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Abstract
Magnetorheological fluids (MRFs) are classified as intelligent materials whose rheological and mechanical properties can
be modified by interaction with an external magnetic field. These unique features allow for a controlled change of their
viscosity, which is applied in technology to build adaptive devices and effectively suppress vibrations in various mechanical
systems. In this paper, we overview and discuss our previous results regarding advances and physicochemical MRF prop-
erties in the context of broader literature. We concentrated on such properties as flow, yield strength, and viscoelastic
behavior under shearing flows. We briefly discussed continuum and discrete MRFs modeling. Since the magnetic core is
mainly based on iron or its compounds, depending on its chemical composition, morphology, stabilizing agents, and the
liquid medium’s viscosity, its rheological and micromechanical properties can be moderated. To predict the behavior of
such a fluid, it is necessary to propose and implement an appropriate model. Simple models like Bingham can consider
the quasi-static and dynamic behavior of the MRFs, while discrete models are applied to the development and implemen-
tation of the MRF control algorithms. Thus, analytical and numerical simulation compromise the accuracy, quantity of
considered phenomena, and computational cost.
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1. Introduction

Magnetorheological Fluids (MRF) belong to one of
the most functional materials, which are determined as
fluids fast change in a few milliseconds, the rheological
and micromechanical properties under the application
of the external excitation in the form of the magnetic
or electrical field (Acharya et al., 2021; Jaafar et al.,
2021). For that reason, they are also classified as
smart/intelligent materials. Magnetorheological Fluids
are non-colloidal suspensions of micron-sized magneti-
cally polarizable particles in the carrier fluid (Rabinow,
1948a, 1948b), where the carrier fluid is a non-magnetic
component, mainly oils. Depending on the application,
the temperature range of MRFs operation is 240�C to
150�C. In the absence of external excitation (so-called
‘‘off’’ state), their nature is similar to known liquids,
and their viscosity remains in the range of 0.1–1.0 Pa s
(Bell et al., 2007). When an external magnetic or elec-
tric field is applied (so-called ‘‘on’’ state), their apparent

viscosity begins to increase. The MRF magnetic
response is based on this viscosity change under the
external field through the formation of the chain-like
structure (Ashour et al., 1996). In this case, fluid starts
to behave quasi-statically as solid-like structures of
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fibril shapes. It is caused by the inter-particle dipole-
dipole interactions (attractions) between particles par-
allel to the applied magnetic field, where along with the
change of the direction of the magnetic field, the direc-
tion of the chain-like structures changes.

In recent decades, considerable effort has been made
to model the Magnetorheological Fluids, particularly
in the context of yield stress regarding as the most
important parameter of MRFs strongly depends on the
applied magnetic field and volume fraction of the mag-
netic nanoparticles (Khajehsaeid et al., 2022). There are
several models proposed for the determination of the
dependency of the MRF’s yield stress on their above-
mentioned parameters—magnetic field and volume
fraction of magnetic particles. Claracq et al. (2004) pro-
posed based on their experiments the exponent 1.5
dependencies between the yield shear stress ty and the
strength of the applied magnetic field H

ty}
ffiffiffiffiffiffi
H3
p

ð1Þ

In turn, in Vereda et al. (2011) the equation for deter-
mination of the yield stress ty depending on the particle
magnetization Mp and particle fraction j as follows

ty=2:193 10
3f Mp

� �
ð2Þ

was proposed.
There are several studies on the dependency of the

yield stress ty on the particle fraction j and the strength
of the applied magnetic field H (Bossis et al., 2002), and
based on their results the general formula can be writ-
ten (Khajehsaeid et al., 2022):

ty}fnHm ð3Þ

where:

� there is a linear dependency for particle volume
fraction n = 1;

� m = 0 means that the saturation magnetization
is achieved and the value of yield stress does not
change with the applied magnetic field;

m=2 and m3/2 are applied for linear magnetic materi-
als at low and intermediate magnetic fields respectively
(Khajehsaeid et al., 2022).

In Rosensweig (1995) the static stress is described by
a mean-field continuum model. In Bossis et al. (1997)
the yield stress of an MRF based on a mesoscopic
description of the organized microscopic structures is
calculated. Jolly et al. (1996) have improved a quasi-
static, one-dimensional model, while in Ginder et al.
(1996) the nonlinearity effect was included in the
descriptions of magnetization and the field distribution
of chain-like structures. It is known that without the
magnetic field, they behave often like Newtonian fluid
(Bica, 2006) while in the presence of an external mag-
netic field MRF can turn into non-Newtonian fluid
(Kumar et al., 2022). The strength of the chain-like
structures increases with the rise of the magnetic field
just within milliseconds leading to increased viscosity
due to the formation of chain-like structures, see
Figure 1.

