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Abstract
Mixed eight-node (hexahedron) solid-shell elements based on the standard or partial version of the three-field Hu–Washizu
(HW) functionals are developed for Green strain. Three reduced representations of the assumed stress/strain fields are
selected. They improve effectiveness, yet retaining good accuracy and convergence properties. At the outset, the standard
HW functional and the assumed stress/strain representations of the 3D solid element B8-15P (Weissman in Int J Numer
Methods Eng 39:2337–2361, 1996) are used to derive a solid-shell element with 51 parameters. To eliminate locking, the
ANS method is applied to the thickness strain (Betsch and Stein in Commun Numer Methods Eng 11:899–909, 1995) and to
the transverse shear strain (Dvorkin and Bathe in Eng Comput 1:77–88, 1984). It is a correct element which, however, yields
too large displacements for coarse meshes and trapezoidal through-thickness shapes. To improve the above formulation, the
ζ -independent reduced representations of the assumed stress/ strain fields are selected and the transformations to Cartesian
components are modified. The thickness strain is enhanced by the EAS method. The element with 35 parameters is derived
from the standard/enhanced HW functional, but, to further reduce the assumed fields, partial/enhanced HW functionals are
constructed from the 3D potential energy by applying the Lagrange multiplier method only to selected strain components.
In the element with 27 parameters, this is applied to the constant in-plane strain and to the transverse shear strain while in
the element with 19 parameters, to the constant in-plane strain only.Two other modifications are implemented to enhance
the behavior of these elements: (A) the skew coordinates are used in the reduced representations of the in-plane stress/strain
(Wisniewski and Turska in Int J Numer Methods Eng 90:506–536, 2012), and (B) the Residual Bending Flexibility correction
of the transverse shear stiffness (MacNeal in Comput Struct 8(2):175–183, 1978) is adapted. Finally, the performance of the
proposed solid-shell HW elements is demonstrated on several linear and non-linear examples for the linear elastic material
and the hyper-elastic material. The proposed elements are compared to each other and to the best existing elements of this
class.

Keywords Eight-node (hexahedron) solid-shell elements · Standard or partial Hu–Washizu functionals · Reduced
representations of assumed stress/strain · RBF correction
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1 Introduction

The 8-node hexahedron solid-shell elements have already
achieved a considerable level of maturity and have been suc-
cessfully applied to model shell structures using various 3D
constitutive laws, such as the finite strain J2-plasticity [44],
the Functionally Graded material [45], and others. Nodal
degrees of freedom at the bounding surfaces of the solid-shell
elements allow for a convenient aggregation of layers and
stress analysis of multi-layer composites [43], [36]. Besides
the 8-node also 18-node solid-shell elements, based on bi-
quadratic in-plane interpolations, have been developed, e.g.
[14].

1.1 3D elements

The currently used 8-node solid-shell elements stem from the
earlier developed 3D solid elements, such as e.g. the stress
hybrid element of Pian and Tong [33], which is based on
the Hellinger–Reissner functional and 18 stress parameters.
Equivalent to it is the EAS element with 30 strain parame-
ters of Andelfinger et al. [2] and the Hu–Washizu element
of Weissman [46]. The latter element uses the above 18-
parameter assumed stress, and the assumed strain with 33
parameters, where the first 18 have the same form as that
used for the assumed stress, while the remaining 15 are asso-
ciated with the incompressibility condition.

These three elements are of very good accuracy and pass
the 3D constant strain patch test but involve a large num-
ber of parameters. The subsequent research aimed to reduce
this number and to make these elements suitable for finite
strain problems; a comprehensive overview can be found in
Wriggers [57]. The most commonly used is the Enhanced
Assumed Strain (EAS)method of Simo andRifai [39], which

is flexible and can employ the strain-driven constitutive algo-
rithms. Wriggers and Reese [59] identified the problems
related to the hourglass instabilities appearing for compres-
sion of the enhanced 2D plane strain 4-node elements of
a compressible neo-Hookean material. Several methods of
controlling the spurious modes were tested afterwards, see
the overview in Korelc et al. [23]. A number of very good
elements of this class were developed, see e.g. Simo et al.
[37], Korelc and Wriggers [24], Glasier and Armero [13],
Puso [35] and Korelc et al. [23].

We note that the 8-node 3D solid elements typically pass
the 3D and membrane patch tests but fail the bending patch
test, which puts in question their use in shell applications
with one layer of elements through thickness.

1.2 Solid shell elements

The 8-node solid-shell elements, which are the subject of
the current paper, use the same interpolation functions and
constitutive modules as the 3D solid elements but also addi-
tional specialized methods to improve their behavior in
thin shell applications involvingbending/twisting-dominated
problems.

1. The 0th order thickness strain is improperly approxi-
mated for curved or trapozoidal through-thickness shape
of elements (deformed or undeformed), which causes the
so-called curvature thickness locking. The Assumed Nat-
ural Strain (ANS) method in the form proposed in Betsch
and Stein [6] is used to circumvent it.

2. The out-of-plane bending is impaired by the zero value of
the 1st order thickness strain, which is called the vol-
umetric (or dilatational or Poisson’s ratio or Poisson’s
thickness) locking. To remedy this problem, the thick-
ness strain is enhanced either using the EAS method or
a specific representation of the assumed thickness strain;
this question is discussed in more detail in the sequel.

3. To reduce the transverse shear locking, theAssumedNatu-
ral Strain (ANS)method in the form proposed byDvorkin
and Bathe [12] is applied to the 0th order transverse shear
strains.

These modifications significantly improve the 8-node solid-
shell elements’ behavior and for this reason are indispensable
in this class of elements.

Considering the standard shell models (Kirchhoff–Love
or Reissner–Mindlin), the normal strain E33 is equal to zero
due to inextensibility of the shell’s director. The classical
remedy is to recover this strain from the zero-normal-stress
condition, S33 = 0, which for the strains E11 and E22

being linear in the thickness coordinate ζ ∈ [−1, 1], yields
the E33, which is also linear in ζ . Then, however, the 3D
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constitutive equations must be modified (reduced), which is
cumbersome for non-linear materials.

This problem can also be alleviated differently, by enhanc-
ing the shell kinematics with parameters describing the
extension of a director. InMakowski and Stumpf [30,40], the
position vector in the deformed configuration is a quadratic
polynomial of the thickness coordinate

x(ζ ) = x0 + ζ d, d .= (λ0 + ζλ1) a3, (1)

where d is the current director, λ0 and λ1 are the thickness
stretches and a3 is the forward-rotated normal vector. In
Simo et al. [38], the extensible-director kinematics with one
thickness stretch λ is used, where

d = λ a3. (2)

Ill-conditioning in the thin limit exhibited by this formulation
is eliminated by applying the logarithmic thickness stretch
μ = ln λ. Equation (2) is used also in the formulation based
on the Green strain in Betsch et al. [5], so the thickness strain
E33 = 1

2 (λ
2 − 1). The initial director is defined as D =

˜D/‖˜D‖, where ˜D is obtained by a linear interpolation of
the nodal directors DI . Note that Eq. (2) does not contain
the term ζ 2λ1 of Eq. (1), the purpose of which is to improve
the bending behavior.

For solid-shells, we consider that the thickness strain
E33 is not necessarily normal to the reference surface as
is the normal strain. A constant part of the thickness strain
E0
33 is computed from displacements of the top and bottom

bounding surfaces, so only the ζ -dependent strain enhance-
ment needs to be added. For 8-node 3D solid elements, a
4-parameter EAS enhancement was used in Andelfinger and
Ramm [1] Eq. (34),

˜ECOV
33

.= (q1 + q2ξ + q3η + q4ξη) ζ, (3)

where ξ, η ∈ [−1, 1] are the in-plane natural coordi-
nates. Moreover, the first 3 terms of Eq. (3) were found
to be sufficient to avoid the volumetric locking. The above
enhancement was subsequently applied to solid-shells in
Büchter et al. [7] Eq. (35) to relieve the Poisson’s thickness
locking. Later on, Vu-Quoc and Tan [43] established that the
first 3 parameters of Eq. (3) suffice to pass the out-of-plane
bending patch test for solid-shells. The reference values for
this test were worked out in this paper and since then this test
became a standard for solid-shell elements.

The enhancement of Eq. (3) can also be accounted for
in the assumed thickness strain representation of the HW
elements, as e.g. in the 3D 8-node solid of Weissman [46]
and the solid-shell of Klinkel et al. [20], where the first 3
terms of it are used.

Note that the thickness strain enhancement can also be for-
mulated using the incompatible displacement (1−ζ 2) w3 d,
where w3 is an additional parameter, see Parisch [31]. This
form of the enhancement, however, renders a problem with
conditioning of the stiffness matrix in the thin limit.

Finally, we mention the papers on the solid-shell elements
discussing the modifications necessary for hyperelastic and
elastoplastic material laws. In Hauptmann et al. [16], they
include the right Cauchy-Green deformation tensor, and the
deformation gradient for elastoplasticity to make them con-
sistent with the modified Green strain. In Hauptmann et al.
[15], various methods to avoiding the volumetric locking for
a nearly-incompressible material are compared.

1.3 Objectives of the current paper

The objective of the current paper is to develop several
new eight-node (hexahedron) solid-shell elements based on
either the standard or partial version of the three-field Hu–
Washizu (HW) functionals. The partial HW functionals are
constructed from the 3D potential energy by applying the
Lagrange multiplier method to the difference between com-
patible and assumed strain for selected components only. The
purpose is to obtain an effective element of high accuracy and
good convergence properties using a minimal number of the
assumed stress/strain parameters.

1. We start with developing the solid-shell HW element
based on the standard HW functional with 51 parameters
(HW51). The assumed stress/strain representations are as
in the 3D solid element B8-15P of Weissman [46], but are
treated here as contravariant, hence, a different transforma-
tion to theCartesian components is used. This transformation
is also different compared to this of Klinkel et al. [20]. Addi-
tionally, to eliminate locking for shell-type structures, we
apply the ANSmethod in two forms, one proposed by Betsch
and Stein [6] for the thickness strain E0

33 and the other
by Dvorkin and Bathe [12] for the transverse shear strain
E0

α3. This element is stable, passes the membrane/bending
patch tests, and yields quite accurate results in the benchmark
tests. Nonetheless, it uses a large number of parameters and is
slightly too flexible, i.e. the mesh convergence is from above,
so the displacements for coarsemeshes are excessive in some
tests.

Next we aim at obtaining elements of better effectiveness
and accuracy than HW51, the standard or the partial version
of the HW functional is used. Both the earlier mentioned
ANS methods are also applied to the below-described three
elements, which we refer to in this paper as the reduced rep-
resentation elements.

For the standard HW functional, the formulation used in
HW51 is modified in two ways: (a) the assumed stress/strain
representations are reduced by omitting the ζ -dependent
terms, and (b) the thickness strain E33 is enhanced by the
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EAS method using the ζ -dependent representation while the
assumed thickness stress/strain representations are omitted.
The above changes yield the element with 35 parameters
(HW35).

Subsequently, the assumed representations are further
reduced and two elements based on the partial HW func-
tionals are developed. The Lagrange multiplier method is
applied to the in-plane strain E0

αβ and the transverse shear

strain E0
α3 in the element with 27 parameters (HW27B),

and only to the in-plane strain E0
αβ in the element with 19

parameters (HW19).
Two other modifications are implemented in the tested

solid-shell elements to enhance their behavior: (A) the skew
coordinates are used in the representations of the assumed
in-plane stress/strain in the reduced representation elements,
and (B) the Residual Bending Flexibility (RBF) correction of
the transverse shear stiffness of MacNeal [26] is adapted to
solid-shell elements. This correction is implemented also in
the reference solid-shell elements.

3. The above four solid-shell elements are tested together
with the two reference solid-shell elements, which are cur-
rently considered as the best in this class. This is the HSEE
element of Klinkel et al. [20] and the EAS10 element, which
is characterized in Sect. 5. Several other 2D and shell ele-
ments are also used in comparisons.

Very good performance of the developed solid-shell HW
elements is demonstrated on several linear and non-linear
examples for the linear elastic (SVK) material, and such
aspects are considered as: accuracy, effects of skew coor-
dinates and the RBF correction, and convergence properties
of theNewtonmethod and the arc-lengthmethod. Two exam-
ples are concerned with nearly-incompressible materials; the
dilatation for the SVKmaterial and ν ≈ 0.5 is tested and the
hourglassing in the large strain compression for the modified
neo-Hookean hyper-elastic material is checked.

1.4 Outline of the paper

The outline of the paper is as follows: the general charac-
teristics of the solid-shell elements are provided in Sect. 2.
The three-field Hu–Washizu functionals and the assumed
stress/strain representations of thedevelopedmixed/enhanced
HW solid-shell finite elements are described in detail in
Sect. 3. Specialized treatment of thickness and transverse
shear strains is described in Sect. 4. Numerical tests in Sect. 5
demonstrate the performance of the developed reduced rep-
resentation solid-shell elements. The paper is closed by final
remarks in Sect. 6.

Notation: “parameter” is abbreviated to “p”. In the
elements’ designations, the total number of elemental param-
eters is included, e.g. HW35 has 35p. Besides, regarding
the components, “COV” stands for “covariant”, “CTV” for

thickness h
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7
4

8

i3
0

0

0

i2
i1

nodal `director’ 2-6

Fig. 1 Numbering of nodes and the reference elemental basis of 8-
node solid-shell element. The element can be flat or warped. ζ is the
through-thickness coordinate

“contravariant” and “CART” for “Cartesian”. The elemental
parameters are denoted as qi , i = 1, . . . , Nq .

2 General characteristics of solid-shell
elements

In this section, first the general characteristics of the solid-
shell 8-node elements is given and, next, their kinematics is
described.

