilization.

Keywords: environment protection SPION; battery waste; toxic waste management; direct recycling;
sustainability; circular economy; critical raw materials

1. Introduction

Global social and economic development determines both the number of products
introduced to the market and the modern technologies in which critical raw materials play
a crucial role, e.g., lithium and cobalt. These strategic metals are contained in lithium-ion
batteries (LIBs), which dominate in electronic devices and electric vehicles due to their high
power density and long life span. Consequently, battery waste disposal became a challeng-
ing issue while the number of customers rapidly grew. Thus, developing an entirely zero
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waste approach and recovery of raw materials is highly important [1,2]. Traditional LIBs
utilization—namely taking, using, and disposing of them—is unsustainable. Therefore,
the possibility of post-process waste management to improve sustainability is constantly
being sought, thus closing the life cycle of raw materials following the principles of the
circular economy (CE) model [3]. It is known that LIBs waste powder is a valuable source
of various kinds of substances, in particular metals like Li, Co, Ni, Mn, and carbon. In
the case of incorrect recovery processes, all these ingredients are highly harmful to the
environment [4]. The landfilling and incineration of LIBs may provide soil and under-
ground water contamination. Thus, the recycling process provides the reintroduction
of the battery compounds into the economic cycle, and in this way, the demand for raw
materials decreases [5]. However, the main emphasis on development is put down on the
expansion of the material recovery technologies, and a relatively small effort is paid to
analyze the influence of the environment and economic cost [6,7]. The essence of battery
waste management is to provide efficient raw material recovery and extend the battery life
cycle with minimal processing [8].

As the battery market dramatically increases due to the electrification of the trans-
portation sector in the world, the effective recycling of LiBs at any cost is very important to
protect the environment. The commonly used methods of direct recycling, which enable
recoveries of valuable materials like Li, Co, and Ni, are pyrometallurgy and hydromet-
allurgy [9], where most pyrometallurgical methods are not able to recover Li [10]. Li is
recovered as LiCO3 in China and South Korea and used for cathode compounds [11]. Com-
pared to pyrometallurgy, hydrometallurgy has numerous advantages such as the ability
to process different types of waste batteries simultaneously, lower process temperatures,
the possibility of use on a small industrial scale, a significant reduction in the emission of
potential pollutants, and the high efficiency of recovering valuable metals. These contribute
to its wide applications in industry and laboratory studies [12]. Nevertheless, even after
the selective recovery step, some Li and Co and all other metals remain in the solutions
and require proper management, which is a tremendous technological challenge due to
the solution’s properties (very low pH) and polymetallic composition. Thus, an efficient
and environmentally friendly process of valuable materials recovery and separation is
needed [13].