Under the adjusted magnetic field, the viscosity can
be increased many times with stable shear resistance
(An et al., 2017; Susan-Resiga et al., 2012). The same
behavior is observed for the shear stress of MRF that
increases with the applied external magnetic field until
becoming field-independent. MRF is usually made of
ferromagnetic, ferrimagnetic, or superparamagnetic
colloidal suspension dispersed in liquid media like oil
(Elizabeth Premalatha et al., 2012; Galindo-Gonzalez
et al., 2016; Jinaga et al., 2019; Zhu et al., 2019), so the
magnetic properties of the MRF depend on magnetiza-
tion. Although MRF reveals the ability to respond rap-
idly to the magnetic field, they tend to sediment,
decreasing their long-term stability (Park et al., 2009;
Prajapati and Lakdawala, 2022; Wereley et al., 2006).
For that reason, much progress has been made toward
improving the stability of the MRF, including fluids
differing from iron particles-based have been investi-
gated (Guo et al., 2018; Seo et al., 2016).

According to unusual properties, Magnetorheological
Fluids are widely applied in different branches of indus-
try (Ahamed et al., 2018), in particular in many

Figure 1. Magnetic particles ion MRF: (a) without the magnetic field and (b) under the magnetic field (H).
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commercial devices, especially operating on the LORD
Corporation’s MR fluids (Ashtiani and Hashemabadi,
2015; Dyniewicz et al., 2014; Kciuk and Turczyn, 2006;
Mangal and Kumar, 2015). Most of the applications are
based on mechanical devices like clutches (Johnston
et al., 1998; Olszak et al., 2019), seals (Zhou et al., 2020),
shock absorbers, (Deng et al., 2019; Yoon et al., 2020;
Zhong et al., 2020), vibration dampers (Carlson and
Charzan, 1994; Wang et al., 2018; Wei et al., 2020;
Yuan et al., 2019), valves (Hu et al., 2019), brakes (Wu
et al., 2018; Zhu and Geng, 2018), or even seismic vibra-
tion dampers (Caterino et al., 2022; Christie et al., 2019;
Gordaninejad et al., 2002; Jung et al., 2003; Li et al.,
2007; Liu et al., 2001, 2005; Zareie et al., 2022) to reduce
different vibrations. They offer quiet, rapid-response,
and simple interfaces between the mechanical and elec-
tronic systems used for mechanical energy dissipation.
MRF is also applied in the adoption of earthquake miti-
gation in civil engineering (Hamidia et al., 2022; Kurata
et al., 1998; Xu and Guo, 2008; Xu et al., 2013). As the
MRF is placed in the shear-valve mode dampers fast-
dynamic energy dissipation is possible with the low
power requirements. Another, the application field is
connected with physical security in the form of body
armor (Kang et al., 2015). An interesting MRF applica-
tion in the medical sector as a single-port laparoscopic
surgery was shown (El Wahed, 2020).

In this paper, we overview experimental results
regarding advances and physicochemical MRF proper-
ties like flow, yielding, and viscoelastic behavior under
shearing flows. We also briefly discuss continuum and
discrete MRF modeling. Particular emphasis was
placed on new measurement techniques that enable the
measurement of the properties of MRFs and theoretical
models. The paper is organized as follows. In Section 2,
we briefly review the micromechanical properties of the
Magnetorheological Fluids. In Section 3, we present
different MRFs chemical compositions, including stabi-
lization and tribological properties. Section 4 contains
the measurement techniques of the MRFs rheological
and micromechanical properties like magnetorheome-
try and split-Hopkinson pressure bar. In Section 5 we
consider several continuums, and discrete MRF model-
ing approaches. Section 6 includes plans and the final
remarks.

2. Micromechanical properties

Several factors influence the Magnetorheological
Fluids’ rheological properties, that is external factors
(shear flow, temperature, compression, magnetic fields,
and boundary conditions) (Hemmatian et al., 2020; Li
et al., 2002; Pei and Peng, 2021) and intrinsic factors
(properties of the magnetic particles, viscosity of the
carrier fluid, and type of additives) (Jung et al., 2016;