2.1 Basic definitions for solid-shell element

Consider a 8-node isoparametric solid-shell element with the
nodes numbered as shown in Fig. 1. The element can be
either flat or warped, similarly as the standard 4-node shell
element, see e.g. [48]. The nodal “directors” are defined as
the vectors linking the corresponding nodes at the bottom and
top surfaces, i.e. 1–5, 2–6, 3–7 and 4–8. If these vectors are
mutually skew (non-parallel), the element has a trapezoidal
through-thickness shape.

Consider the following vectors associated with the solid-
shell element: the initial position X, the current position x,
and the displacement u. The above vectors are interpolated
as follows:

X(ξ, η, ζ ) =
8

∑

I=1

NI (ξ, η, ζ ) XI ,

x(ξ, η, ζ ) =
8

∑

I=1

NI (ξ, η, ζ ) xI ,

u(ξ, η, ζ ) =
8

∑

I=1

NI (ξ, η, ζ ) uI , (4)

where the standard tri-linear shape functions are,

NI (ξ, η, ζ )
.=

8
∑

I=1

1

8
(1 + ξI ξ)(1 + ηIη)(1 + ζI ζ ), (5)
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ξ, η, ζ ∈ [−1,+1] are the natural coordinates and
{ξI , ηI , ζI } are the natural coordinates of nodes I =
1, . . . , 8. We assume that the ζ -coordinate is associatedwith
the thickness direction; the reference surface is at ζ = 0
while the bounding top/bottom surfaces at ζ = ±1. The
thickness direction (ξ = const., η = const., ζ ) is in gen-
eral not normal to the reference surface.

For a solid-shell element, the reference Cartesian basis
{ik} (k = 1, 2, 3) is constructed as follows. First, the vectors
of the natural basis on the reference surface ζ = 0 are
defined as

gk(ξ, η)
.= ∂X(ξ, η, ζ )

∂ {ξ, η, ζ }k
∣

∣

∣

∣

ζ=0
, (6)

where in the denominator k is a selector of the coordinate
w.r.t. which we differentiate. In general, gk are neither unit
nor orthogonal to each other. The co-vectors gk are defined
in the standard way by gk · gl = δkl (k, l = 1, 2, 3).

Let us assume that g1, g2 are the tangent vectors and
define in the tangent plane,mutually orthogonal vectors i1, i2
equally distant from g1, g2, see Fig. 2 in [52],

i1 = 1√
2
(ĩ1 − ĩ2), i2 = 1√

2
(ĩ1 + ĩ2), (7)

where the auxiliary vectors are

ĩ1 = g̃1 + g̃2
‖g̃1 + g̃2‖ ,

ĩ2 = t3 × ĩ1,

g̃α = gα/‖gα‖. (8)

The normal unit vector i3 is perpendicular to the tangent
vectors g1 and g2, i.e.

i3
.= g1 × g2

‖g1 × g2‖ . (9)

As it is also perpendicular to i1 and i2, the vectors ik form
a Cartesian basis {ik}.

We construct the elemental reference basis at the element’s
center {i0k}, where i0k

.= ik |ξ,η,ζ=0, and transform X
and u to this basis. Then, in the element, the local position
vector is X = X i01 + Y i02 + Z i03, and the Jacobian matrix
J .= ∂X/∂ {ξ, η, ζ } becomes

J .=

⎡

⎢

⎢

⎣

∂X
∂ξ

∂X
∂η

∂X
∂ζ

∂Y
∂ξ

∂Y
∂η

∂Y
∂ζ

∂Z
∂ξ

∂Z
∂η

∂Z
∂ζ

⎤

⎥

⎥

⎦

=
⎡

⎢

⎣

g1 · i01 g2 · i01 g3 · i01
g1 · i02 g2 · i02 g3 · i02
g1 · i03 g2 · i03 g3 · i03

⎤

⎥

⎦
,

(10)

where i01 = [1, 0, 0]T , i02 = [0, 1, 0]T and i03 = [0, 0, 1]T ;
for more details on Jacobians see [48] Sect. 10.3. The Jaco-
bian matrix at the element’s center is J0

.= J |ξ,η,ζ=0.

Remark For solid-shells, the “thickness” is defined as h =
2 ‖g3‖ and it is different from the standard thickness used for
shells. The latter canbedefined for solid-shells as a projection
of the natural vector g3 on the normal vector i3, i.e. h =
2 (g3 · i3), where g3 is obtained from Eq. (6) for k = 3.

2.2 Kinematics of solid-shells

The configuration space of the Cauchy continuum is defined
as: C .= {χ : B → R3}, where χ is the deforma-
tion function defined on the reference configuration of the
body B. The deformation function χ : x = χ(X) maps
the reference (non-deformed) configuration onto the current
(deformed) one. The deformation gradient is defined as

F .= ∂x
∂X

, (11)

where X is the position vector in the initial (non-deformed)
configuration and x in the current (deformed) one. The right
Cauchy-Green deformation tensor and the Green strain are
defined as

C .= FTF, E .= 1

2
(C − C0) , (12)

where C0
.= C|x=X. We can linearize the strain E in the

thickness coordinate ζ at the reference surface ζ = 0 as
follows:

E(ζ ) ≈ E0 + ζ E1, ζ ∈ [−1,+1], (13)

where the 0th and 1st order strains are

E0
.= E(ζ )|ζ=0 , E1

.= ∂E(ζ )

∂ζ

∣

∣

∣

∣

ζ=0
. (14)

We use the convective coordinates ξ , and parameterize
the position vectors as X(ξ) and x(ξ). The convec-
tive coordinates are associated with the natural coordinates
ξ, η, ζ ∈ [−1,+1], which are used in Eq. (4) to parameter-
ize the domain of a finite element, and then ξ

.= {ξ, η, ζ }.
For the components in the Cartesian reference basis {ik}, we
obtain

F .= ∂x
∂X

= ∂x
∂ξ

∂ξ

∂X
= x,ξ J−1,

C .= FTF = J−T xT,ξ x,ξ J−1, (15)

where x,ξ
.= ∂x/∂ξ and J .= ∂X/∂ξ is the Jacobianmatrix.

Besides, x = X + u where u is the displacement vector.
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From Eqs. (12) and (15), we see that the CART → COV
and COV → CART transformations of components of the
Green strain E are

ECOV = JT ECART J and ECART = J−T ECOVJ−1,

(16)

where the covariant (COV) components of strain can be
obtained as either

ECOV = 1

2

(

xT,ξ x,ξ − JT J
)

or

ECOV
i j = 1

2

(

ḡi · ḡ j − gi · g j
)

, (17)

where ḡ1
.= ∂x/∂ξ , ḡ2

.= ∂x/∂η and ḡ3
.= ∂x/∂ζ are

vectors of the natural basis {ḡi } in the deformed (current)
configuration.

Finally, we note that if the components ECOV are known
then the 0th and 1st order strains of Eq. (14) are expressed
in terms of the CART components as,

E0
.= E(ζ )|ζ=0 =

(

J−T ECOV J−1
)∣

∣

∣

ζ=0
,

E1
.= ∂E(ζ )

∂ζ

∣

∣

∣

∣

ζ=0

=
(

J−T
,ζ ECOV J−1 + J−T ECOV

,ζ J−1 = +J−T ECOV J−1
,ζ

)∣

∣

∣

ζ=0

≈
(

J−T ECOV
,ζ J−1

)∣

∣

∣

ζ=0
≈ J−T

0

(

ECOV
,ζ

)

∣

∣

∣

ζ=0
J−1
0 . (18)

The last simplified form of E1 is obtained using two assump-

tions:
(

J−1
,ζ

)∣

∣

∣

ζ=0
≈ 0 and J−1

∣

∣

ζ=0 ≈ J−1
0 .

3 Mixed/enhanced HW solid-shell finite
elements

In this section, first the standard and partial Hu–Washizu
functionals are described, and next the assumed stress/strain
representations of the developed solid-shell HWelements are
characterized.

Let us distinguish the tangent (in-plane) components
α, β = 1, 2, the through-thickness component 33 and the
transverse shear components α3. The 0th order and the 1st
order parts of stress/strain are designated by the superscripts
“0” and “1”, respectively, i.e

Si j (ζ ) = S0i j + ζ S1i j , Ei j (ζ ) = E0
i j + ζ E1

i j , (19)

where ζ ∈ [−1, 1] is the through-thickness coordinate and
i, j = 1, 2, 3.

3.1 Standard/partial HW functionals for solid-shells

Standard 3D HW functional Let us consider the 3D formu-
lation based on the 2nd Piola–Kirchhoff stress S and the
Green strain E. The standard Hu–Washizu (HW) functional
is mixed by definition and in addition to the compatible dis-
placements u, it involves also two independent fields of
stresses and strains, designated as S∗ and E∗, respectively.
In some elements, the enhanced strain E(u) +Eenh is used,
where Eenh is the EAS enhancement of Sect. 4.1.

The standard form of the three-field HW functional is as
follows:

FHW (u,S∗,E∗)
.=

∫

V

{W(E∗) + S∗ · [

E(u) − E∗]} dV − Fext , (20)

where the strain energy density W(E∗) is expressed by the
independent strain E∗. The independent stress S∗ plays
the role of the Lagrange multiplier of the constraint linking
the independent strain E∗ and the compatible strain E(u).
Also, Fext is the potential of the external loads, the body
force, and the displacement boundary conditions and V is
the volume of the 3D body in the initial configuration. In
the current paper we use the strain energy density W for
the St.Venant-Kirchhoff (SVK)material and for themodified
neo-Hookean hyper-elastic material (Sect. 5.3.6).

We develop the following two solid-shell elements based
on the standard HW functional:

1. For the solid-shell element HW51, the standard HW func-
tional is

FHW51
.=

∫

V

{

W(E∗
i j ) + S∗

i j ·
[

Ei j − E∗
i j

]}

dV − Fext ,

(21)

where 51 elemental parameters are used. In this element,
the assumed stress/strain representations depend also on
the thickness coordinate ζ , see Sect. 3.4.1.

2. For the solid-shell element HW35, the standard/enhanced
HW functional is

FHW35
.=

∫

V

{

W(E∗
i j )+

S∗
i j ·

[

Ei j + ζ E1 enh
i j −E∗

i j

]}

dV − Fext , (22)

where 35 elemental parameters are used, and E1 enh
i j

results from the enhancement of the 1st order thickness
strain, see Eq. (60). In this element, all the assumed
stress/strain representations are ζ -independent, and are
defined in Sect. 3.4.2.
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In both the above elements, the ANS method is used for the
covariant 0th order thickness strain and the transverse shear
strain, see Sects. 4.1 and 4.2

Partial HW functional for solid-shell elements To obtain
an efficient finite element, a minimal number of elemental
parameters, which guarantee the element’s stability and an
acceptable accuracy, should be used. Typically, the standard
HW functional is reduced to either the Hellinger–Reissner
(HR) functional or the Enhanced Assumed Strain (EAS)
functional. Another possibility exists for shells and solid-
shells. We can introduce the partial HW functionals, which
are obtained by the application of the Lagrange multiplier
method to selected components of strain only.

We develop two solid-shell elements based on the partial
shell HW functional, with the Lagrange multiplier method
applied to the 0th order strain E0

i j as specified below:

1. For the solid-shell element HW27B, the partial/enhanced
HW functional is

˜FHW27B
.=

∫

V

{

W(E0∗
αβ + ζ E1

αβ + ζ E1 enh
αβ ,

E0
33 + ζ E1 enh

33 , E0∗
α3 + ζ E1 enh

α3 ) + S0∗αβ ·
[

E0
αβ − E0∗

αβ

]

+ S0∗α3 ·
[

E0
α3 − E0∗

α3

]}

dV − Fext , (23)

where the Lagrange multiplier method is applied to E0
αβ

and E0
α3 while E0

33 and E1
αβ appear in the strain energy

in the standard way. The underlined term in W is the sum
of the assumed 0th order strain E0∗

αβ and the compatible

1st order strain E1
αβ multiplied by ζ , and, S0∗αβ and

S0∗α3 are the Lagrange multipliers. In this element, all the
assumed stress/strain representations are ζ -independent,
and are defined in Sect. 3.4.3.

2. For the solid-shell element HW19, the partial/enhanced
HW functional is

˜FHW19
.=

∫

V

{

W(E0∗
αβ + ζ E1

αβ + ζ E1 enh
αβ ,

E0
33 + ζ E1 enh

33 , E0
α3 + ζ E1 enh

α3 )

+ S0∗αβ ·
[

E0
αβ − E0∗

αβ

]}

dV − Fext , (24)

where the Lagrange multiplier method is applied only
to E0

αβ while E0
33, E0

α3 and E1
αβ appear in the

strain energy in the standard way. S0∗αβ is the Lagrange
multiplier. Note that the same underlined term appears
in Eqs. (23) and (24). In this element, all the assumed
stress/strain representations are ζ -independent, and are
defined in Sect. 3.4.4.

In both the above functionals, E1 enh
αβ , E1 enh

33 and E1 enh
α3

result from the enhancement of the 1st order thickness strain,
see Eq. (60).

We note that, compared to the element HW51, the ele-
ments HW35, HW27B and HW19 use the reduced assumed
stress/strain representations, and in the sequel they are
referred to as the reduced representation elements.

Finally, taking a variation of each of the governing
functionals of Eqs. (21)–(24) and performing a consistent lin-
earization of it, we obtain the tangent stiffnessmatrix K for a
particular element. This procedure is standard and, therefore,
not discussed here.