Furthermore, given the severe economic impact associated with the recirculation and
recovery of materials from spent batteries and accumulators, the development of materials
using them is highly important. The efficiency of LIBs leaching is strongly dependent on
leaching agent composition, and the process temperature, time, and dosage [14–18] provide
higher efficiency in the leaching process. Before leaching, one can apply the pretreatment
of active electrode materials [19]. Considering the economic and ecological aspects (mainly
the list of Critical Raw Materials [20] and the gradual introduction of legal regulations
related to electromobility), there is a considerable need for recovering materials in the
chemical leaching of waste lithium-ion batteries. A huge effort has been made to optimize
the process of leaching to recover critical metals contained in spent LIBs, such as lithium
and cobalt [17,21,22]. As a result of chemical leaching, solutions containing various metals
are obtained. It is possible to separate them selectively and bring them to a solid form,
but most often it focuses only on critical metals, such as the aforementioned lithium or
cobalt [7,17,20]. Thus, even if some of the metals are recovered selectively for use in solid,
commercial products, there remains a problem related to the development of the application
of the remaining toxic, polymetallic solutions obtained after the leaching process. One
of the promising proposals for the management of such liquids can be the production of
magnetorheological liquids used in the automotive industry as in intelligent drive systems
or damping systems described in this manuscript. In this way, liquid and harmful waste
solutions after hydrometallurgical recovery of metals from spent Li-ion batteries can be
reused in a closed loop of raw materials. Such an approach means that we propose a
method of recycling the waste after the recycling of Li-batteries, which is of increasing
importance due to the ever-growing usage of batteries in developed economies.
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In view of problems associated with solid LIBs-based wastes and post-treatment acid-
leaching wastes generated by portable electronics and the automotive sector, this paper
presents the utilization of toxic solutions obtained from the acid-leaching of battery waste
in innovative materials technology. Special attention is being paid to preparing a functional
material through the zero-waste approach, where the harmful LIBs-based waste is fully
recovered. In the first step, the battery waste was treated with an acid bath to recover
valuable metals. Then, by-products—so-called acid leaching solutions (ALS)—were used
as a source of valuable metals that can be incorporated into magnetic nanoparticles through
co-precipitation, where the obtained material had different properties depending on the
solution’s content during synthesis. Finally, the magnetic particles doped with metals
from the battery waste acid leaching treatment were suspended in silicon oil, and the
functional material—a Magnetorheological Fluid (MRF)—was obtained. To our knowledge,
it is the first attempt to provide an effective way to recover heavy metal ions within the
preparation of MRF. The proposed approach helps neutralize harmful acidic solutions
containing cobalt within a facile wet co-precipitation, where superparamagnetic iron oxide-
based nanoparticles are obtained. Consequently, an environment-friendly and sustainable
battery waste leaching method has been developed.

2. Results and Discussion
2.1. UV-Vis Analysis of the Post-Synthesis Solution

The post-treatment acidic solution contains several metal ions that can be harmful
to health [15]. One of them is cobalt(II), which has good solubility in water and can
cause a negative effect on the integrated control of environmental pollution. Therefore,
there is a deep need for its management to effectively protect the aquatic environment.
As the goal of this work was the incorporation of harmful heavy metal ions from ALS
obtained after battery waste powder treatment, at first, the UV-vis studies were performed
directly after the synthesis to determine the rate of the Co2+ removal from the ALS. The
precursor bath had a pink color, indicating the presence of pink color Co2+ ions, while
after the precipitation, the bath was decolorized, and the dark precipitate formed. As the
composition of the post-leaching bath was estimated within ICP-OES, the UV-vis was used
complementarily to determine if the chromophores were incorporated into the structure
of the deposited compounds. The black curve corresponds to the precursor solution that
was used in the synthesis of nanoparticles—a source of valuable metals (Figure 1a). Based
on the literature, it can be concluded that the bands correspond to the metal ions like
cobalt [23–25], manganese [26], or other metal ions. The following spectra were measured
for the solutions left after nanoparticle extraction. Figure 1a shows the spectra recorded for
the fresh ALS after the treatment of LIBs and the filtration from the solid residues, and the
spectra for the solution collected after the co-precipitation of iron oxide-based magnetic
particles. As can be seen, a broad band in the region of 550–450 nm is recorded, and its
intensity lowers for samples 1–3. To determine the content of Co2+ ions in the bath, the
CoSO4 reference solution was prepared with different concentrations. Figure 1b shows the
calibration curve for a such solution. The inset reveals the spectrum for 0.045 M solution,
revealing a shape similar to ALS. Based on the calibration curve, the content of Co2+ in
the post-leaching solution was determined to be about 0.268 M and decreased to 0.073 M,
0.025 M, and 0.003 M for samples 1–3 (made from solutions 1–3), respectively.

The more post-leaching waste was incorporated into nanoparticles, the less was left
in the solution, hence the absorbance decreases. It can be concluded that ingredients
of ALS can be easily removed from the solution with their incorporation into magnetic
nanoparticles. The increase in the post-leaching solution content in the synthesis bath leads
to the partial incorporation of waste ingredients into the nanoparticles.
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Figure 1. (a) UV-vis spectra of post-leaching solution and solutions 1–3 obtained after SPIONs
synthesis (measurements without SPIONs in solution) and (b) calibration curve of Co2+ concentration,
where inset presents the 0.045 M CoSO4 reference solution.