Zhang et al., 2021), see Figure 2. Thus, MRFs can be
characterized by several micromechanical properties,
including flow, yield strength, viscoelastic behavior
under shearing flows (de Vicente et al., 2010). One of
the most important MRF properties is yield strength
(also called yield stress), which is the minimum stress
value required to start the flow. It is proportional to the
force required to break up field-induced structures, that
is particle chains. Typical commercially available MRF
yield strength varies in the range of 0–100 kPa (Wang
and Meng, 2001). Yield strength is mainly dependent
on the volume fraction and the saturation magnetiza-
tion increasing with an increase in the magnetic field
intensity, where the average value of that parameter for
iron-based magnetic carriers is about m0Ms = 2.1 T
average (Ghaffari et al., 2015). Moreover, it is also
determined by the type of MRF stabilizer. It can be
determined experimentally, directly, or, indirectly,
including steady shear and oscillatory tests (Terkel
et al., 2022). There are three types of yield strength, that
is elastic-limit yield strength, static yield strength, and
dynamic yield strength. The first one is the maximum
shear stress that can be applied for complete recovery
after the stress has been removed. The second is the
minimum stress that will cause the fluid flow, and it is
determined by the creep test. The third one is the stress
after applying which plastic deformations and thermal
effects begin to occur in the material. It can be calcu-
lated using the models presented in Section 4.3 The
modeling of Magnetorheological Fluid. Depending on
the model the yield strength may increase linearly with
increasing volume fraction (Ginder and Davis, 1994;
Ginder et al., 1995, while at raising high volume frac-
tions, the yield stress increases exponentially (Chin
et al., 2001; Volkova et al., 1998). In turn, in Lee and
Chang (2020) the devices for MRFs shear force mea-
surement, which enables a determination of the rela-
tionship between yield stress and magnetic flux density,
were proposed. Modeling and experimental validation

Figure 2. Factors influencing the properties of the
Magnetorheological Fluids.
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of the fluid flow subjected to a magnetic field under
consideration of static and dynamic yield strength was
presented in Upadhyay and Choi (2021).

Since MRFs shear stress and viscosity depend on the
temperature, this also translates into the effectiveness of
the suspension. The shear stress increases with the mag-
netic field strength increases under the same tempera-
ture condition, while it declines with the temperature
growth under the same magnetic field strength, in par-
ticular, in the range of 240�C to 100�C (Chen et al.,
2015). In Rabbani et al. (2015) it was shown that the
maximum yield stress increased rapidly when the tem-
perature or the magnetic field strength decreased.
Moreover, the critical temperature corresponding to the
maximum dimensionless viscosity depends on the shear
rate and the magnetic field strength (Li et al., 2022).
The effect of temperature also depends on the MRF
type, some can decompose at around 100�C and others
thicken during working after high or low-temperature
cycles (Chen et al., 2015). The medium viscosity influ-
ences the sedimentation rate of the dispersed particles.
In Ruiz-López et al. (2012) it was shown that the con-
centration of the particles is significantly more impor-
tant than the viscosity of the surrounding fluid. Thus,
MRF thermal conductivity increases with the increase
of the magnetic field strength and the increase of the
percentage of particles in the total volume of the fluid
(Rahim and Ismail, 2015). The spherical shape of mag-
netic particles causes the smallest increase in thermal
conductivity (Timofeeva et al., 2009). As a conse-
quence, the replacement of spherical particles with
cylindrical particles or the introduction of a cylindrical
additive will have a positive effect on thermal conduc-
tivity. The improvement of the conductivity coefficient
with increasing thermal temperature is connected with
particle size reduction (Teng et al., 2010). On the other
hand, even a 10% rise in the volume ratio of magnetic
particles in the MRF can change the results for even
one order of magnitude of the rheological properties
(Lim et al., 2010).

3. Formulations

It is known that MRFs are composed of two phases:
solid particles that can be attracted by the magnetic
field and non-magnetizable fluid being a medium for
particles (Jaafar et al., 2021). Taking into account good
magnetic properties and tunable structures a wide vari-
ety of magnetic particles, in particular sizes in the range
from 0.1 to 20 mm, have been applied as MRFs com-
pounds (de Vicente et al., 2011; Genc, 2022). Thus, the
most preferred magnetic particle size is a range of
1–10 mm, while smaller particle sizes do not provide
sufficient yield strength, and bigger particle sizes gener-
ate problems with sedimentation (Pei and Peng, 2022).
According to the magnetic properties, the most