3.2 Skew coordinates

Consider two bases associated with the element’s center: the
reference Cartesian basis {ik} and the natural basis {g0k}
(k = 1, 2, 3). The position vector relative to the element
center X0 is given by X − X0, and it can be expressed in
these two bases as follows:

(x−x0) i1+(y− y0) i2+(z−z0) i3 = ξS g01+ηS g02+ζS g03,

(25)

where the skew coordinates ξS, ηS, ζS are associated with
the natural basis {g0k}, and x, y, z are the Cartesian coor-
dinates. By taking a scalar product of this equation with the
vectors ik , we obtain three equations, which can be solved
for the skew coordinates,

⎡

⎣

ξS
ηS

ζS

⎤

⎦ = J−1
0

⎡

⎣

x − x0
y − y0
z − z0

⎤

⎦ , (26)

where J0 is the Jacobian of Eq. (10) at the element’s center.
As x, y, z depend on the natural coordinates ξ, η, ζ , hence,
for a 3D 8-node (tri-linear) element, Eq. (26) becomes

⎡

⎣

ξS
ηS

ζS

⎤

⎦ =
⎡

⎣

ξ + A11 ξη + A12 ηζ + A13 ζ ξ + A14 ξηζ

η + A21 ξη + A22 ηζ + A23 ζ ξ + A24 ξηζ

ζ + A31 ξη + A32 ηζ + A33 ζ ξ + A34 ξηζ

⎤

⎦ ,

(27)

where Akl (l = 1, . . . , 4) are the scalar coefficients. For a
2D 4-node (bi-linear) element, Eq. (27) is reduced to

ξS = ξ + A11 ξη, ηS = η + A21 ξη, (28)

where A11 = (J,η)0/J0, A21 = (J,ξ )0/J0 and J =
det J. For parallelogram shapes, Ai j = 0, so the difference
between the natural and skew coordinates vanishes.

Note that the skew coordinates are introduced above quite
generally, without resort to any particular approximation
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problem. In Yuan et al. [60], these coordinates appear as a
by-product, when the equilibrium equations for 2D 4-node
element are enforced for the 12-parameter representation of
the assumed stress in terms of ξ, η.

Remark An important property of the skew coordinates is
that the homogeneous equilibrium equations and the con-
ditions of compatibility of strains are satisfied point-wise
regardless of the element’s shape. For the natural coordinates,
they are satisfied point-wise only for parallelogram shape
elements, as verified for 2D in [50,51]. In effect, the HR
and HW elements with the assumed stress/strain representa-
tions expressed by the skew coordinates have an improved
accuracy for irregular element’s shapes. This is also true for
4-node HW shell elements with 6 dofs/node, see [52].

For the 8-node solid-shell elements, we have to choose
which of the two above defined forms of skew coordinates
to use. In this paper, we selected the 2D version of Eq. (28)
because it is simpler and its properties are well established
and tested. Besides, the effects of skewness of g03 and g0α
are well circumvented by the ANS method for the thickness
strain of Betsch and Stein [6], see Sect. 4.1.

We stress that the skew coordinates are used only in
the reduced representation elements, to define the in-plane
components (11, 22 and 12) of the assumed stress/strain rep-
resentations, while the natural coordinates are applied in the
other components.

3.3 Transformation operators for strain/stress
vectors

Because of the symmetry of strain and stress tensors, instead
of matrices we can use the vectors of their components

Ev
.= [E11, E22, E33, 2E12, 2E13, 2E23]

T ,

Sv
.= [S11, S22, S33, S12, S13, S23]

T , (29)

and define the transformation matrices to obtain these com-
ponents with respect to another basis. Let us define the
transformation matrix

T .=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J 211 J 212 J 213 aJ11 J12 aJ11 J13 aJ12 J13
J 221 J 222 J 223 aJ21 J22 aJ21 J23 aJ22 J23
J 231 J 232 J 233 aJ31 J32 aJ31 J33 aJ32 J33

bJ11 J21 bJ12 J22 bJ13 J23 J11 J22 + J12 J21 J11 J23 + J13 J21 J12 J23 + J13 J22
bJ11 J31 bJ12 J32 bJ13 J33 J11 J32 + J12 J31 J11 J33 + J13 J31 J12 J33 + J13 J32
bJ21 J31 bJ22 J32 bJ23 J33 J21 J32 + J22 J31 J21 J33 + J23 J31 J22 J33 + J23 J32

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (30)

where Jik = gi · i0k (i, k = 1, 2, 3) are the components of the
Jacobian J and a, b are scalars. To perform the transforma-
tions between the contravariant (CTV) components and the
Cartesian (CART) components of vectors (29), we define two
operators

TE
.= T(a = 1, b = 2) and TS

.= T(a = 2, b = 1). (31)

The use of these operators is equivalent to the matrix opera-
tions, as specified below.

1. The CTV → CART transformation of components of
strain can be written either as

ECART = J ECTVJT or ECART
v = TE ECTV

v . (32)

We can check their equivalence, i.e.
(

ECART
)

v = ECART
v ,

where (·)v designates the operation of taking out the com-
ponents of a matrix to obtain the strain vector of Eq. (29).
Analogous equivalent relations can be written for compo-
nents of stress,

SCART = J SCTVJT or SCARTv = TS SCTVv . (33)

The modified versions of the above transformations are
used in Klinkel et al. [20]; we use them also in our HW
solid-shell elements but they are modified in a different
way than in the cited paper.

2. The COV → CART transformation of components of
strain can be written either as

ECART=J−T ECOVJ−1 or ECART
v =T−T

S ECOV
v , (34)

where the inverse of TS is used to transform the strain
vectors Ev. This transformation is used e.g. inWeissman
[46] for the assumed strain together with that of Eq. (33)
for the assumed stress. We use it only for comparison in
some examples.

In the sequel, we additionally indicate where the operators
TE and TS are computed. Then the superscript ”0” stands
for the element’s center (ξ = η = ζ = 0), while “ζ = 0”
for the reference surface.
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3.4 Assumed representations of strain/stress

The independent strains and stresses E∗ and S∗ are treated
as the assumed fields, i.e. E∗ → Ea and S∗ → Sa , which
is indicated by the superscript “a”. These fields are selected
separately for each solid-shell element described below.

3.4.1 Element HW51

This element is obtained from the standard three-field FHW

functional of Eq. (21). It is based on the assumed representa-
tions whichwere selected earlier for 8-node 3D elements: the
18p representation for stress of Pian and Tong [33] and the
33p for strain used in the 3D element B8-15P of Weissman
[46]. Totally, the HW51 element has Nq = 18 + 33 = 51
additional parameters qi .

Assumed stress The CTV → CART transformation of
components of stress of Eq. (33) is applied in the following
form:

Sav = T0
S (Av + Cv) , (35)

where T0
S is computed at the element’s center. The assumed

CTV representations are

Av = [q1, q2, q3, q4, q5, q6]T ,

Cv
.= [C11,C22,C33, C12,C13,C23]T , (36)

where

C11 = q7 η + (q8 + q9 η)ζ, C22 = q10 ξ + (q11 + q12 ξ)ζ,

C33 = q13 ξ + q14 η + q15 ξη,

C12 = q16 ζ , C13 = q17 η, C23 = q18 ξ. (37)

Note that only 3 components, i.e. 11, 22 and 12, are ζ -
dependent. Totally, 18 parameters qi are used for the
assumed stress.

This 18p representation was proposed in Pian and Tong
[33] for the assumed stress of 3D 8-node hybrid element.
Subsequently it was also used in other 3D elements, e.g.
in Andelfinger and Ramm [1] Eq. (34) and Weissman [46]
Eqs. (41–42). Klinkel et al. [20] used it in the solid-shell
element HSEE, where the transformation operators for par-
ticular terms of this representation are computed at different
locations within an element.

Assumed strain The CTV → CART transformation of
components of strain of Eq. (32) is applied as follows:

Ea
v = T0

E

(

Av + Cv + C1
v

)

, (38)

where T0
E is the operator at the element’s center. The

assumed CTV representation consists of 2 parts, where

the first one (underlined) has the same form as specified for
stress in Eqs. (36–37) and involves 18p. The second part
contains 15p and is as follows:

C1
v

.= [C1
11,C

1
22,C

1
33, C1

12,C
1
13,C

1
23]T , (39)

where

C1
11 = q1 ξ + q2 ξη + q3 ζ ξ, C1

22 = q4 η + q5 ξη + q6 ηζ,

C1
33 = (q7 + q8 ξ + q9 η)ζ,

C1
12 = q10 ξ + q11 η, C1

13 = q12 ξ + q13 ζ,

C1
23 = q14 η + q15 ζ. (40)

Totally, 33 parameters qi are used for the assumed strain.
Note that C1

33 involves the 3p which are used in Eq. (59),
therefore, the EAS enhancement of E33 is not required.

Remark Note the difference between the transformation rule
for the assumed strains used in Weissman [46] Eq. (46) and
ours of Eq. (38). In that paper, the COV → CART rule is
used (it is identical to Eq. (34) in the current paper) while
we use the CTV → CART rule of Eq. (32). These rules
are tested and compared for 4-node 2DHW elements inWis-
niewski et al. [56]. The CTV → CART rule is found to be
in general more accurate, see e.g. the two-element distortion
test of Sect. 3.3 therein. It allows for the reduction of the
number of parameters used for the assumed strain.

3.4.2 Element HW35

This element is obtained from the standard/enhanced func-
tional FHW35 of Eq. (22). Totally, it has Nq = 13+19+3 =
35 additional parameters qi , where 13p are used for the
assumed stress, 19p for the assumed strain and 3p to enhance
the thickness strain.

Assumed stress The CTV → CART transformation of
components of stress of Eq. (33) is applied as follows:

Sav = T0
S Av + Tζ=0

S Cv, (41)

where T0
S is computed at the element’s center and Tζ=0

S at
the reference surface (ζ = 0). The assumed CTV represen-
tations are defined by Av and Cv of Eq. (36), where

C11 = q7 ηS, C22 = q8 ξS,

C33 = q9 ξ + q10 η + q11 ξη,

C12 = 0, C13 = q12 η, C23 = q13 ξ. (42)

The above 13p representation is obtained from the 18p rep-
resentation of Eq. (37) by omitting the ζ -dependent terms
and replacing the natural coordinates ξ, η by the skew ones
ξS, ηS in C11 and C22. Besides, the operator TS in the
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second term of Eq. (35) is at the element’s center while here
in Eq. (41) at the reference surface ζ = 0. Note that C12 = 0
but, because of the presence of q4 in Av, the matrix which
is inverted during the condensation out of additional param-
eters is non-singular.

Assumed strain The CTV → CART transformation of
components of strain of Eq. (32) is applied as follows:

Ea
v = T0

E Av + Tζ=0
E Cv, (43)

where T0
E is computed at the element’s center and Tζ=0

E at
the reference surface (ζ = 0). The assumed CTV represen-
tations are defined by Av and Cv of Eq. (36), where

C11 = q7 ξS + q8 ηS + q9 ξSηS,

C22 = q10 ξS + q11 ηS + q12 ξSηS,

C33 = q13 ξ + q14 η + q15 ξη,

C12 = q16ξS + q17 ηS, C13 = q18η, C23 = q19ξ. (44)

Totally, 19 parameters qi are used for the assumed strain.
The 0th order assumed thickness strain Ea

33 involves 4
parameters; q3 in Av and 3p in C33. Also, 3p are used
by the EAS method of Eq. (59) to enhance the 1st order
thickness strain.

Comparison of HW35 and HSEE. The main differences
between our HW35 and the reference HSSE (43p) of Kinkel
et al. [20] are as follows:

1. HSEE uses 43 parameters; 18 for the assumed stress, 18
for the assumed strain, and 7 for the enhancement of the
11, 22 and 33 strain components. HW35 uses 35 parame-
ters; 13 for the assumed stress, 19 for the assumed strain
and 3 to enhance the 33 strain component. HW35 uses
skew coordinates in the in-plane assumed representations.

2. The enhancing strain components of HSEE are

˜ECOV
11 = q1 ξ + q2 ξη, ˜ECOV

22 = q3 η + q4 ξη,

˜ECOV
33 = (q5 + q6ξ + q7η) ζ, (45)

where ˜ECOV
11 and ˜ECOV

22 are the enhancements of the
0th order strain, while ˜ECOV

33 of the 1st order strain. In
HW35, only the last one is used.

3. Different transformations and representation are used
for the assumed strain. In HSSE, the assumed strain is
obtained via the CTV → CART transformation of
Eq. (32) applied as follows:

̂Ea
v = T0

E Av + T0
E

̂Cv + TE
̂
̂Cv, (46)

where T0
E is computed at the element’s center and

TE(ξ, η, ζ ) at Gauss integration points. Comparing to
Eq. (43) for HW35, we see that the second term T0

E
̂Cv

of Eq. (46) is not used, and TE in the third term is
replaced by Tζ=0

E computed at the reference surface. In
the assumed representations, the components 11, 22 and
12 are different, and this difference does not vanish if the
natural coordinates are replaced by the skew ones.

4. In HSEE, the CTV → CART transformation of compo-
nents of stress of Eq. (33) is applied in the form analogous
to that used for strain,

̂Sav = T0
S Av + T0

S
̂Cv + TS

̂
̂Cv, (47)

where T0
S is computed at the element’s center and

TS(ξ, η, ζ ) at Gauss integration points. Hence, the dif-
ferences between the transformations used in these two
elements are analogous to these for the assumed strain.

3.4.3 Element HW27B

This element is obtained from the partial/enhanced functional
˜FHW27B of Eq. (23), in which only the membrane and trans-
verse shear strain components are treated by the Lagrange
multiplier method. Totally, it has Nq = 9 + 15 + 3 = 27
additional parameters qi , where 9p are used for the assumed
stress, 15p for the assumed strain and 3p to enhance the thick-
ness strain.

Assumed stress The CTV → CART transformation of
Eq. (41) is applied, and the assumed CTV representation is
defined as follows:

Av = [q1, q2, 0, q3, q4, q5]T , (48)

the components of Cv of Eq. (36) are

C11 = q6 ηS, C22 = q7 ξS, C33 = 0,

C12 = 0, C13 = q8 η, C23 = q9 ξ. (49)

The skew coordinates ξS, ηS are used in C11 and C22.
Totally, 9 parameters qi are used for the assumed stress.
Five of them correspond to the Pian and Sumihara membrane
stress of [32], but expressed in skew coordinates, and 4 are
added for the transverse shear stress.