2.2. Synthesis of Magnetorheological Fluid

Based on the UV-vis measurements, the procedure ascribed for sample 1 (obtained
from solution 1) was used to prepare MRF. It is due to the highest purity of the post-
synthesis solution, so the highest removal of harmful chemicals from the ALS. Based on
the procedure described above, 30 g of dry nanoparticles were prepared. The nanoparticles
were collected on the magnet and the water was removed. Then, 50 mL of silicon oil was
added, and the suspension was mixed mechanically at 400 rpm at 120 ◦C on the hot plate
for 2 h to remove the moisture. When the water evaporated, the temperature on the hot
plate was decreased to 60 ◦C and the stirring was turned off. Here, the silicon oil was added
up to 100 mL of the suspension and the suspension was stirred again. Then, the 3 mL of
oleylamine was carefully added dropwise and the suspension was stirred at 1000 rpm for
1 h, and left for stirring at 400 mg overnight at the remaining temperature.

2.3. Morphology Studies

The morphology of particles doped with the ions obtained within the acid leaching of
the waste battery powder was investigated with SEM and TEM. As can be seen in Figure 2
presenting SEM images, depending on the dopant content, the morphology of particles
changes. The size of the particular grain for sample 1 (Figure 2a) is much lower than for
samples 2 (Figure 2b) and 3 (Figure 2c), which contain more dopants. The product forms
agglomerates that are caused by the drying of the sample after the synthesis and washing
(the wet water-based suspension was placed onto the copper conductive tape and dried on
air overnight).

As the SEM images could only deliver a general overview of the morphology of the
prepared samples, the following studies were focused on the precise determination of the
shape and size of obtained particles within the TEM. When the post-leaching solution
consisted of 5% in volume for sample 1 (19 mL of iron salts over 1 mL of post-leaching
solution), the obtained nanoparticles had a spherical shape and size up to 12 nm average,
see Figure 3a. Their size and shape are similar to the data obtained in the literature for
bare iron oxide nanoparticles [27,28]. Sample 2 presented in Figure 3b has a similar shape
and size, while a slightly smaller structure can be distinguished. The increase in the post-
leaching solution added to the bath for the synthesis of nanoparticles leads to a drop in
the size of the product. As can be seen in Figure 3c, nanoparticles have a size even twice
smaller than for samples 1 and 2. This can be caused by the different ionic strength during
synthesis and the lower pH at the initial point—before the co-precipitation.
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Depending on the composition of the liquid battery waste, the synthesis way of
nanoparticles, and experimental conditions during synthesis, the morphology of particles
obtained from hydrometallurgical waste can differ. For example, Dun et al. obtained
Co1+xFe2−2x/3O4, where x ranged from 0 to 0.2 using the sol–gel auto-combustion method,
where the morphology studies show the fractured inner surface of the sintered cylindrical
rods in a few microns in diameter [29]. In work presented by Moura, CoFe2O4 nanostruc-
tures are sized from 10 to 50 nm [30], while Co0.8Fe2.2O4 prepared in another work from
LIBs cathode leached with acids have diameters of ~50–120 nm [31,32]. Here, the CoFe2O4
and Co0.87Ni0.13Fe2O4 obtained by co-precipitation from the hydrometallurgical waste are
also spherical, but the nanoparticles have the size of about 100 nm [32,33], demonstrat-
ing the NiCo ferrite magnetic nanoparticles made with wet synthesis from the solutions
obtained from acid leaching of spent lithium-ion batteries and nickel-metal hydride batter-
ies, where the obtained structures have a diameter ranging from 29 to 60 nm [34]. Next,
Mn0.6Zn0.4Fe2O4 co-precipitated from Mn-Zn post-leaching battery waste form clusters
from tens to hundreds of microns [34,35], showing Mn-Zn ferrite structures sized up to
20 nm [34]—similar to the structures synthesized in presence of bacteria [36]. The granular
shape of obtained samples in this work is in good agreement with the discussed literature,
while their size of below 15 nm on average is similar to the CoFe2O4 spherical nanopar-
ticles sized about 20 nm obtained with sol–gel, co-precipitation, and microwave-assisted
hydrothermal methods [37].