common magnetic particles occur in ferromagnetism,
while also superparamagnetic particles can be used
(Osial et al., 2022). In turn, fluid phases are commonly
used in silicone oils (Chae et al., 2016), mineral oils,
lubricant oil (Kim et al., 2011), vegetable oils, liquid
paraffin, petroleum, kerosene, poly-alpha olefin syn-
thetic oil, polyesters, polyethers, synthetic hydrocar-
bons, ionic liquids (Guerrero-Sanchez et al., 2007),
glycol, perfluorinated polymers, poly (phenyl ethers),
high alkylated cyclopentanes, or water (Cheng et al.,
2009. Commercial MRFs and most investigated MRFs
are based on carbonyl iron magnetic particles (CI),
with typical yield stresses of 30–60 kPa for a magnetic
induction of 0.4–0.6 T (Gorodkin et al., 2009; Guo
et al., 2018; Kciuk et al., 2009), which provides high
magnetic permeability and large saturation magnetiza-
tion (Ashtiani and Hashemabadi, 2015). Carbonyl iron
nanoparticles are mostly obtained in spherical or fiber
shapes via the thermal decomposition of iron pentacar-
bonyl compounds usually (de Vicente et al., 2011). The
spherical shape allows for reducing the wear effect on
the walls where MRFs are utilized to work. However,
the fiber-shaped CI nanoparticles exhibit higher yield
strength and low off-state viscosity (de Vicente et al.,
2011; Kumar et al., 2019; Kwon et al., 2019). The spe-
cific magnetic susceptibility of CI linearly depends on
particle size and as Gorodkin et al reported for parti-
cles in the range between 1 and 9 nm the magnetic sus-
ceptibility varied (Gorodkin et al., 2009) with the
increase of particle size. Moreover, Kim et al. (2011)
obtained viscoelastic MF fluids based on soft magnetic
CI dispersed in a polyisobutylene (PIB)/polybutene
(PB) solution known as a Boger fluid. Such prepared
MR fluid showed typical MR features and thanks to
the elastic properties of PIB/PB matrix medium exhib-
ited better sedimentation stability.

Apart from CI nanoparticles, also iron (II and III)
oxide (Fe3O4) (Choi et al., 2020; Osial et al., 2022), iron
(Fe), and Fe-based alloys like FeCo, Ni-Fe, FePt, and
iron-based composites are reported to be used in MRF.
The response of the MRF under the external magnetic
field mainly depends on the magnetic properties of the
particles, although the size and shape of particles have a
significant influence on the magnetic properties of mag-
netic particles (Gutiérrez et al., 2021).

One of the crucial MRFs issues is sedimentation due
to the density mismatch between the magnetic particles
and carrier fluid. For that reason, magnetic particles
are widely substituted with materials having a lower
density than iron particles. One of them is iron oxide in
magnetite (Fe3O4), magnetite (Fe2O3), or iron alloys
(Kim et al., 2016; Pei et al., 2019; Ruan et al., 2017).
Metal and metal oxide-based particles of that material
can be obtained with controlled shape and size within
several methods (Ashtiani and Hashemabadi, 2015;
Hilgendorff and Giersig, 2003; Rybczynski et al., 2003),
where the most common is the sol-gel method from
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solutions through gel intermediates (Chae et al., 2016)
and co-precipitation method from the solutions con-
taining the source of metal ions (Osial et al., 2022). On
the other hand, Magnetic Nanoparticles (NPs) based
on iron oxide (Fe3O4) have received considerable atten-
tion according to their excellent characteristics like rela-
tively high magnetization saturation in comparison to
the classical iron-based MRFs, and small hysteresis val-
ues (Espin et al., 2005; Rabbani et al., 2019). Despite
the wide application of micron-sized particles in classi-
cal MRF, recent studies show the high potential of
nano-sized particles in MRF preparation (Chae et al.,
2015; Saha et al., 2019; Wu et al., 2016). They can be
formed even in nanosize, have low density, and are eas-
ily functionalized and exhibited, resulting in better sta-
bility in Magnetorheological Fluids (Worden et al.,
2015). To solve the problems related to MRFs stability,
various chemical modifications were applied, for exam-
ple, Fe3O4/PMMA composite (Cao et al., 2008), which
contribute to the increase of the fluid stability and
reduction of the density of the magnetic particles. An
interesting modification is Fe3O4-modified nanoligno-
cellulose (Fe3O4/NLC) composite fiber, which offers

unique advantages such as low density, soft magnetism
property, and high specific surface (Shixu et al., 2021;
Wang et al., 2020). The summary of the MRFs chemi-
cal composition was shown in Table 1.

4. Stabilization and tribological properties

Another critical factor, which determined the MRFs
effectiveness under the application toward dynamic
energy dissipation is stability (Kumar et al., 2019; Peng
et al., 2006; Prajapati and Lakdawala, 2022). That
parameter is dependent on multiple factors and usually
decreases in function of time, and changes under the
large magnetic field-induced yield stress. Magnetic par-
ticles interact between themselves leading to the
agglomerates formation and following settlement due
to the structural reinforcement and larger dynamic
moduli with an increase of the magnetic particle con-
tent in MRF. To increase the stability several methods
are applied, including commonly applied core-shell
structures, where the functional groups present on the
surface of magnetic particles repulse particular particles
increasing the stability of MRF (Zhang et al., 2021).