Assumed strain The CTV → CART transformation of
Eq. (41) is applied, and the assumed CTV representations
are defined by Av of Eq. (48) and Cv of Eq. (36), where

C11 = q6 ξS + q7 ηS + q8 ξSηS,

C22 = q9 ξS + q10 ηS + q11 ξSηS, C33 = 0,

C12 = q12 ξS + q13 ηS,

C13 = q14 η, C23 = q15 ξ. (50)

Totally, 15 parameters qi are used for the assumed strain.
Additionally the 3p EAS enhancement of Eq. (59) is used for
the thickness strain.
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3.4.4 Element HW19

This element is obtained from the partial functional ˜FHW19

of Eq. (24), inwhich only the in-plane components are treated
by the Lagrange multiplier method. Totally, it has Nq =
5 + 11 + 3 = 19 additional parameters qi , where 5p are
used for the assumed stress, 11p for the assumed strain and
3p to enhance the thickness strain.

Assumed stress The CTV → CART transformation of
Eq. (41) is applied, and the assumed CTV representations
are defined as follows:

Av = [q1, q2, q3, 0, 0, 0]T , (51)

and the components of Cv of Eq. (36) are

C11 = q4 ηS, C22 = q5 ξS,

C33 = 0, C12 = 0, C13 = 0, C23 = 0, (52)

where the skew coordinates ξS, ηS are used in C11 and
C22. Totally, 5 parameters qi are used for the assumed
stress, which corresponds to the Pian and Sumihara stress of
[32], but expressed in skew coordinates.

Assumed strain The CTV → CART transformation of
Eq. (43) is applied, and the assumed CTV representations
are defined as follows:

Av = [q1, q2, q3, 0, 0, 0]T , (53)

and the components of Cv of Eq. (36)

C11 = q4 ξS + q5 ηS + q6 ξSηS,

C22 = q7 ξS + q8 ηS + q9 ξSηS,

C33 = 0,C12 = q10 ξS + q11 ηS,

C13 = 0, C23 = 0.

Totally, 11 parameters qi are used for the assumed strain.
Additionally the 3p EAS enhancement of Eq. (59) is used for
the thickness strain.

Remark If the bi-linear (underlined) terms in the assumed
strain is omitted then we obtain the 9p representation, which
is identical to that selected for the 2D element HW14-S [51].
The inverse constitutive equation and the Pian-Sumihara’s 5p
stress representation was instrumental in selecting this repre-
sentation. In effect, it is accurate and insensitive to transfor-
mations, see [56]. In the 8-node solid-shell element, however,
it yields 2 large eigenvalues for the nearly-incompressible
material, see Sect. 5.1. The underlined terms render that
only one large eigenvalue is obtained for the HW19 element
and the volumetric locking is avoided.

4 Treatment of thickness and transverse
shear strains

In this section we discuss the specialized methods used to
improve the thickness strain and the transverse shear strain.
The covariant strain components are modified.

4.1 ANSmethod and EAS enhancement for the
thickness strain

Two problems related to the thickness strain E33 of solid-
shell elements can be identified.

A. For trapezoidal through-thickness shape of solid-shell
elements, the initial natural vector g3

.= ∂X/∂ζ is not
normal to the reference surface ζ = 0. Also the current
natural vector ḡ3

.= ∂x/∂ζ becomes not normal to the
reference surface ζ = 0 for certain types of deformation,
e.g. the out-of-plane bending. In effect, the covariant 0th
order thickness strain ECOV

33 is improperly approximated,
which causes the so-called curvature thickness locking. We
denote the covariant thickness strain at the reference surface
as ε33

.= ECOV
33 |ζ=0.

Example Consider for simplicity a 2D solid-beam parame-
terized by ξ, ζ ∈ [−1, 1]. Define the current unit “director”
and “thicknesses” at the reference line ζ = 0 as: d̄ .=
ḡζ=0
3 /‖ḡζ=0

3 ‖ and h̄
.= 2‖ḡζ=0

3 ‖. d and h are used
for the initial configuration,. Then the thickness strain at the
reference line, obtained from Eq. (17) for i, j = 3, is

2ε33 = (h̄/2)2 d̄ · d̄ − (h/2)2 d · d. (54)

For the parameterization of x of Eq. (4), we obtain d̄(ξ) =
1
2 (1−ξ) d̄A+ 1

2 (1+ξ) d̄B, where A andB are the end-points
(ξ = ±1) on the reference line. When d̄A and d̄B are non-
parallel, such an interpolation of d̄(ξ) does not preserve its
length, i.e.

d̄(ξ) · d̄(ξ) = 1 + 1

2
(1 − ξ2)(d̄A · d̄B − 1) �= 1. (55)

The second term causes the thickness straining in bending,
and to circumvent it Betsch and Stein [6] propose the ANS
method. Within the ANS method, the product is interpolated
using appropriate products at the end-points,

d̄(ξ) · d̄(ξ) = 1

2
(1−ξ) (d̄A · d̄A) + 1

2
(1+ξ) (d̄B · d̄B). (56)

It is always equal to 1 because d̄A and d̄B are unit vectors.
For the initial “director” d and the product d ·d of Eq. (54),
we proceed in a similar way. Effectively, we can interpolate
ε33 using the values at the end-points A and B,
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ε̃33(ξ) = 1

2
(1 − ξ) (ε33)A + 1

2
(1 + ξ) (ε33)B , (57)

where (ε33)A and (ε33)B are directly computed using not
Eq. (54) but Eq. (17).

For the solid-shells we proceed similarly. First, the values
of ε33 are computed at 4 corner points (ξ = ±1, η = ±1)
at the reference surface ζ = 0; they are denoted as (ε33)I ,
I = 1, 2, 3, 4. Next, this strain is interpolated within an
element with the bi-linear shape functions NI (ξ, η),

ε̃33(ξ, η) = �4
I=1 NI (ξ, η) (ε33)I . (58)

Finally, the Cartesian components of this strain are obtained
using the COV → CART transformation of Eq. (34).

B. In the solid-shell kinematics, the 1st order thickness
strain E1

33 is equal to zero,which impairs element’s accuracy
in the out-of-plane bending. An overview of the methods
which have been used to enhance this strain in shells, 3D
elements and solid-shell elements, is given in Sect. 1.

In the current paper,we use the 3-parameter EAS enhance-
ment of the covariant 1st order thickness strain

˜ECOV
33

.= (q1 + q2ξ + q3η) ζ, (59)

and the standard transformation to Cartesian components,

Eenh
v = (T0

S)
−T [0, 0, ˜ECOV

33 , 0, 0, 0]T (J0/J ), (60)

where T0
S is computed at the element’s center and J

.= det J.
This enhancement is used in all our solid-shells elements
except HW51, in which the terms of Eq. (59) are included in
the assumed strain representation, see Eq. (40).

4.2 ANSmethod for transverse shear strains

Let us denote the covariant components of the transverse
shear strains at the reference surface ζ = 0 as

γ13
.= 2ECOV

13 |ζ=0, γ23
.= 2ECOV

23 |ζ=0. (61)

To reduce the transverse shear locking, the Assumed Natural
Strain (ANS) method in the form proposed by Dvorkin and
Bathe [12] is applied to γ13 and γ23 as follows:

1. First, the γα3 (α = 1, 2) are computed (sampled) at the
middle points of element sides, at twopoints for each com-
ponent, see Fig. 2. These values are denoted as γ 5

13, γ
7
13

and γ 6
23, γ

8
23.

2. Next, the components γα3 are interpolated over the ele-
ment domain using the sampled values,

γ̃13(ξ, η) = 1

2

[

(1 − η) γ 5
13 + (1 + η) γ 7

13

]

,

55

66 88

77

11 22

33 44

2313

Fig. 2 Location of sampling points for γ13 and γ23 at the ζ = 0
surface

γ̃23(ξ, η) = 1

2

[

(1 − ξ) γ 6
23 + (1 + ξ) γ 8

23

]

. (62)

The interpolated components (designated by a tilde) are
constant in the direction in which the derivative is calcu-
lated and linear in the other direction, which means that
the ANS method is orientation-dependent.

3. Finally, at the Gauss integration points, the Cartesian
transverse shear strains are obtained by the COV →
CART transformation of Eq. (34).

Finally, the ANS modified strains of Eqs. (58) and (62)
are transformed to the Cartesian components simultaneously
with the compatible strain components,

ECART
v = (T0

S)
−T

[

ECOV
11 , ECOV

22 , ε̃33, ECOV
12 , γ̃13, γ̃23

]T
,

(63)

and the enhancement vector Eenh
v of Eq. (60) is added to

this vector.

4.3 RBF correction of transverse shear stiffness

Low-order finite elements, such as the two-node Timoshenko
beam, the four-node Reissner-Mindlin shell and the eight-
node solid-shell, lock for the sinusoidal bendingbecause such
a form of deformation is not properly represented by linear
shape functions. To resolve this problem, the Residual Bend-
ing Flexibility (RBF) correction was proposed for beams and
shells, see [26,28]. This correction is beneficial also for very
thin elements. Below the RBF correction is adapted to the
8-node solid-shell elements.

For a 2D beam element with a rectangular cross-section,
we define the ratio of the shear energy Wγ to the total energy
as follows:

c
.= Wγ

Wκ + Wγ

, (64)

where Wκ is the bending energy. For the Discrete Kirchhoff
(DK) beam element based on cubic displacements (see e.g.
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[48] Sect. 13.1), the deflection for the sinusoidal bending is
w(ξ) = l

4 ξ(ξ2 − 1) θ , so

Wκ = 6E I

l
θ2, Wγ = 72(E I )2

GA l3
θ2, c = 12E I

12E I + GAl2
,

(65)

where θ is the nodal rotation and l is the element’s length.
Let us define the RBF correction coefficient cRBF

.= c and
the corrected shear modulus

G∗ .= cRBF G =
(

1

kG
+ l2

h2E

)−1

, (66)

where the underlined term is called the Residual Bending
Flexibility. Note that G is multiplied by the shear cor-
rection factor k to account for a parabolic distribution of
the transverse shear stress through thickness. Its use is not
indicated in [26] but is obvious. Note that the cRBF and
G∗ depend on the material and geometrical properties of the
element but not on the rotation θ .

Although the cRBF and G∗ are derived for the DK beam
element, they can also be applied to the Timoshenko beam
element based on linear interpolations. Similarly, a general-
ization of G∗ can be applied to bi-linear 4-node plate and
shell elements.

For the 8-node solid-shell element, we need to account for
the transverse shear strains at the reference surface ζ = 0,
hence we proceed similarly as for a 4-node shell element.
The corrected G∗ of Eq. (66) is applied separately for each
direction, i.e.

G∗
1 =

(

1

kG
+ l21

h2E

)−1

, G∗
2 =

(

1

kG
+ l22

h2E

)−1

,

(67)

where l1 and l2 are the lengths of vectors connecting
opposite mid-side points at the reference surface. (The shear
correction factor k = 5/6 is used in numerical examples
of Sect. 5 unless defined differently.) Let us assume that
h, G∗

1 and G∗
2 are constant over the reference surface and

express the transverse shear strain energy for a single element
as follows:

Wγ = 1

2
h

∫ +1

−1

∫ +1

−1

(

G∗
1 γ 2

13 + G∗
2 γ 2

23

)

J (ξ, η) dξdη.

(68)

To pass the bending patch test, the ANS method of Sect. 4.2
should be applied to the transverse shear strain. Then the ele-
ment performs well for bending but yields excessive results

for twist. For instance, in the linear test of a slender straight
cantilever modeled by one row of 4-node shell elements and
twisted by a pair of forces, the rotation rx of the tip is too
large by about 38%, see [48] Sect. 15.3.1.

To avoid the excessive twist, the full RBF correction is
applied to the average values of the transverse shear strains
(“av”) and a fraction of it to the difference of them (desig-
nated by “d”), see [27]. To separate these parts, we re-write
Eqs. (62) of the ANS method as follows:

γ̃13(ξ, η) = γ av
13 + η γ d

13, γ̃23(ξ, η) = γ av
23 + ξ γ d

23. (69)

Taking for instance only the two last rows of Eq. (63), we
have
[

γ CART
13

γ CART
23

]

=
[

(T0
S)

−T
]

2×2

[

γ av
13 + η γ d

13

γ av
23 + ξ γ d

23

]

, (70)

where each component is a linear function of ξ and η,
e.g. γ CART

13 = γ̄ av
13 + γ̄ d1

13 ξ + γ̄ d2
13 η. To separate these

terms in the strain energy Wγ of Eq. (68), we assume that
J (ξ, η) ≈ J0, where J0 is the Jacobian determinant at the
element’s center. Then

∫ +1

−1

∫ +1

−1
γ 2
13 J (ξ, η) dξdη

≈ 4

3

[

3(γ̄ av
13)

2 + (γ̄ d1
13)

2 + (γ̄ d2
13)

2
]

J0. (71)

Finally, the integrand of the strain energy (68) ismodified and
the full RBF correction is applied only to the “av” strains and
a fraction of it to the “d” strains,

G∗
1 γ 2

13 ≈ G∗
1 (γ̄ av

13)
2 + G∗

1ε

[

(γ̄ d1
13)

2 ξ2 + (γ̄ d2
13)

2 η2
]

,

(72)

with the corrected shear modulus of Eq. (67) additionally
modified as follows:

G∗
1ε

.=
(

1

kG
+ a

l21
h2E

)−1

, a
.= ε

ε + (1 − ε) (l1/l2)2
,

(73)

where ε is a corrective coefficient; ε = 0.04 is selected in
[26]. Ṅote that too small values of ε cause problems with
the conditioning of the tangent stiffness matrix. We proceed
similarlywith G∗

2 γ 2
23 ofEq. (68). The effects of theRBFcor-

rection are verified on several numerical examples in Sect. 5
and summarized in Sect. 5.4.