2.4. Magnetic Properties

As the nanoparticles are planned to be used in the MRF, their magnetic properties were
investigated with magnetometry. As can be seen in Figure 4, the saturation magnetization
differs for the particles obtained in different conditions, where the highest values are ob-
served for sample 1. Here, the saturation magnetization (Ms) is about 91 emu g−1, and the
coercivity (Hc) is below 20 Oe. The Ms values for samples 1 and 3 are 84.4 and 65.6 emu g−1,
respectively. The values of the saturation magnetization and the shape of the hysteresis for
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sample 1 are similar to the characteristics of the bare iron oxide nanoparticles, where Ms is
about ~90 emu g−1 [38–41]. According to the values for the nanoparticles obtained from
the hydrometallurgical waste, Sankaran et al. present ferromagnetic Co0.87Ni0.13Fe2O4
and CoFe2O4 nanoparticles with Ms of about 62 emu g−1 and a coercivity of about 1420
and 760 Oe, respectively [32]. Dun et al. demonstrate different values of Ms and Hc
for CoFe2O4 nanoparticles from LIBs waste obtained with different synthesis methods
ranging Ms from 71.2 to 77.3 91 emu g−1 and Hc from 26.4 to 272.7 Oe [29]. The inset
presented in Figure 4 shows the narrow hysteresis loop suggesting the superparamagnetic
character of the nanoparticles. The results presented here are in good agreement with
the literature, showing the potential of synthesized structures to be used in various fields,
where the superparamagnetism of nanoparticles is required. Despite the decrease in the
magnetization of the particles with an increase in the dopant, the samples still reveal super-
paramangetism, which makes them attractive for application in many sectors, including
magnetorheological fluids.
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2.5. Chemical Composition Studies

In the next step, the characterization of the chemical composition of the nanoparticles
within the FT-IR for samples 1–3 in the wavenumber from 400 to 3600 cm−1 was made, see
Figure 5. The range below 700 cm−1 is characteristic of the vibrations in the metal oxide
structures. The range 900–1700 cm−1 is characteristic of the presence of organic compounds
in the materials, while the range 2800–3600 cm−1 is useful to determine the presence of
–OH and –CH groups in the measured materials.

As can be seen in recorded spectra, depending on the amount of the waste ALS for
the iron oxide doping, the composition of the final product varies. It can be noticed that
absorption increases when the amount of ALS increases. Three characteristic peaks can
be observed in the range of the lowest wavenumbers. The peaks at 564 cm−1 and approx.
625 cm−1 can be identified as the Fe-O vibrations from Fe3O4 [42,43]. For cobalt(II, III)
oxide, the Co-O bond peak should be assigned at 570 cm−1, which is probably because the
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peak at 564 cm−1 is not sharp and extends over 570 cm−1 [44]. It can be concluded that the
admixture metals have been successfully incorporated into the structure of the SPIONs. In
this range, the spectra of syntheses are not similar. This can be related to the taken sample
and the amount of admixture. It was possible to assign bonds that are characteristic of
approx. 1120 cm−1 C-O vibration [45], 1400 cm−1 vibration, which is in correlation to the
C-O bond in a carboxylic acid. The vibration at approx. 1620 cm−1 can be attributed to
the C = O bond [42]. The identified vibrations allow the determination of carboxylic acids
bounded with nanoparticles. Two characteristic peaks can be observed in the left-most
range. Peaks that can be observed at 3150 cm−1 and 3350 cm−1 can be attributed to the
O-H groups which correspond to the presence of carboxylic acid [42,45]. Obtained results
confirm the successful incorporation of the organic compounds from the leaching bath into
the nanoparticles.
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The presence of organic compounds in the obtained nanostructures was also confirmed
with the zeta potential studies. As the bare reference iron-oxide particles without the
ALS dopants have very low surface potential, close to 0 mV, the results for ALS-doped
samples are different. The surface potential for samples 1–3 is as follows: −19.2 ± 2.1 mV,
−26.4 ± 2.7 mV, and −29.9 ± 3.4 mV. It confirms the presence of negative functional groups
on the surface of nanoparticles, complementarily to FT-IR results.