Table 1. The summary of the chemical composition of the Magnetorheological Fluids.

Chemical composition of the Magnetorheological Fluids

Reference Carrier fluid Reference Magnetic particles

Chae et al. (2016), Dong et al.
(2012)

Silicone oils Bossis et al. (2016), Cheng et al.
(2009), Choi et al. (2006), Fang
et al. (2012), Gorodkin et al.
(2009), Guo et al. (2018)

Carbonyl iron

Kim et al. (2011) Mineral oils Choi et al. (2020), Kim et al.
(2016), Osial et al. (2022),
Shimada and Oka (2005)

Iron (II and III) oxide (Fe3O4)

Kim et al. (2011) Lubricant oil He et al. (2020) Fe-based alloys like FeCo, Ni-Fe,
FePt iron (Fe) iron-based
composites

Guerrero-Sanchez et al. (2007) Silicone oils
Guerrero-Sanchez et al. (2007) Vegetable oils
Guerrero-Sanchez et al. (2007) Liquid paraffin Choi et al. (2020), Kim et al.

(2016), Osial et al. (2022)
Iron (II and III) oxide (Fe3O4)

Guerrero-Sanchez et al. (2007) Petroleum Elizabeth Premalatha et al.
(2012), He et al. (2020)

Fe-based alloys like FeCo, Ni-Fe,
FePt iron (Fe)Guerrero-Sanchez et al. (2007) Kerosene

Guerrero-Sanchez et al. (2007) Poly-alpha olefin
synthetic oil

Reference Additives

Guerrero-Sanchez et al. (2007),
Park et al.
(2001), Rankin et al. (1999)

Polyesters Elizabeth Premalatha et al.
(2012)

Grease

Guerrero-Sanchez et al. (2007) Polyethers Zhang et al. (2009) Thixotropic agent emulsifiers
Tween-80Cheng et al. (2009) Synthetic

hydrocarbons
Cheng et al. (2009) Ionic liquids Zhang et al. (2009) Span-80
Cheng et al. (2009), Fang et al.
(2007, 2009)

Perfluorinated
polymers,

Single wall carbon nanotubes
(SWCNT)

Cheng et al. (2009), Lim et al.
(2004)

Poly (phenyl ethers) Zhang et al. (2009) Graphite nanofiber

Cheng et al. (2009) High alkylated
cyclopentanes

Cheng et al. (2009) Glycol
Cheng et al. (2009), Kim and
Choi (2022)

Water
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Another technique is to change the shape and size of
the particles. de Vicente et al. (2010) was shown that
rod-like magnetic particles have had a larger storage
modulus and yield strength, while flake-like particles
affect the reduction of MRFs viscosity (Laherisheth
and Upadhyay, 2017).

Magnetic particles are widely coated with surfactants
fulfilling the function of preventing their aggregation
due to magnetic interactions. In Chae et al. (2016) the
stability of the colloidal suspension is suppressed with
the treatment of iron oxide with dodecyltrimethoxysi-
lane (DTM) leading to the formation of the core-shell
Fe3O4@SiO2 particles (Chae et al., 2016). The silica-
based coating can be also formed from other precursors
like poly(trimethylsilyloxyethyl) (PHEMATMS)
(Aruna et al., 2021; Cvek et al., 2018). The addition of
surfactants reduces the interfacial tension at the mag-
netic particle-liquid medium surface and increases wett-
ability, where the surfactant contains both, the polar
and nonpolar groups (Lijesh et al., 2016; Son, 2018; Wu
et al., 2016). Besides many compounds as surfactants
mainly organic acids are used having carboxyl group
but different carbon chain lengths like citric acid, stearic
acid (Yagnasri et al., 2021), oleic acid (Charles, 2002;
López-López et al., 2005; Sarkar and Hirani, 2015), pal-
mitic acid (Ashtiani and Hashemabadi, 2015; Fonseca
et al., 2016; Rabbani et al., 2015), myristic (Ashtiani
and Hashemabadi, 2015; Carlson and Jolly, 2000), and
lauric acid (Ashtiani and Hashemabadi, 2015; Bica
et al., 2007; Carlson and Jolly, 2000; Huang et al.,
2015). Surfactants improve the interfacial activity of
magnetic particles and their dispersion. Besides organic
acids, magnetic particles are widely coated with poly-
mers. Their addition can improve the yield strength,
stability, and durability of the MRF.