ComparisonThe shear correction factor for a Timoshenko
beamelement is defined inTessler andHughes [42]Eq. (4.14)
as follows:
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Table 1 Characteristics of the
tested/reference solid-shell
8-node elements

Element Assumed stress Assumed strain EAS Ẽ0
αβ EAS Ẽ1

33

Tested solid-shell

HW51 18 p, Eqs. (36–37) 33 p, Eqs. (39–40) – –

HW35 13 p, Eq. (42) 19 p, Eq. (44) – 3 p, Eq. (59)

HW27B 9 p, Eq. (49) 15 p, Eq. (50) – 3 p, Eq. (59)

HW19 5 p, Eq. (51) 11 p, Eq. (53) – 3 p, Eq. (59)

Ref. solid-shell

HSEE, 43 p [20]* 18 p, Eq. (46) 18 p, Eq. (47) 4 p, Eq. (45) 3 p, Eq. (45)

EAS10* – – 7 p, Eq. (76) 3 p, Eq. (59)

[ ]* our implementation

k2TH = k2∗
1 + 1

12 k
2∗

(G
E

) ( l
r

)2 , (74)

where k2∗ = π2/12 is the analytic shear correction factor,
which corresponds to our k = 5/6. Besides, r

.= √
I/A,

and for a rectangular cross-section, when A = bh and
I = bh3/12, it yields r2 = h2/12. Hence, the inverse of
Eq. (74) divided by G is

1

k2THG
= 1

k2∗G
+ l2

h2E
. (75)

We see that k2TH in the above formula is identical to cRBF of
Eq. (66) when the analytic shear correction factors (k2∗ and
k) are defined in the same way.

5 Numerical tests

In this section, we describe the numerical tests of four 8-
node Hu–Washizu (HW) solid-shell elements developed in
the current paper, see Table 1. These elements are based on
the Green strain and developed from either the standard HW
functional of Eqs. (21) and (22), or the partialHWfunctionals
of Eqs. (23) and (24).

The assumed representations of stresses/strains are
described in Sects. 3.4.1, 3.4.2, 3.4.3 and 3.4.4. Of particular
interest are the reduced representationHWelements (HW35,
HW27B and HW19). In these elements, the in-plane compo-
nents of the assumed strain/stress are expressed by the skew
coordinates of Sect. 3.2. The number of parameters used for
particular components of stress/strain is given in Table 2. The
0th and 1st order parts of stress/strain are designated by the
superscripts 0 and 1, respectively. In the sequel, “parameter”
is abbreviated to “p”.

Several methods of improving the behavior of solid-shells
are applied and they are described as follows: the ANSmeth-
ods for the thickness strain and the transverse shear strains in
Sects. 4.1 and 4.2, the EAS method for the thickness strain

in Sect 4.1, and the Residual Bending Flexibility (RBF) cor-
rection in Sect. 4.3.

The multipliers qi of additional modes are eliminated on
the element’s level and updated by the scheme U2, see [48].
All solid-shell elements are integrated using the 2 × 2 × 2
Gauss integration rule.

Two reference solid-shell elements are used:

1. HSEE with 43p of Klinkel et al. [20], which is an HW
element; it is described in detail and compared to our
HW35 element in Sect. 3.4.2.

2. EAS10, in which the 7p enhancement ofWilson et al. [47]
is applied to the in-plane strain,

E11 = q1ξ + q2ξη, E22 = q3η + q4ξη,

E12 = q5ξ + q6η + q7ξη, (76)

and the 3p enhancement of Eq. (59) to the thickness
strain E33. The first version of this element is designated
Q1A3E5 in [19]. In [20], two terms are added to the thick-
ness strain enhancement to pass the bending patch test, as
proposed in [43], and it is designated Q1A3E7.

These elements are derived using the automatic differen-
tiation program AceGen described in [22,25], and are tested
within the finite element program FEAP developed by R.L.
Taylor [41,61]. The use of these programs is gratefully
acknowledged. Our parallel multithreaded (OMP) version of
FEAP is described in [18].

We tacitly assume that any consistent set of units is used
for the data defined in numerical examples.

5.1 Eigenvalues of single element

The eigenvalues of the tangent matrix are computed for a
single unsupported element, and for the material data: the
Young’s modulus E = 1 and the Poisson’s ratio ν = 0.3.

First, a single element of size 1×1×h and the thickness
h = 0.1 is checked. Then, several other element shapes are
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Table 2 Number of parameters used for 0th and 1st order parts of
stress/strain

Parts Assumed stress Assumed strain EAS
0th order S0aαβ S0aα3 S0a33 E0a

αβ E0a
α3 E0a

33 Ẽ0
αβ

1st order S1aαβ S1aα3 S1a33 E1a
αβ E1a

α3 E1a
33 Ẽ1

33

Tested solid-shell elements

HW51 5 p 4 p 4 p 11 p 6 p 4 p –

5 p – – 11 p 2 p 3 p –

HW35 5 p 4 p 4 p 11 p 4 p 4 p –

– – – – – – 3 p

HW27B 5 p 4 p – 11 p 4 p – –

– – – - - – – 3 p

HW19 5 p – – 11 p – – –

– – – – – – 3 p

Ref. solid-shell elements

HSEE, 43 p 5 p 4 p 4 p 5 p 4 p 4 p 4 p

5 p – – 5 p – – 3 p

EAS10 – – – – – – 7 p

– – – – – – 3 p

examined, such as a truncated pyramid, a rhomboid with par-
allel corner “directors” and a warped element with elevated
nodes 3 and 7 in Fig 1. For all the shapes tested, our solid-
shell elements have a correct number of zero eigenvalues (6).

For the triangular prism, e.g when nodes 3 and 4, and
nodes 7 and 8, have the same coordinates, the number of
zero eigenvalues remains correct. In the so-called thin limit,
an additional zero eigenvalue appears for all tested solid-shell
elements.

For the nearly-incompressible material, i.e. ν =
0.499999999, one large eigenvalue 8.5 × 108 and 6 zero
eigenvalues is obtained for all tested solid-shell elements. For
the distorted shapes and the triangular prism, the number of
large and zero eigenvalues remains the same. The absence of
volumetric locking was additionally confirmed by the “Pure
bending of a cantilever in plane strain” test of MacNeal [28].

5.2 Linear tests

5.2.1 Patch tests

The solid-shell elements fail the 3D patch test with non-
parallel top and bottom bounding sides. Hence, the shell-type
patch tests are adapted and performed.

The five-element patch of elements described in MacNeal
and Harder [29] is used, with the material data: the Young’s
modulus E = 106 and the Poisson’s ratio ν = 0.25.
The displacements are prescribed at the external nodes of the
patch and computed at the internal nodes.

1

11

12

22

23

33

34

44

6

17

28

39

X

Y

0

Z

L

L

C

h (not to scale)

w

Fig. 3 Dilatation for out-of-plane bending. Mesh and boundary condi-
tions. Thickness h is shown not to scale

The reference results for the membrane patch test are the
same as for the 4-node shell elements but additionally the val-
ues of u3 and the thickness strain/stress (E33, S33) must be
checked. For the out-of-plane bending/twisting patch test, the
reference results are given in VuQuoc and Tan [43] Table 2.

All our solid-shell elements yield correct displacements at
the internal nodes and correct compatible strains and stresses
at the Gauss Points.

5.2.2 Dilatation for out-of-plane bending

This test is used to detect the dilatational locking for the
nearly-incompressible linear elastic material., The dilatation
is the volume change for small strains only. Pure out-of-plane
bending for plane strain is defined by the following displace-
ments:

ux = xz, uy = 0, uz = −0.5 x2− ν

2(1 − ν)
z2, (77)

for which the small strains are

ε11 = z, ε22 = 0,

ε33 = − ν

1 − ν
z, ε12 = ε23 = ε13 = 0. (78)

For the Poisson’s ratio ν = 0.5, i.e. for the incompressible
material, we obtain ε33 = −z so the dilatation e = ε11 +
ε22 + ε33 = 0. This test is an adaptation of the pure in-plane
bending test of [28], p. 216.

To obtain the nearly-incompressible material, we use the
Poisson’s ratio ν = 0.499999999, for which the dilatation
should be e ≈ 0. Besides, the Young’s modulus E = 1,
the thickness h = 0.2, the half-length L = 5 and the width
w = 1. The RBF correction of Sect. 4.3 is not used.

The 10 × 1 × 1-element mesh is used, with 1 layer of
elements in the through-thickness 0Z direction, see Fig. 3.
The values of ux and uz of Eq. (77) are applied to 8 corner
nodes and at x = z = 0 to nodes 6, 17, 28 and 39. To render
the plane strain state, the boundary condition uy = 0 is set
for all nodes at y = ±w/2.
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Fig. 4 Cook’s membrane. Initial geometry and load

The obtained results are presented in Table 3. Strains and
the dilatation are computed in element no. 5 at point “C”, i.e.
at (ξ, η, ζ ) = (0, 0,−0.5). The analytical solution at point
“C” is ε11 = 0.05. For all elements, ε22 ≈ 0 and ε33 ≈
−ε11 are obtained as required, hence these components are
not reported. The values of ε11 only negligibly differ from
the reference analytical value.

The transverse shear strain ε13 and the dilatation e are
close to zero, which indicates that all the tested and refer-
ence solid-shell elements are free from the transverse shear
locking and the dilatational locking.

5.2.3 Cook’s membrane

In Cook’s test [8], the in-plane shear deformation dominates
and the elements are skew and tapered. The membrane is
clamped at one end, while at the other end, the uniformly
distributed tangent load P = 1 is applied, see Fig. 4. The
nodes shown in this figure are doubled to obtain the mesh for
8-node solid-shell elements. The data is as follows: E = 1,
ν = 1/3, and the thickness h = 1. Two meshes are used in
computations; a coarse 2×2-elementmesh and afine 32×32-
element mesh. For the reference 9-node 2D element the same
number of nodes is used, and the 1× 1 and 16× 16-element
meshes.

The vertical displacements uy at point A obtained in the
linear analysis are presented inTable 4. The relative errors [in
%] are also provided. All the tested solid-shell elements per-
form identically for thefine 32×32-elementmesh.Regarding
the coarse 2 × 2-element mesh, our elements based on the
reduced representations and the skew coordinates (HW35,
HW27 and HW19) are the most accurate ones but the differ-
ence between them and the other elements is small.

5.2.4 Two-element distortion test

This test is used to verify either the in-plane part or
the through-thickness part of solid-shell elements. Bending

always takes place in the X0Y plane, but the nodal “direc-
tors” are either aligned with the 0Z-axis (in-plane bending)
or parallel to the X0Y-plane (out-of-plane bending).

The cantilever ismodeled by two solid-shell elements, and
a tilt of their common side is defined by the parameter d, see
Fig. 5. The data is as follows: E = 1500, ν = 0, h = 1,
and P = 10. The nodes shown in Fig. 5 are doubled to
obtain the mesh for 8-node solid-shell elements, and the pair
of forces ±P is replaced by four forces ±P/2. Boundary
conditions are applied as described in [20].

In-plane bending In Fig. 6, the uy displacement at the
tip is shown for a varying distortion d. Up to d = 1, for
which the tilt of the common nodal “directors” is 45◦, all the
curves almost coincide. For d > 1, the curves for our HW51
and the reference EAS10 are identical, and the curves for all
our reduced representations elements (HW35, HW27B and
HW19) coincide.

Note that for larger distortions less accurate solutions are
expected, see, e.g., [1] Fig. 8 and [56] Fig. 5. Besides,
the curve for a very accurate 2D 4-node element HW14-S
[51] has a plateau for d > 1. QE2 of [34] and HR5-S
of [50] perform as HW14-S. As the curve for our reduced
representations elements is the closest to this 2D solution, it
seems to be better than the other curves.

In Fig. 6, we also show the results for two sets of trans-
formation for stress-strain: (a) CTV-CTV of Eqs. (33) and
(32) and (b) CTV-COV of Eqs. (33) and (34). For HW51,
the curves for both transformations coincide, but for the
reduced representations elements there is a significant dif-
ference between them.TheCTV-CTV transformations yields
more accurate solutions, hence, they are used in our solid-
shell elements.

Out-of-plane bending InFig. 7, the uy displacement at the
tip is shown for a varying distortion d. The results obtained
without the RBF correction are presented. Our reduced rep-
resentations elements (HW35, HW27B and HW19) and the
reference EAS10, yield the analytical solution uy = 1 in
the whole range of d.

Comparing ourHW51 and the referenceHSEE, the curves
for themcoincide and the error of themgrows fast for increas-
ing d. For d = 1, i.e. for the 45◦ tilt of the common nodal
“directors”, the relative error is 8.2%. Since the thickness
strain is treated in these elements by the ANS method of
Sect. 4.1, the cause of the error is not this strain. Note that this
error is eliminated in HW35, where the ζ -dependent terms
are omitted in the assumed representations and the thickness
strain is enhanced by the EAS method.

Finally, all our elements are tested using the two sets of
transformations for the assumed stress-strain, CTV-CTV and
CTV-COV, and the curves obtained are identical.
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Table 3 Dilatation for
out-of-plane bending. Strains
and dilatation

Element ε11 |ε12| ε13 |e| Error of ε11

Tested solid-shells

HW51 − 5.000E−2 7.6E−8 9.2E−7 2.0E−10 0.00%

HW35 − 5.001E−2 1.5E−7 0.0 2.0E−10 0.02%

HW27B − 5.000E−2 1.3E−7 0.0 2.0E−10 0.00%

HW19 − 4.998E−2 2.9E−8 0.0 2.0E−10 0.04%

Ref. solid-shells

HSEE − 5.002E−2 2.7E−8 8.2E−6 2.0E−10 0.04%

EAS10 − 5.002E−2 4.2E−8 0.0 2.0E−10 0.04%

EAS10 w/o ANS of ECOV
33 [6] − 5.000E−2 5.3E−8 0.0 2.0E−10 0.00%

Ref. analytical − 5.000D−2 0.0 0.0 0.0 –

Table 4 Cook’s membrane.
Vertical displacement uy and its
relative error (in %)

Element Vertical displacement uy
Mesh 2 × 2 Mesh 32 × 32

Tested solid-shell

HW51 21.075 (− 11.49%) 23.884 (0.31%)

HW35, HW27B, HW19 21.126 (− 11.27%) 23.884 (0.31%)

Ref. solid-shell

HSEE 21.073 (− 11.49%) 23.884 (0.31%)

EAS10 21.076 (− 11.49%) 23.884 (0.31%)

Ref. 2D 4-node plane stress [51]

HW14-S 21.353 (− 10.32%) 23.940 (0.55%)

EADG4 21.050 (− 11.59%) 23.940 (0.55%)

Q4 11.845 (− 50.25%) 23.818 (0.03%)

Ref. 2D 9-node plane stress [49]

EAS11 23.862 (0.22%) 23.957 (0.62%)

MITC9i 22.265 (− 6.49%) 23.955 (0.61%)

Q9 19.644 (− 17.50%) 23.949 (0.55%)

Ref. 23.81 23.81

Fig. 5 Two-element distortion
test. Initial geometry and load
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5.2.5 Straight cantilever of trapezoidal elements

This classical test of MacNeal and Harder [29] is applied
to the transverse deformation of solid-shell elements, as e.g.
in Harnau et al. [14]. The accuracy of displacements for a
trapezoidal through-thickness shape of solid-shell elements
and the effects of theRBFcorrection of Sect. 4.3 are assessed.