Based on the FT-IR, magnetometry, and zeta potential results, the sample—having
the highest value of Ms—was also studied with X-ray dispersive spectroscopy (EDS) to
determine the distribution of the elements in the nanoparticles. As can be seen in Figure 5b,
the peaks characteristic to the Fe, O, C, and Co can be seen. According to the carbon content
in the sample, it cannot be determined precisely for the traces of carbon in the tape that was
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used to immobilize the sample onto the alumina holder. As expected from the synthesis,
the sample contains Fe, O, and Co, where the Co consists of about 0.56% atomically, which
is uniformly distributed in the sample.

Complementarily to the FT-IR and EDS analysis, X-ray Photoelectron Spectroscopy
(XPS) was used to determine the chemical composition of the obtained nanoparticles. In
addition to the main components—iron oxides—XPS spectra revealed the presence of cobalt
and manganese in the particles, confirming the effective recovery of these metals from the
acid—leaching bath used to treat the battery waste. Besides these metals, carbon is also
found to confirm the modification of the surface with organic compounds, particularly the
glutaric acid that was used as a reducing agent in the acid-leaching procedure of battery
waste. As the saturation magnetization is the highest for sample 1, it was chosen for XPS
to check the content of leached metals and/or possible organics that were used as mild
leaching agents.

According to the iron-based compounds present in the sample, Figure 6a shows Fe 2p
core-level spectra. Two characteristic signals can be distinguished in the spectrum, which
comes from spin-orbitals 3/2 and 1/2. Deconvolution of this peak showed that the first
pair of peaks at about 710.7 eV and 724.1 eV corresponds to Fe-O bonding in Fe3O4 mainly
as an Fe3+ ion [46,47]. The second pair at about 712.9 eV and 726.3 eV can be ascribed to
the Fe-S bonding from the traces of post-leaching residues in sulphuric acid media [48,49].
There are also clear satellite lines in the spectrum, which clearly indicate that Fe is in the
oxidized form [48]. The Co 2p core-level spectrum shown in Figure 6b reveals many peaks,
indicating a complex structure of the obtained nanoparticles. As in the case of the Fe 2p
peak, the Co 2p signal indicates the appearance of Co-O bonds in the investigated material.
If we look at the binding energy range for Co 2p3/2, we can distinguish peaks that relate
to Co3O4 (779.4 eV), CoO (780.6 eV), and Co(OH)2 (781.8 eV) [47]. Similar results were
presented by Dun et al. for the cobalt ferrites obtained from LIBs [37]. The presence of Co2+

in individual oxide forms of this element also confirms the location of the Co 2p3/2 and Co
2p1/2 satellite lines, even though the shape of the Co 2p spectrum is unusual [50]. This is
related to the interaction of the X-ray beam with the sample matter [51]. Figure 6c shows the
Mn 2p core level spectrum at which the peaks at 640.7 eV, 642.3 eV, and 644.0 eV correspond
to the Mn 2p3/2 state [46]. Next, the group of peaks at 652.2 eV, 654.0 eV, and 656.1 eV can
be ascribed to Mn 2p1/2 [52]. The location of the detected Mn 2p3/2 signals relative to the
binding energy suggests the presence of manganese oxides: MnO2, MnO, and manganese
ferrate [47,53]. The C 1s spectrum in Figure 6d was a curve fitted into three different
peaks through XPS measurements. The binding energies at about 284.5 eV, 286.2 eV, and
288.4 eV can be assigned to the C–C, C–O, and C = O groups from acidic groups [48,54],
respectively. The O 1s spectrum seen in Figure 6e shows peaks at 530.0 eV, 531.5 eV, and
533.3 eV, corresponding to metal oxides and C = O and C-O bonding, respectively [46,48].