Stability enhancement can be also achieved by coat-
ing magnetic particles with polymers. The literature
points out many different polymers for that purpose
including polydimethylsiloxane bis(3-aminopropyl) (Fei
et al., 2020), polystyrene (Park et al., 2001), styrene iso-
prene block copolymer, organogelatore—N,N,N$,N#$-
1,2,4,5-tetra alkyl/alkenyl pyromellitamide (PMDA-R)
with two 2-ethyl hexyls and two oleyls as branched
alkyl groups (Quan et al., 2014), poly(methyl methacry-
late) (PMMA) (Cao et al., 2008; Kaide et al., 2021),
poly(butyl acrylate) (PBA) (Jiang et al., 2010), poly
(vinyl butyral) (PVB) (Mrlik and Pavlinek, 2016), poly
(glycidyl methacrylate) (PGMA) (Cvek et al., 2015;
Kwon et al., 2019; You et al., 2007), polyimide gels
(Kim et al., 2014), polyethylene glycol (PEG) (Dong
et al., 2011; Fuchs et al., 2005; Quan et al., 2014).

In Armijo et al. (2015) the guar gum is used as a sta-
bilizer of the magnetic particles. The addition of natu-
ral polymers improved the sedimentation stability and
also strengthened the yield stress of the MR fluid (Wu
et al., 2006). Literature also refers to the high effective-
ness of that green additive (Wu et al., 2006). In Fang

et al. (2005) guar gum and xanthan gum are shown as
low-cost additives offering not only economic benefits
but also maintaining the promising performance of the
MRF that can be effectively used for engineering appli-
cations demanding controllability in operations. In
Sukhwani and Hirani (2007) xanthan gum was used as
a shell coating the carbonyl iron (CI)-based suspension
reducing the density gap between the medium oil and
dispersed particles (Sukhwani and Hirani, 2007).
Arabic gum is also proposed in the literature as an
effective stabilizer improving rheological properties
(Alghamdi et al., 2014; Kwon et al., 2019; Sim et al.,
2013).

Another group of compounds that offer enhance-
ment of the stability and performance in the magnetic
field is conducting polymers, widely used also in elec-
trorheological fluids. In Turczyn and Kciuk (2008)
polyaniline (PANI) which is a well-known electrically
conducting material is used as a coat of particles. Its
application decreases the base viscosity and has a negli-
gible influence on the MR properties under an external
magnetic field. It offers the change in the viscoelastic
properties in the small-strain oscillatory shear flow
(Kim et al., 2008; Sedlačı́k et al., 2010) proposed using
it as polyaniline (PANI)/nano-sized Fe3O4 composite,
while in 2020 (Kim et al., 2020) also presented its effec-
tiveness in the MRF. PANI is widely applied in litera-
ture for its cost-effective synthesis, good thermal
stability, and electrical conductivity (Kim et al., 2020).
In Kwon et al. (2016) the polypyrrole (PPY) was used
as a nanosized coat of magnetite, where the weight
ratio was adjusted to 5% to avoid possible deteriora-
tion of the magnetic properties of the Fe3O4 particles.
In Fang et al. (2013) poly(diphenylamine) (PDPA) is
proposed as a shell coating ZnFe2O4 toward the effec-
tive shear and dynamic response. improvement of the
dispersion stability of the MR fluid.

To increase the stability of MRF also the following
thixotropic agents can be added to the MR suspension
(de Vicente et al., 2003; Kang et al., 2015): ferrous
oleate, lithium stearate, Aerosil 200, Arsil 1 100 (Xu
et al., 2018), ferrous naphthalate or ferrous oleate,
fumed silica (Aruna et al., 2021), wormlike surfactant
micelles (Wu et al., 2006), polystyrene (Dorosti et al.,
2020; Kumbhar and Patil, 2014; Quan et al., 2014),
microcrystalline cellulose (Chuah et al., 2015), nano-
wires (Pu and Jiang, 2005), silica nanoparticles (Bae
et al., 2017) fullerene powder, carbon nanotubes, gra-
phene nanoplatelets, and others (Cvek et al., 2018).
Another way to enhance MRFs stability is applied as a
media poly(vinyl pyrrolidone) and carbon nanotubes
(Ngatu et al., 2008), ionic liquids (Pu and Jiang, 2005)
compounds like aluminum stearate (López-López et al.,
2005) tetramethylammonium hydroxide (Fonseca et al.,
2016), soy lecithin (Kolekar et al., 2019), N-glucose
ethylenediamine triacetic acid (GED3A) stearate and
oleate (Chin et al., 2001; Kolekar et al., 2019),
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emulsifiers like Tween-60, Span-60, OP emulsifier,
Tween-80, and Span-80 (Zhang et al., 2009), n-tetrade-
cyltri-ethoxysilane, diethyl-n-octyl-, and n-tetradecyl-
phos-phonates (Belyavskii et al., 2006), oleylamine (Fei
et al., 2020; Lu et al., 2016; Song et al., 2009), hydrophi-
lic carbon shell (Lu et al., 2016).