The trapezoidal through-thickness shape of solid-shell
elements, see Fig. 8, is obtained by tilting the common nodal
“directors” by ± 45◦. The vertical force P = 1 is applied

at the right end, equally to the top and bottom nodes, caus-
ing out-of-plane bending and transverse shearing. The mesh
consists of 6 elements, and the aspect ratio for the rectangu-
lar elements is 5. The nodes shown in Fig. 8 are doubled
in the 0Y direction to obtain the mesh for 8-node solid-shell
elements. The boundary conditions imposed at the left end
of the cantilever eliminate the rigid body motion but enable
the deformation in the 0Y and 0Z directions.
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Fig. 7 Two-element distortion test. Out-of-plane bending

The data is as follows: E = 107, ν = 0.3, the length
L = 6, the thickness h = 0.2 and the width in the 0Y
direction w = 0.1.

The vertical displacement uz at node A is presented in
Table 5. All the tested solid-shell elements perform well
for the rectangular mesh, for which the relative errors are in
the range [− 0.76, − 0.78]% for computations without the
RBF correction and in the range [0.06–0.08]% with the RBF
correction. The RBF correction is beneficial for all tested and
reference elements.

For the trapezoidal mesh, the range of relative errors is
wider; [− 0.81, 4.67]% and [− 0.12, 5.49]% for compu-
tations without and with the RBF correction, respectively.

The effects of the RBF correction are generally positive,
except for our HW51 and the reference HSEE, for which
the accuracy worsens. Nonetheless, for these elements the
displacements are larger than the reference solution, exclud-
ing locking.

Note that all the reference 2D plane stress elements show
locking for the trapezoidal shape but to different degrees. For
the 9-node elements it is over 3 times smaller than for the 4-
node ones, for which the error exceeds − 77%. For both, the
errors are much bigger than for the solid-shell elements.

In Table 5, we also evaluate the effects of theANSmethod
for the thickness strain of Betsch and Stein [6]. Comparing
the results obtained with and without this method for the
trapezoidal mesh (the latter are designated “EAS10w/oANS
[6]”), we conclude that it reduces the relative error from −
71.5 to − 0.84% for computations without the RBF, and
from − 59.68 to − 0.15% for computations with the RBF
correction; a significant reduction indeed.

Remark The mesh of parallelogram (through-thickness)
shape elements is obtained by tilting the common nodal
“directors” by 45◦, see Fig. 8. For this mesh and compu-
tations with the RBF correction, the maximum relative error
of uz is 0.78% for HSEE and 0.5% for HW51. For the other
elements, it is much smaller. Generally, the error of parallel-
ogram shape solid-shell elements is much smaller than for
the trapezoidal shapes.

5.2.6 Curved 3D cantilever

The element’s distorted shape (Case 1, Fig. 9) and the skew
(non-parallel) nodal “directors” (Case 2, Fig. 11) affect
the accuracy of a solution, especially when the thickness
h diminishes. By the nodal “directors” we designate the
through-thickness vectors linking the corresponding bottom
and top nodes; for a single element they are shown in Fig. 1.

The curved 3D cantilever is fixed at one end and loaded
by a moment Mz at the other, see Fig. 9. The nodes shown
in this figure are doubled in the radial direction to obtain the
mesh for 8-node solid-shell elements. The external moment
is assumed as Mz = (R/h)−3, so a solution of a linear
problem should remain constant. This moment is applied to
solid-shell elements as two pairs of opposite tangent forces
P = Mz/h/2.

The data is as follows: E = 2 × 105, ν = 0, width
b = 0.025 and radius of curvature R = 0.1. The reference
analytical solution for a curved beam is

uanay = MzR2

E I
= 0.024, (79)

where I is the moment of inertia. The FE mesh consists of
6 solid-shell elements.
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Fig. 8 Straight cantilever by
trapezoidal elements. Geometry
and meshes
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Table 5 Straight cantilever of trapezoidal elements. Vertical displacement uy × 10 and its relative error (in %)

Element Rectangular mesh Trapezoidal mesh
Without RBF With RBF Without RBF With RBF

Tested solid-shells

HW51 1.0728 (− 0.76%) 1.0803 (0.06%) 1.1312 (4.64%) 1.1393 (5.39%)

HW35 1.0726 (− 0.78%) 1.0801 (0.08%) 1.0722 (− 0.81%) 1.0797 (− 0.12%)

HW27B, HW19 1.0726 (− 0.78%) 1.0801 (0.08%) 1.0719 (− 0.84%) 1.0794 (− 0.15%)

Ref. solid-shells

HSEE 1.0728 (− 0.76%) 1.0803 (0.06%) 1.1315 (4.67%) 1.1403 (5.49%)

EAS10 1.0726 (− 0.78%) 1.0801 (0.08%) 1.0719 (− 0.84%) 1.0794 (− 0.15%)

EAS10 w/o ANS [6] 1.0726 (− 0.78%) 1.0801 (0.08%) 0.3084 (− 71.5%) 0.4358 (− 59.7%)

EAS3DEAS-at [14] 1.073 (− 0.74%) – 1.072 (0.83%) –

Ref. 2D 4-node PS [51]

HW14-S, HR5-S 1.0733 (− 0.71%) 0.2408 (− 77.72%)

EADG4 1.0733 (− 0.71%) 0.2399 (− 77.81%)

PS [32] 1.0733 (− 0.71%) 0.2401 (− 77.79%)

Q4 0.1009 (− 90.7%) 0.0301 (− 97.22%)

Ref. 2D 9-node PS [49]

EAS11 1.0806 (− 0.09%) 0.8202 (− 24.13%)

MITC9i 1.0806 (− 0.09%) 0.7814 (− 27.72%)

Q9 1.0754 (− 0.52%) 0.5700 (− 47.27%)

Ref. [29] 1.081

PS - plane stress

Fig. 9 Curved 3D cantilever.
Case 1: a regular mesh and b
distorted mesh

a)
x

z

y
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Mzb
R

b)
x

z

y

A

Mz

Case 1: Regular and distorted shapes The regular and
distorted element’s shapes are shown in Fig. 9; the distor-
tion is defined as in Koschnick et al. [21] p. 2454. For the
distorted mesh, the 8-node solid-shell elements are warped
(non-planar), which makes this case very demanding and for
which the RBF correction can be beneficial.

The cantilever thickness is varied in the range h ∈
[10−2, 10−4], so the slenderness is R/h ∈ [10, 104] and

L/h ∈ 2.6 · [1, 104], where L is a circumferential length
of a single rectangular element.

The scaled displacement uy/uanay at point A obtained in
the linear analysis are shown in Fig. 10, where two sets of
results are presented, without and with the RBF correction.
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Fig. 10 Curved 3D cantilever. Case 1. Distortedmesh. Scaled displace-
ment uy at point A a without RBF, b with RBF. (HW51* for regular
mesh, without RBF)

(a) Without the RBF correction, the best accuracy provides
the reference EAS10, next are all the remaining elements,
which perform nearly identically.

(b) With the RBF correction, the best accuracy provides the
reference EAS10 and ours HW51. Next are the remain-
ing tested and reference elements, which nearly coincide.
The curves for our HW35, HW27B and HW19 almost
coincide.

For the slenderness log10(R/h) = 3, the RBF correction
significantly improves the accuracy of displacements; reduc-
ing the error from 10 to 2% for EAS10, from 30 to 5% for
our HW51 and from 30 to 10% for the remaining elements.
For log10(R/h) = 4, the accuracy is unacceptable for all
elements, without/with the RBF correction.

Case 2: Radial and skew nodal “directors” For the curved
cantilever, the nodal “directors” can be either radial or skew
(non-parallel) as shown inFig. 11 for the thickness h = 10−2

(R/h = 10). For the skew ones, the angle ϕ ≈ 35◦; it would

decrease if h were decreased further. In the circumferential
direction, the regular mesh of Fig. 9a is used.

The displacements uy at point A (node 1) obtained in
the linear analysis are shown in Table 6. The relative errors
[in %] also are presented. The most accurate is the refer-
ence EAS10, then our reduced representation HW elements
(HW19, HW27B and HW35). The latter elements perform
similarly and the RBF correction has a small negative effect
for them. ForEAS10, this effect ismore pronounced. The ele-
ments with a large number of parameters, such as our HW51
and the reference HSEE, perform worse than the other ele-
ments and effect of the RBF correction is negligible.

5.2.7 Pinched cylinder with diaphragms

The purpose of this example is to showmesh convergence for
the tested and reference HW solid-shell elements. This is one
of the most severe tests for both inextensional bending and
complex membrane states, see Belytschko et al. [4] p. 239.

A cylindrical shell is closed at both ends by rigid
diaphragms and is pinched by two opposite forces P applied
at the middle section, see Fig. 12a. The material and geom-
etry data of [4] are as follows: E = 3 × 106, ν = 0.3,
R = 300, L = 300, h = 3 and P = 1. Because of
symmetries, only one-eighth of the cylinder is analyzed, see
Fig. 12b. The mesh of N × N × 1 solid-shell elements is
used, where 1 element is used through-thickness. The num-
ber of elements per side N = 4, 8, 16, 32, 64.

The vertical displacement wFEM under load at nodeA on
the external surface is monitored, and its value obtained for
the element HW35 and N = 128 is used as wREF =
1.8757 × 10−5 to obtain the scaled displacements. The
results for various N are presented in Fig. 13; the refer-
ence curves (Ref. shell) are obtained using the 4-node shell
element HW47 with 6 dofs/node of [52] (thick broken lines).

We see that the solutions for the tested and reference
solid-shell elements almost coincide and are very close to
the reference shell solutions. The positive effects of the RBF
correction for coarse meshes are clear; the curves obtained
without the RBF correction can be compared to Fig. 13 of
[17]. For the densest mesh, the difference between the solu-
tions without and with the RBF correction becomes very
small, as expected.

The solutions obtained without the RBF correction con-
verge monotonically from below and can be used to find
the convergence rate for varying the number of elements
per side N . Because the differences between the curves
for our solid-shell HW elements are very small in Fig. 13;
we further use only HW35. The relative error is defined as
ew = |(wHW35 − wREF)|/wREF and the log10 ew is plot-
ted against log10(L/N ) in Fig. 14, where L/N is the
element’s size. Next the line is fitted to these 5 points, and
y(x) = −3.04157 + 1.51914 x is obtained. Therefore the
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Fig. 11 Curved cantilever. Case 2: a Radial and b skew nodal “directors”

Table 6 Curved cantilever. Case
2: Skew nodal “directors”.
Thickness h = 10−2.
Displacement uy × 102 at node
A and its relative error (in %)

Element Nodal “directors” Without RBF With RBF

Tested solid-shells

HW51 Radial 2.4618 (2.58%) 2.4618 (2.58%)

HW51 Skew 2.7033 (12.64%) 2.7037 (12.65%)

HW35 Skew 2.5014 (4.23%) 2.5225 (4.56 %)

HW27B Skew 2.4981 (4.09%) 2.5041 (4.34%)

HW19 Skew 2.4980 (4.08%) 2.5037 (4.32%)

Ref. solid-shells

HSEE Skew 2.7033 (12.64%) 2.7041 (12.67%)

EAS10 Skew 2.4434 (1.81%) 2.4884 (3.68%)

Ref. 2D 4-node plane stress [51]

All except Q4 Radial 2.3610 (− 1.63%) –

HW14-S, HR5-S Skew 2.3832 (− 0.70%) –

EADG4 Skew 2.2830 (− 4.88%) –

PS [32] Skew 2.3086 (− 3.81%) –

Q4 Skew 0.1439 (− 94.00%) –

Ref. [29] Radial 2.4000

rate of convergence is 1.51914, which compares favorably
with the rate for shell elements.

5.3 Non-linear tests

5.3.1 Roll-up of a clamped beam

This is a standard test to verify finite rotation procedures for
beams and shells, but here it is used to asses the quality of
solid-shell elements in pure bending.

The planar straight beam is clamped at one end and loaded
by a bending moment M at the other end, see Fig. 15a. The

nodes shown in this figure are doubled to obtain the mesh of
25 8-node solid-shell elements. The moment M is replaced
by two pairs of opposite forces ±P , which are tangent to the
free edge in the current configuration. The data is as follows:
E = 12 × 106, ν = 0, the thickness h = 0.1, the width
w = 1, the length L = 10. The RBF correction is irrelevant
to this test.

A full circle is obtained for the bending moment M∗ =
2πE I/L = 628.319. The beam’s tip displacements up to
M∗ are shown in Fig. 15b, where the displacements ux are
marked by the dashed lines, −uz by the continuous lines,
and the 2D Timoshenko beam solution by the crosses. We
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Fig. 12 Pinched cylinder with
diaphragms. a Initial geometry
and loads. bMesh for 1/8 of the
cylinder
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Fig. 13 Pinched cylinder with
diaphragms. Scaled
displacement at A for varying N
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see that the curves for all the solid-shell elements coincide
in the scale of this figure.