The XPS revealed the complex composition of obtained nanoparticles. Besides the
metal oxides, the nanoparticles contain carbon-based compounds on the surface. Based on
the obtained results it is clearly seen that the nanoparticles are successfully doped with the
ingredients from the leaching bath.
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2.6. TGA Analysis of the MRF

Having confirmed the successful synthesis of the nanoparticles, the MRF obtained
with the use of sample 1 was investigated with thermogravimetry, where the content of
organic ingredients was determined. As can be seen in Figure 7a, mass loss is observed
along with the increase in the temperature. The initial drop in the curve up to 100 ◦C
corresponds to the water evaporation from the sample. The following decrease in the
mass can be ascribed to the decomposition of the organic stabilizer, where the organic coat
consists of approx. 10%. Then, the subsequent increase in the temperature to above 300 ◦C
can be ascribed to the decomposition of the oil as well as to the organic compounds from
the nanoparticles being decomposed.
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Figure 7. (a) Thermogravimetric curve of the MRF, and (b) the MRF attracted by the magnet and
collected at the bottom of the beaker.

2.7. Viscosity Measurements

In order to define the rheological properties of prepared MRF the viscosity change
under the magnetic field was investigated. The MRFs were examined using a rotating
rheometer (Rheotest 2.1, Germany) that was dedicated to performing experiments under
the external magnetic field. As can be seen in Figure 8a, the MRF is thickening with
the increase in the magnetic field. The shear thinning is observed, and almost all MRFs
significantly increase their viscosity upon the application of a magnetic field. The effect of
the field is most profoundly observed in the low shear rate regime showing up to a 300%
rise and then becoming almost insignificant as the shear rate is increased. The size of this
effect is similar to SPIONs made of pure iron oxide [38]. Figure 8b presents the change in
the viscosity of MRF over the amplitude of the magnetic field, where the shear rate was
about 0.3 s−1. The obtained MRF is able to change its rheological and micromechanical
properties under the application of the external magnetic field [55]. Increased viscosity in
presence of the magnetic field is an effect of the chain-like structure formation in the MRF.
Figure 8c shows the increase in the length and width of these chains with the increased
magnetic field.

Recycling polymetallic spent batteries plays a crucial role in waste management and
the sustainable use of raw materials. Nevertheless, the applied industrial technologies
based on pyrometallurgy and hydrometallurgy are not waste-free. Despite recovering
critical raw materials such as lithium and cobalt, the process still leaves various types of
waste that require proper management. The recycling of spent Li-ion batteries is based
on the acid leaching of the electrode powder in order to leach out the metals contained
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therein; however, this process generates tremendous amounts of harmful waste that need
to be managed. One of the solutions is an application of the acid waste into the magnetic
nanoparticles, which offers a wide range of applications.
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and 50 mT (right).

3. Materials and Methods

We briefly present the production process of the MRF, which is based on compounds
prepared in [56]. For the MRF preparation, solutions after the acid leaching of polymetallic
electrode powder were obtained from the mechanical treatment of spent lithium-ion batter-
ies from laptops of various brands in the presence of a leaching agent. Then, after the spent
battery powder treatment, the post-leaching solution was used as a source of metals to be in-
corporated into the structure of the superparamagnetic iron oxide nanoparticles (SPIONs).