To overcome the sedimentation and agglomeration
problems graphene oxide nanoparticles (GO NPs) are
also added to the MRFs. The addition of GO NPs
improves particle dispersion and reduces MRFs’ grav-
ity (Chen et al., 2014). GO NPs exhibit similar physical
properties to CNTs however their surface area is much
larger and their production costs are lower compared
to CNTs which makes them a better additive material
for MRFs (Zhang and Choi, 2012).

The MRF is also made of composites coupling the
magnetic particles with non-magnetic materials to
improve the sedimentation stability and obvious mag-
netorheological behaviors like apparent viscosity
depending on the applied field. In Wang et al. (2021)
carbon nanotubes (CNT) are coated with iron oxide
CNT/Fe3O4 nanocomposites reducing the apparent
density of the material and improving the stability of
the obtained MRF. Fei et al. (2020) was shown that
MRFs have good sedimentation stability in the case
when surfactants are based on sodium lauryl alcohol
phosphate, compound sodium fatty acid methyl ester
sulfonate, ethylene glycol monostearate, and glyceryl
monostearate. Moreover, the optimal proportion of
additives includes sodium lauryl alcohol phosphate
(1.5 wt%), compound MES (1.0 wt%), ethylene glycol
monostearate (1.5 wt%), glycerol monostearate
(1.5 wt%), and hydrophobic fumed silica (1.0 wt%).
On the other hand, the results obtained by Di et al.
(2022) indicated that Fe3O4 nanospheres-based MRF is
characterized by greater sedimentation stability than
CI particles-based ones. An interesting solution based
on the bi-dispersed magnetic grease was proposed by
Hu et al. (2022). It turned out that the addition of ben-
tonite increased the stability by 17.873%. To assess the
effect of additives on sedimentation, the indicator was
proposed by Prajapati and Lakdawala (2022). Also, the
redispersion index was determined.

The tribological behavior of silicon oil-based MRF
was analyzed by Jang et al. (2010). It turned out that
compounds like molybdenum disulfide and graphite
can reduce the friction coefficient, while polytetrafluor-
oethylene (PTFE) contributes to the increment in both,
wear resistance and friction coefficient. Besides the
improvement of stability, the addition of the surfactants
also improves the polishing properties MRF also has
excellent polishing properties (Kittipoomwong et al.,
2005). The summary of the methods, which are used as
stabilization techniques was presented in Figure 3.

The rheology of MRF under the magnetic field
depends, inter alia, on the shape and size distribution
of magnetic particles (Foister, 1997; Ghaffari et al.,
2015). In Weiss et al. (2000) and Lemaire et al. (1995),
it has been shown that MRF containing particles of
two different diameters (i.e. average diameters of 1.25
and 7.9 mm) exhibit higher field yield strength than
monodisperse ones. For the small size of the magnetic
particles, the yield stress is strongly enhanced with the
increase in the particle size (Wu and Conrad, 1998). In
turn, Bell et al. (2007) it was presented that bidisperse
Electrorheological Fluids (ERFs), which contain two
different diameters (i.e. average diameters of 6 and
100 mm) exposed to the field manifest smaller yield
stresses than monodisperse ones. The apparent yield
strength of MRFs containing, both spheres, and wired
magnetic particles is comparable, while the high values
of the external magnetic field contribute to the fact that
any effects resulting from shape anisotropy will be
masked (Hagenbüchle and Liu, 1997).