More precise are the values of the tip’s displacements at
M∗ given in Table 7, where also the relative error of ux [in
%] is presented. All the solid-shell elements slightly lock,
but the range of relative error is narrow [1.14–1.28]%. Least
locks the reference EAS10without the ANS for the thickness
strain of [6], as then the error is 0.41%.

5.3.2 Pinched hemispherical shell with hole

The hemispherical shell with an 18◦ hole is loaded by two
pairs of equal but opposite external forces, see Fig. 16. The
shell undergoes an almost in-extensional deformation, so a
membrane locking of a solid-shell element can be detected
by this test.

Due to the double symmetry, a quarter of the shell is
modeled. One element is used through-thickness and three
mesheswith 8×8, 16×16 and 64×64 elements over the sur-

face. The nodes shown in Fig. 16 are doubled in the thickness
direction to obtain the mesh for 8-node solid-shell elements,
which have the shape of truncated pyramids. For reference,
the 4-node and 9-node shell elements are used; for the latter
the 4 × 4, 8 × 8 and 32 × 32-element meshes are used.

The data is as follows: E = 6.825 × 107, ν = 0.3,
thickness h = 0.04 of [29]. Non-linear solutions are also
provided for a smaller thickness h = 0.01, for which the
elements are more prone to locking.

The results of linear analyses for the thickness h = 0.04
are given in Table 8, where the inward displacement uy

under the force P = 1 at the inner node is reported.
In general, the RBF correction renders that the displace-

ments are larger than without using it. The relative error is
reported for the 64 × 64-element mesh and the RBF correc-
tion reduces its range from [− 0.47, − 0.48]% to [− 0.27,
− 0.28]%, so this correction is beneficial. Besides, it causes
that all the solid-shell elements converge from above for the
increasing mesh density.
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Fig. 14 Pinched cylinder with diaphragms. Log–log diagram and con-
vergence rate

The non-linear analyses are performed using the Newton
method and the solution curves for the 16×16-element mesh

Table 7 Roll-up of a beam. Displacements of the tip at M∗ and relative
error of ux

Element ux uz Error of ux

Tested solid-shell

HW51 − 9.8796 − 0.0047 − 1.20%

HW35 − 9.8796 − 0.0047 − 1.20%

HW27B − 9.8796 − 0.0050 − 1.20%

HW19 − 9.8787 − 0.0000 − 1.21%

Ref. solid-shell

HSEE − 9.8717 − 0.0051 − 1.28%

EAS10 − 9.8862 − 0.0042 − 1.14%

EAS10 w/o ANS [6] − 10.041 − 0.0024 0.41%

Ref. 4-node shell 6 dofs/node

HW47, HW29, EADG4 − 10.005 − 0.000007 0.05%

Analytical − 10.000 0.0000 –

are shown in Fig. 17. The curves computed without the RBF
correction are indicated by thin continuous lines, and these

Fig. 15 Roll-up of a beam. a
Initial (straight) and final
(circular) geometry. b
Displacements of beam’s tip for
rolling up into a circle
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Fig. 16 Pinched hemispherical
shell with hole. a Geometry and
boundary conditions. b
Deformed shape
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Table 8 Pinched hemispherical
shell with hole. h = 0.04. Linear
analysis without and with RBF
correction for various meshes

Element RBF Displacement −uy × 100 Error (%)
correction 8 × 8 16 × 16 64 × 64 64 × 64

Tested solid-shell

HW51 No 9.4552 9.3525 9.3557 − 0.47

HW35 No 9.4304 9.3445 9.3548 − 0.48

HW27B No 9.4303 9.3445 9.3548 − 0.48

HW19 No 9.4306 9.3446 9.3548 − 0.48

HW51 Yes 9.5834 9.4273 9.3746 − 0.27

HW35 Yes 9.5586 9.4190 9.3737 − 0.28

HW27B Yes 9.5587 9.4193 9.3738 − 0.28

HW19 Yes 9.5587 9.4194 9.3737 − 0.28

Ref. solid-shell

HSEE No 9.4505 9.3511 9.3555 − 0.47

EAS10 No 9.4306 9.3446 9.3548 − 0.48

HSEE Yes 9.5788 9.4256 9.3745 − 0.27

EAS10 Yes 9.6744 9.4326 9.3738 − 0.28

Ref. 4-node shell, 6 dofs/node [52]

HW47 Yes 9.3824 9.3839 9.3714 − 0.30

HW29 Yes 9.3585 9.3761 9.3707 − 0.31

EADG5A, EADG4 Yes 9.3585 9.3761 9.3707 − 0.31

Ref. 9-node shell, 6 dofs/node

MITC9i [53] No 9.4718 9.3733 9.3623 − 0.40

EAS11/ANS 2 × 3 for transv. shear [54] No 9.5248 9.3825 9.3624 − 0.40

MITC9i/ANS 2 × 3 for transv. shear [55] No 9.5060 9.3762 9.3620 − 0.40

Ref. 8-node 3D, 3 dofs/node

3D.HW51* (as B8-15P in [46]) – 6.9776 9.2594 9.3545 − 0.48

3D.EAS-30* [1] – 6.9776 9.2594 9.3545 − 0.48

TSCG12 (2 × 2 × 2 GP) [23] – 4.5510 8.8978 9.3546 − 0.48

Ref. [29] 9.4000

[ ]* our implementation

computedwith this correction by thin dashed lines. The refer-
ence curve is obtained using the 4-node shell element HW47
with 6 dofs/node of [52] (thick continuous line).

The solution curves coincide for all solid-shell elements
in the whole range of load. They exactly follow the reference
curve up to a certain level from which they start departing
from it. Then the displacements become slightly either exces-
sive or locked. It depends on whether the RBF correction is
used or not.

We also include non-linear solution curves for the smaller
thickness h = 0.01, see Fig. 17. Comparing Figs. 17 and 18,
we see that the RBF correction is certainly more beneficial
for the smaller thickness h = 0.01.

One-step non-linear test An overall effectiveness of a
finite element in non-linear analyses depends not only on
the time of a single Newton iteration but also on the radius
of convergence and the rate of convergence, which can be
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Fig. 18 Pinched hemispherical shell with hole. h = 0.01. Non-linear solutions obtained with and without the RBF correction
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Table 9 Pinched hemispherical
shell with hole. h = 0.01.
One-step non-linear test

Element HW51 HW35 HW27B HW19 HSEE EAS10

Without RBF

Max �P 3.5 3.5 0.4 0.5 4.4 0.4

No. of iterations 11 11 25 24 14 28

With RBF

Max �P 4.0 4.0 1.2 1.4 4.1 0.3

No. of iterations 13 17 30 37 13 20

characterized by the maximum �P for which the Newton
method converges and the number of iterations required.

This test is performed for the pinched hemisphere of h =
0.01 and the 16× 16-element mesh. The maximum load for
which the Newton method converges is found for each solid-
shell element separately, increasing �P by 0.1. The results
obtained without and with the RBF correction are presented
in Table 9.

We see that the HW elements with a large number of
parameters, such as the reference HSEE (43 p) and ours
HW51 and HW35, converge for bigger max�P and
require less iterations. Those with less parameters, such as
our HW27B and HW19, converge for a smaller max�P .
For them the RBF correction is particularly beneficial. The
reference EAS10 requires the smallest max�P and the
RBF correction does not improve this.

Comparing the performance of our reduced representation
HW elements, we draw the following conclusions:

1. Our HW51 and HW35 perform similarly, but HW35 uses
less parameters. HW27B and HW19 perform likewise,
hence the assumed transverse shear stress and strain (S0aα3
and E0a

α3), which are used in HW27B but not in HW19,
are not required.

2. Another formulation with 27 parameters has been tested,
in which the assumed thickness stress and strain (S0a33 and
E0a
33 ) are retained and the assumed transverse shear stress

and strain (S0aα3 and E0a
α3) are omitted. Such an element

performed worse than HW19, especially without the RBF
correction.

5.3.3 Twisted beam

This test belongs is from MacNeal and Harder [29]. The
initial geometry of the beam is twisted so all the elements
are warped (non-flat), but the initial strain is equal to zero.
The beam is clamped at one end and loaded by a force Py at
the other, see Fig. 19. The data is as follows: E = 2.9×107,
ν = 0.22, the length L = 12, the width w = 1.1 and the
twist angle is 90◦.

In our computations, the 4 × 24-element mesh of the 8-
node solid-shell elements and a small thickness h = 0.0032

are used. One element is used through thickness. For the
reference shell elements, the 4 × 24-element mesh is used
for the 4-node HW47 and the 2×12-element mesh for the 9-
node MITC9i. This example is also computed without/with
the RBF correction.

The results of the linear analysis for Py = 1 × 10−6

are shown in Table 10, where the uy × 103 displacement
at point A and its relative error are given. Without the RBF
correction, our HW35 and HW27B are the most accurate,
next are the reference elements EAS10 andHSEE, andfinally
HW51. The relative errors are in the range [0.07, − 0.46]%.
With the RBF correction, the most accurate is the reference
EAS10, next ours HW27B and HW19, then our HW51 and
HW35 and the reference HSEE. The relative errors are in
the range [0.10, − 0.67]%.

Thenon-linear load-deflection curves obtained for �Py =
1 × 10−4 by the arc-length method are shown in Fig. 20,
and the displacement uy at point A is monitored. Without
the RBF correction, the curves for all tested and reference
elements coincide. With the RBF correction, all the curves
except this for EAS10 coincide, and are slightly ‘softer’ than
those obtained without the RBF correction. The softest is
the reference EAS10, for which the solution curve coincides
with that for the reference 4-node HW47.

Summarizing, the beam is extremely thin but the results
are not corrupted by the membrane locking and are close to
the reference ones.

5.3.4 Short C-beam

This example includes the right angle intersections of ele-
ments and is typically used to test shell elements with 3
rotational dofs/node, see [9]. It is useful also for solid-shell
elements because of the through-thickness element’s shapes,
for which the nodal “directors” are skew (non-parallel), see
Fig. 21b.

The beam is fully clamped at one end and loaded by two
vertical forces P/2 at the other end, see Fig. 21a, b. The
data is as follows: E = 107, ν = 0.333, the length L = 36,
the thickness h = 0.05. The web is modeled by 36 × 6
elements and each flange by 36 × 2 elements, so the total
number of elements is 360. The vertical displacement uz is

123



Computational Mechanics

a)

Py

A
X

h
Y

Z

0
fixed

b) Y

Z

X 0

Py

A

Fig. 19 Twisted beam. a Initial mesh and load. b Deformed mesh at Py = 0.1

Table 10 Twisted beam. Linear results for out-of-plane load

Element Without RBF correction With RBF correction
uy × 103 Error (%) uy × 103 Error (%)

Tested solid-shell

HW51 1.2881 − 0.46 1.2964 0.19

HW35 1.2949 0.07 1.2871 − 0.53

HW27B 1.2927 − 0.10 1.2920 − 0.15

HW19 1.2900 − 0.31 1.2918 − 0.17

Ref. solid-shell

HSEE 1.2915 − 0.19 1.2853 − 0.67

EAS10 1.2918 − 0.17 1.2953 0.10

Ref. shell 6 dofs/node

4n HW47 1.2877 − 0.49 1.2895 − 0.35

9n MITC9i 1.2948 0.06 1.2965 0.19

Ref. [29] 1.2940 – – –

monitored at point A, between the nodes to which the forces
P/2 are applied.

The linear reference solution uz = 1.1544 × 103 is
computed using the 16-node shell element in [10]. This value
is confirmed by our results of Table 11, where the error is:
(a) 0.1% or less for 4-node and 9-node shell elements, and
(b) 0.24% for the 3D 8-node element and a dense mesh of
23040 elements, i.e. for the mesh density multiplier equal to
4, also through-thickness.

The linear solutions for P = 1 and the mesh of 360
elements are given in Table 11, where the displacement
−uz × 103 and its relative error are shown. Without the
RBF correction, the range of relative errors is [2.08, 3.35]%
while with this correction [3.19, 3.46]%. Our HW19 is the

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5 6

P y

−uy

HW51
HW35
HW27B
HW19
HSEE
EAS10
4n HW47 RBF
HW51 RBF
HW35 RBF
HW27B RBF
HW19 RBF
HSEE RBF
EAS10 RBF

without RBF

with RBFRef.

Fig. 20 Twisted beam. Out-of-plane load. Comparison of non-linear
solutions

most accurate of the solid-shell elements, but the reference
shell elements with 6 dofs/node are more accurate.

The non-linear solutions for the 360-element mesh are
computed using the arc-lengthmethodwith the initial �P =
5, see Fig. 22. The reference curve is obtained using the
4-node shell element HW47 of [52] (thick continuous line).
The solution curves for the solid-shell elements with the RBF
correction almost coincide and are slightlymore stiff than the
reference curve. The solution curve for the 3D 8-node solid
element specified in Table 11 and the 360-element mesh
(dotted line) is stiff.
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Fig. 21 Short C-beam. a Initial
geometry and load. b Shape of
elements in cross-section Y0Z
(thickness not to scale). c
Deformed configuration at force
P = 112
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Table 11 Short C-beam. Linear
solutions for 360-element mesh

Element Without RBF correction With RBF correction

−uz × 103 Error (%) −uz × 103 Error (%)

Tested solid-shell

HW51 1.1927 3.32 1.1940 3.43

HW35 1.1891 3.00 1.1927 3.32

HW27B 1.1890 3.00 1.1930 3.34

HW19 1.1784 2.08 1.1912 3.19

Ref. solid-shell

HSEE 1.1931 3.35 1.1944 3.46

EAS10 1.1922 3.27 1.1926 3.31

Ref. shell 6 dofs/node

4n HW47 (360 elmts) 1.1532 − 0.10 1.1537 − 0.06

9n MITC9i (90 elmts) 1.1550 − 0.06 1.1556 − 0.10

Ref. 3D 8-node solid

TSCG12 2 × 2 × 2 GPts [23] 1.1885 2.95 – –

Ref. [10] 1.1544 – – –

It was also verified that the curves for HW51 and the two
sets of transformation for the assumed stress/strain: (a) CTV-
CTV of Eqs. (33) and (32) and (b) CTV-COV of Eqs. (33)
and (34), coincide.