The leaching procedure was carried out by using Nitric acid HNO3 with 65% for
the pre-treatment of spent battery waste supplied from POCH, Gliwice, Poland. Sulfuric
acid H2SO4 with 96% analytical grade and hydrogen peroxide H2O2 with 30% analytical
grade were ordered from STANLAB, Lublin, Poland. Sulfuric agent was used for leaching
and hydrogen peroxide was used as the reducing agent. Water used for synthesis and
washing was purified with a Milli-Q Merck filtering system, where water had a resistance
of about 18.2 MOhm.cm at 25 ◦C. In turn, Iron (III) chloride hexahydrate FeCl3·6H2O
(analytical grade) was purchased from WARCHEM, Warsaw, Poland, and iron (II) chloride
tetrahydrate FeCl2·4H2O was supplied from ACROS Chemicals. These salts were used for
the synthesis of iron oxide-based nanoparticles. The 25% ammonia solution NH4OH that
was applied to precipitate nanoparticles from the iron salt-based solution was supplied
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from POCH, Gliwice, Poland. Silicon oil for high temperatures was purchased from ACROS
Organics. Adipoyl chloride 98% grade was supplied from Sigma-Aldrich.

The metal concentrations in the solution were determined using Inductively Cou-
pled Plasma Optical Emission Spectrometry (ICP-OES, Agilent 720). The morphology of
SPION obtained within the co-precipitation method was examined by Scanning Electron
Microscope (SEM, Hitachi S-4800-Japan) and Transmission Electron Microscope (TEM, Jem
1400 Flash, Jeol-Japan). The elemental composition of the samples was determined by
SEM-EDX (SM-6510LV, Jeol-Japan, X-Act, Oxford Instrument-England). The saturation
magnetization of SPIONs was measured by a vibrating sample magnetometer (VSM) under
the maximum applied field of 20 kOe at room temperature. Fourier Transform Infrared
(FTIR) spectra of samples were recorded by Nicolet iS10, Thermo Scientific. The specially
constructed test for viscosity changes in presence of a magnetic field was based on the
rotary rheometer Rheatest 2.1 (Germany). The Rheometer was calibrated and adjusted with
30 Pa·s silicone viscosity standards (AMETEK Brookfield, Germany), obtaining 0.1 Pa·s
measurement uncertainty. For the magnetorheological tests, the axial magnetic field was
provided by either a current-controlled coil around the sample cylinder, generating fields
up to 50 mT, or specially designed ring-shaped neodymium magnets (100 mT). Magnetic
field strength was measured with a teslameter equipped with a Hall-effect probe (Lakeshore
475, USA). XPS measurements were performed using a Microlab 350 (Thermo Electron)
with non-monochromatic Al Kα radiation (hν = 1486.6 eV) from an X-ray source.

3.1. Acid Leaching of Spent Battery Powder

Initially, the stream of spent Li-ion batteries was discharged and manually dismantled
within the procedure described in [17,57,58]. Then, the battery-based powder was ground
and separated mechanically from the plastic, metal, and paper solid pieces. In order to
perform an initial quantitative and qualitative analysis of the powder material, 1 g of spent
battery powder was mineralized with 10.0 mL 65% HNO3 for 5 h at 120 ◦C. As a result,
metals were released from the solid material into the forming acidic solution. The content of
particular metal ions was determined using Inductively Coupled Plasma-Optical Emission
Spectrometer (ICP-OES).