5.3.5 L-shaped plate

The purpose of this non-linear test is to characterize the con-
vergence of the solid-shell elements by comparing the last
solution points reached in 10 steps.

The L-shaped plate is clamped at one end and the in-plane
force P is applied at the other end. The data is as follows:
E = 71240, ν = 0.31, w = 30, L = 240, and the
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Fig. 22 Short C-beam. Non-linear solutions obtained with the RBF
correction for the 360-element mesh

thickness h = 0.6, see [3]. A mesh of 64 square elements
of size 15 × 15 is used and two forces P/2 are applied to
the top and bottom nodes to replace the force P , see Fig. 23.
The RBF correction of Sect. 4.3 is used.

The deformation associatedwith the primary solution path
takes place in the X0Y plane and has a bifurcation point at
which an out-of-plane deformation occurs. We add a small
out-of-plane load Pz at point B to initiate this deformation.
(More details related to a precise estimation of the bifurcation
load are given in [48] p. 440.) The equilibrium problem is
solved using the arc-length method for the prescribed initial
load increment �P and the requested number of iterations
per step Ireq . The arc-length is modified at the beginning of
each load step using the scaling parameter

s
.=

√

Ireq
Iprev

, (80)

where Iprev is the number of iterations in the previous
(convergent) load step.

First, the non-linear solutions for all the tested and refer-
ence solid-shell elements are computed and they coincide
with the reference curve (Ref.), obtained for the 4-node
shell element HW47. Next, 10 steps are performed using
the arc-length method for �P = 0.5, P3 = P/1000, and
Ireq = 25. In Fig. 24, the final solution points for partic-
ular elements are indicated. Two elements, our HW51 and
the reference HSEE, cover the longest distance in 9 steps
but diverge in the 10th step. In 10 steps, the longest distance
covers our HW35, then our HW27B and HW19, and finally
the reference EAS10.

5.3.6 Compression of a nearly-incompressible block

For the enhanced low-order solid elements and nearly incom-
pressible materials, the hourglassing (zero-energy) modes
can occur for large compressive (uniform) strains, see, e.g.,
[11,13,23,24,58,59]. It is important to check this aspect for
2D 4-node plane strain elements and 3D 8-node solid ele-
ments as it indicates an instability of their formulation.

For the solid-shell elements, hourglassing does not seem to
be recognized as a problem and, e.g. in [15], which deals with
nearly-incompressible materials, this issue is not addressed.
This can be explained by the fact that the solid-shell elements
are mainly applied to shell structures, in which large com-
pressive strains are prevented by design to avoid the loss of
structural stability.

The purpose of this test is to establish whether hourglass-
ing appears or not in our solid-shell HWelements and for this
purpose we find the first zero eigenvalue and the associated
eigenvector of their tangent matrix. Two orientations of the
solid-shell elements are checked so they are compressed in
either their in-plane or normal (through thickness) direction.

a)

B

P

L

L

w

X

Z
Y

b) P
X Y

Z

Fig. 23 L-shaped plate. a Initial geometry. b Deformed geometry. Note: P is applied as two forces P/2
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Fig. 24 L-shaped plate.
Non-linear solution. 10 steps
with Ireq = 25
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Fig. 25 Compression of nearly-incompressible block. Problem defini-
tion

The block of size 1 × 1 × 1 is modeled by a mesh of
10×10×1 elements, see Fig. 25, where one element is used
in the thickness direction (normal to the plane of figure).
The block is supported in the vertical direction at the bottom
and vertically compressed by a sequence of increments of
displacement �v = 0.001 applied at the top. The Newton
method is used to solve the equilibrium equations for each
increment and 10 lowest eigenvalues of the tangent stiffness
matrix are computed at the converged configurations using
ARPACK. For the lowest eigenvalue equal to zero, the cor-
responding scaled eigenvector is plotted, so it can be seen
directly whether hourglassing appears.

The modified neo-Hookean hyper-elastic material model
is used, with the strain energy function W defined in terms

of the volumetric/deviatoric split of the deformation gradient
F,

W = μ

2

(

J−2/3trC − 3
)

+ K

β2

(

J−β − 1 + β ln J
)

, (81)

where C = FTF is the right Cauchy–Green deformation
tensor and J = det F. The material constants are as follows:
the shear modulus μ = 20, the bulk modulus K = 4 ×
105 and the dimensionless parameter β = −2. The RBF
correction of Sect. 4.3 is not used and the shear correction
factor k = 1.

The obtained critical strains for all the tested and refer-
ence solid-shell elements are given in Table 12. The reduced
representation elements and the reference elements behave
similarly and display hourglassing at the first (lowest) zero
eigenvalue. The HW51 behaves differently; the zero eigen-
values appear at lower strains (two of them are reported)
but there is no hourglassing for the in-plane compression.
Nonetheless hourglassing appears for the normal compres-
sion of HW51.

For reference, this example is also computed using two 3D
8-node solid elements; our mGu-EADG12B and TSCG12 of
[23], both integrated using the 2 × 2 × 2 Gauss rule. Our
element uses the mean gradient of displacements (mGu), the
γ -vectors and the Enhanced Assumed Displacement Gradi-
ent (EADG12B) with 12 parameters. It is slightly faster than
TSCG12 but less accurate. Both these elements, are suitable
for the material of Eq. (81).

The two lowest eigenvalues of the solid-shell element
HW35 and the reference 3D solid elements are shown in
Fig. 26. Interesting is the difference between the curves for
the normal and in-plane compression of HW35 (thick lines),
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Table 12 Compression of a
nearly-incompressible block.
Critical strains and hourglassing
for solid-shell elements

Element In-plane compression Normal compression
Critical strain Hourglassing Critical strain Hourglassing

Tested solid-shells

HW51 0.29666/0.309098 No/no 0.373864 Yes

HW35 0.372999 Yes 0.115029 Yes

HW27B 0.372999 Yes 0.115029 Yes

HW19 0.416102 Yes 0.116773 Yes

Ref. solid-shells

HSEE 0.372999 Yes 0.107387 Yes

EAS10 0.416069 Yes 0.114029 Yes

Fig. 26 Compression of a nearly-incompressible block. First eigen-
values for the solid-shell element HW35 and two 3D solid elements
mGu-EADG12B and TSCG12

which is a result of using the techniques of Sect. 4 and char-
acteristic for solid-shell elements. Note that the curves for
HW35 and 3D mGu-EADG12B coincide while the curves
for 3D TSCG12 are different.

To detect hourglassing at the first zero eigenvalues, scaled
eigenvectors are superimposed on the deformed configura-
tion, see Fig. 27 for the in-plane compression. TheHW35 and
our 3D mGu-EADG12B display similar hourglassing while
no hourglassing appears for the 3D TSCG12.

Finally, the reduced representation solid-shell HW ele-
ments show hourglassing at the first zero eigenvalue but it
appears at the large strain equal to 0.37 for the in-plane
compression. This is the level of strain for which the shell
structures are unlikely to be designed.

5.4 Summary of results related to the RBF correction

The RBF correction was implemented to enhance the ele-
ments’ behavior in sinusoidal bending and for significant
elements’ thinness. It was tested on several linear and non-
linear examples, the results of which are summarized below.

1. Straight cantilever of trapezoidal elements of Sect. 5.2.5.
For the rectangular mesh, all elements show a small
improvement when the RBF correction is used. For the
trapezoidal mesh, the errors of the reduced representa-
tion HW elements are diminished. The errors of HW51
and the reference HSSE are the largest; for the RBF cor-
rection they slightly increase to exceed 5%.

2. Curved 3D cantilever of Sect. 5.2.6. Case 1 with warped
elements. For the slenderness log10(R/h) = 3, the RBF
correction significantly improves the accuracy, reducing
the error from 10 to 2% for EAS10, from 30 to 5% for
HW51 and from 30 to 10% for the reduced representa-
tion HW elements and the reference HSEE, see Fig. 10.
Case 2 with skew nodal “directors”. All the reduced rep-
resentationHW elements perform similarly, and the RBF
correction has a small negative effect on them. HW51 and
the reference HSSE yield excessive displacements of an
over 12% error, which remains practically unchanged by
the RBF correction.

3. Pinched hemisphere with hole of Sect. 5.3.2. In the lin-
ear test, the RBF correction reduces the relative errors
and they are smaller than 0.48% for the dense mesh, see
Table 8. In the nonlinear test, all the elements perform
almost identically. The solution curves follow the refer-
ence curve up to a certain load, and then gradually depart
from it. The displacements obtained with the RBF cor-
rection are slightly excessive for the thickness h = 0.04
and more exact for h = 0.01, see Figs. 17 and 18. In the
one-step non-linear test, theRBFcorrection is particularly
beneficial for the reduced representation HW elements,
and they all have a much bigger radius of convergence
than the reference EAS10, see Table 9.

123



Computational Mechanics

4. Twisted beam of Sect. 5.3.3. In the linear test, the errors are
smaller than 0.67%, and the effects of the RBF correction
are ambiguous (positive or negative), see Table 10. In
the non-linear test without/with the RBF correction, the
curves for all HW elements coincide, and these obtained
with theRBF correction are slightly ‘softer’. The softest is
the referenceEAS10,which exactlymatches the reference
4-node HW47, see Fig. 20.

5. Short C-beam of Sect. 5.3.4. In the linear test with-
out the RBF correction, the errors are below 3.35%,
which slightly increases to 3.46% when this correction
is applied. All HW elements perform well, and HW19 is
the most accurate, see Table 11. In the non-linear test, the
solution curves obtained with the RBF nearly coincide for
all elements, and are slightly more stiff than the reference
curve.

6. L-shaped plate of Sect. 5.3.5. In this non-linear test, the
solution curves are obtained with the RBF correction and
they coincide for all elements. Among the reduced repre-
sentationHWelements, the biggest radius of convergence
has HW35, then HW27B and HW19, see Fig. 24;

In conclusion, we see that the performance of the reduced
representation HW elements is in the majority of tests
improved by the RBF correction. The radius of convergence
is definitely improved, and is larger than the one of the ref-
erence element EAS10.

6 Final remarks

The paper concerns the development of eight-node Hu–
Washizu (HW) solid-shell elements,with particular emphasis
on the reduction of the number of internal parameters. Four
HW elements are developed and tested. They have correct
rank, pass the membrane and bending patch tests and are

free from the curvature thickness, transverse shear and vol-
umetric locking.

1. At the outset, an element based on a 51-parameter
representation of the assumed stress/strain (HW51) is
developed, next also three others (HW35, HW27B and
HW19) using the reduced representationswith 35, 27 and
19 parameters, respectively, including 3 parameters of the
EAS enhancements of the thickness strain. (43 parame-
ters are used in the reference HSEE element [20].) The
latter two elements are based on the so-called partial HW
functionals, which differs from the approach used in other
papers, where the HW functional is needed for all strain
components.

2. All the reduced representationsof the assumed stress/strain
are ζ -independent, where ζ is the thickness coordinate,
with the skew coordinates in the in-plane (11, 22 and 12)
components. The assumed stress/strain representations
involve respectively 13/19, 9/15 and 5/11 parameters,
which is a reduction from 18/33 parameters of HW51.

3. For the elements based on the reduced representations, the
transformations used for the assumed stress/strain have
a significant effect for distorted shapes, see Fig. 6. The
contravariant (CTV-CTV) transformations yield more
accurate solutions for such elements and, therefore, are
applied to all of them. The transformation operators TS

and TE are computed at the element center and at the
reference surface (ζ = 0), which is slightly different than
in the HSEE element, see Sect. 3.4.2.

4. An interesting outcome of the paper is that the elements
with a larger number of parameters, such asHW51 and the
referenceHSEE (43 p), are less accurate than the elements
with the reduced representations for trapezoidal through-
thickness shapes of elements, see Fig. 7, and Tables 5 and
6. This feature provides a strong argument for using the
reduced representation elements.

Fig. 27 Compressionof a nearly-incompressible block.Eigenvectors superimposedon the configuration corresponding to the lowest zero eigenvalue:
a Solid-shell HW35 (in-plane compression) and 3D mGu-EADG12B. b 3D TSCG12
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5. The convergence properties of the reduced representation
elements indicate thatHW35has a larger radius of conver-
gence than HW27B and HW19, see Sect. 5.3.2 (Table 9)
and Sect. 5.3.5 (Fig. 24). The elements with a large num-
ber of parameters HW51 and the reference HSEE (43p)
converge only slightly better. All HW elements converge
much better than the enhanced strain element EAS10.

6. By comparing the reduced representation HW elements
with each other, we obtain that they are nearly equally
accurate in the linear tests of Sects. 5.2.3, 5.2.4, 5.2.5
and 5.2.6. In non-linear tests, they perform similarly in
Sects. 5.3.1, 5.3.2, 5.3.3, 5.3.4 and 5.3.5, while small dif-
ferences are visible in Sects. 5.3.3 and 5.3.4. Hence,
considering accuracy, some parameters of the richer
assumed representations can be considered as redundant.

In summary, the developed HW elements with the reduced
representations of the assumed stress/strain perform very
well, especially for trapezoidal through-thickness shapes of
elements (skew nodal “directors”). When a large radius of
convergence is required then HW35 is advised. Otherwise,
considering efficiency, we recommend the element with the
smallest number of parameters HW19.
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9. Chróścielewski J, Makowski J, Stumpf H (1992) Genuinely resul-
tant shell finite elements accounting for geometric and material
nonlinearity. Int J Numer Methods Eng 35:63–94
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