The sample of electrode powder was leached in 1.5 M sulfuric acid (96%) + glutaric
acid C5H8O4 (5% w/v) for 2.5 h at 90 ◦C. The suspension was also magnetically stirred
(500 rpm), similar to the procedure described in [23], see Figure 9.
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As a result, the valuable metals were released from the powder into the acidic solution.
Then, the post-leaching solution was investigated within the ICP-OES technique to deter-
mine the recovery rate of metals—Co, Cr, Cu, Fe, Li, Mn, Ni, Si, and Zn, see Figure 10. As a
result of leaching, a significant part of all tested metals was recovered, which is described
in detail in the papers [56,59]. In this series of research, the highest recovery rates were
received for seven of all the elements tested—Co, Cr, Cu, Mn, Ni, and Zn. Nevertheless,
each of the obtained solutions is polymetallic, and the contained metals are in the form of
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ions that can be successfully incorporated into the structure of nanoparticles. Therefore, the
solutions obtained after acid leaching of the electrode powder from spent Li-ion batteries
were used for the co-precipitation of nanoparticles that can be used for the synthesis of the
magnetorheological fluid.
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3.2. The Application of the Spent Post-Leaching Solution to Prepare SPIONs

Initially, the iron oxide-based nanoparticles were synthesized for characterization
under the following procedure using a wet co-precipitation method. First, 540 mg of
FeCl3·6H2O were placed into the beaker and dissolved with 15 mL of water. Then, the
beaker was left on the magnetic stirrer at 600 rpm to dissolve the iron (III) salt. Then,
190 mg of FeCl2·4H2O was added to the beaker and mixed for a few minutes until the
salt was fully dissolved. Next, the post-leaching solution was added as follows: 1 mL
(solution 1), 2.5 mL (solution 2), and 5 mL (solution 3), and then the water was added up
to 20 mL to each synthesis bath. It is worth mentioning that the pH of the bath before the
addition of the dopant was about 3, while for the particular dopants, it dropped from 3 to
2.5, 1.6, and 1, respectively, for the acidic pH in the ALS. Depending on the ALS content
in the co-precipitation bath, the obtained samples were named as follows: sample 1 (from
solution 1), sample 2 (from solution 2), and sample 3 (from solution 3). The beaker with the
magnetic stirrer was set to heat at 70 ◦C for 15 min. Afterward, 25% NH3(aq) solution was
added to the mixture as a precipitation agent until the pH was 10.5 and was adjusted with
several minutes of continuous mixing of the suspension. SPIONs were carried out under
the given conditions for another 15 min. After that, the product was collected at the bottom
of the beaker with a magnet and washed with Milli-Q water several times until obtaining a
neutral pH. The mass of the final product was about 230 mg ± 5 mg.

4. Conclusions

In this work, we proposed for the first time magnetorheological fluids made from
harmful liquid waste from LIBs treatment as the second life of toxic liquid battery waste
containing heavy metal ions and organic compounds. The ALS obtained from the acid
leaching containing heavy metal ions and organic and inorganic acids were neutralized and
purified from both heavy metal ions and organic compounds through the synthesis of iron
oxide-based magnetic nanoparticles. Through the use of ALS, the iron oxide nanoparticles
doped with cobalt and glutaric acid were prepared using the co-precipitation technique,
where the dopant content was controlled with the change in ALS volume in the synthesis
bath. UV-vis spectra confirmed the decrease in Co2+ content in the ALS bath used for
synthesis after co-precipitation from 0.268 M to 0.003 M, proving the removal of harmful
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ingredients from the hydrometallurgical waste. SEM and TEM studies revealed nanosized
spherical structures, the size of which was dependent on the content of ALS in the synthesis
bath. The increase in the volume of ALS reduces the size of obtained nanoparticles from
15 nm on average to even a few nm, and also decreased the magnetization saturation.
Based on the morphology and magnetization results, the nanoparticles size was about
15 nm ± 4 nm, and the Ms of about 91 emu g−1 with a narrow hysteresis loop was chosen to
be suspended in the viscous media as a magnetic carrier in the MRF. Obtained nanoparticles
can be easily coated with organic agents to disperse them in viscous media like silicon
oil. Therefore, it has been proposed to use these types of solutions resulting from the acid
leaching of spent batteries to produce functional magnetorheological fluids that can be used
in many fields, including dynamic energy dissipation, e.g., shock absorbers, electromagnetic
clutch, etc.
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