Regarding the chain formulation, in Anupama et al.
(2019) field-induced chain formation in the dilute
MRFs using dynamic light scattering in the context of
chain length was investigated. MRF with a lower con-
centration of magnetic particles (i.e. bidisperse Mn–Zn
ferrite spherical particle) form a single chain, and con-
sequently, the fluid has less strength. High concentra-
tions of magnetic particles lead to the formation of
stronger and thicker chains, resulting in larger yield
strength (Portillo and Iglesias, 2017). Moreover,
Kumar et al. (2019) it has been experimentally shown
that the addition of magnetic nanoparticles increases
the yield strength, while nanoparticles occupy voids
between the microparticles and form regular chains
when the external magnetic field is applied. It turned
also out that shear stress is greater in the case of MRF
with magnetic nanoparticles included (Portillo and
Iglesias, 2017). According to the superparamagnetic-
based MRF, Brownian motion influences the particles
much less than the interactions between particles and
with the external magnetic field. The dynamics of the
particles in presence of the magnetic field is decreasing
with the rise of the particle’s concentration or decrease
of their size. Theoretical and experimental data pre-
sented by Donado et al. (2017) show that the distribu-
tion of the chain length over time has a significant

Figure 3. The summary of the MRF stabilization methods.
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effect on the rheology of MRF and it is decreasing
exponentially.

According to the sedimentation, the kinetic charac-
teristics of the MRF are under extensive study in the
literature including the initial spatial distribution of
particles, interparticle interactions, and concentration
dependence effect on the stability and relaxation of the
MRF (Raikher and Shliomis, 1993). Consequently, the
kinetics of aggregation and disaggregation in MRF is
of key importance in practice because it governs the
control process (turn-on and turn-off response times).
One of the most promising magnetic particles for the
MRF application, in this case, are superparamagnetic
materials offering not only a lower density mismatch
but also a lack of the magnetic memory of the colloidal
suspension. Besides many factors affecting the kinetics
of the MRF is the control over particle size, size distri-
bution, the thickness of the surfactant layer, and the
response of the material to the presence of the magnetic
field (Giersig and Hilgendorff, 2005). The first model
of the kinetics of chain formation under the magnetic
field has been developed by See and Doi (1991) while it
is based on the magnetizable particles model. Based on
ferromagnetic particles many other models describing
the evolution of the chain structure due to the chain–
chain aggregation was described (Bossis et al., 2011).

It is known that MRFs present not only hydrody-
namic interactions of particles or external forces but also
electrostatic interactions. For the superparamagnetic-
based suspensions, the main feature influencing the
aggregation and disaggregation of the MRF is based on
the surface potential of the coated suspension. Particles
coated with organics maintain certain functional groups
leading to the repulsion between the same groups of two
particles. In the case of the aqueous-based superpara-
magnetic suspension addition of salts deliver additional
charges to the system leading to increased stability of
the fluid due to the increased electrostatic interactions
among the chains and between particles (Domı́nguez-
Garcı́a et al., 2011). Aggregation and disaggregation, as
well as the stability of the MRF in the organic media,
can be improved with the surfactants as well, and the
application of bidisperse particles brings superparamag-
netic suspension and the commercial CI particles at the
same MRF. In that case, the electrostatic interactions
between particles provide better chaining properties and
protection against agglomeration and sedimentation
(Nejatpour et al., 2020).

Formation of the organic coating can be performed
within the chemisorption, for example, adsorption of
stabilizers onto the surface of magnetic particles mainly
in the hydrophobic solvents, physisorption within the
application of organic salts in polar organic solvents
like THF, or charging of the magnetic particles within
the application of the compounds in aqueous media
(Giersig and Hilgendorff, 2005). Depending on the
coating the chain-like structures in presence of a

magnetic field can be arranged not only to the forma-
tion of single chains but even well-arranged 2D hexago-
nal ordered domains that create larger 3D structures.
In presence of high magnetic fields, magnetic particles
can form multi-dimensional structures ranging even
micron size (Giersig and Hilgendorff, 2002).

Magnetic colloids can be also influenced by different
parameters associated with the sample preparation or
even drying including the particle’s concentration in the
suspension, the viscosity of the media, vapor pressure,
surface tension of the solution, temperature, pressure,
and even the substrate that is used to dry particles. All
these features may affect the formation of the size and
shape of particles leading to the formation of different
chain-like structures under the magnetic field
(Hilgendorff et al., 2001).

The kinetics of the aggregation, disaggregation, and
sedimentation for superparamagnetic particles is also
dependent on the thickness of the oxides coating mag-
netic metal-based particles (Wiedwald et al., 2003). The
formation of the passivation layer onto the metal core
opens possibilities for chemical modifications with
organic shells. Wiedwald and co-authors indicate that
the magnetic properties of the cobalt particles and Co/
CoO, like the magnetic moment the local magnetic ani-
sotropy energy, as well as the sign and magnitude of
the magnetic coupling, depending on the type of chemi-
cals used for magnetic particles formation, especially
when the metal-based particles are coated with oxides.
Authors present that depending on the experimental
conditions the oxides shell thickness can be controlled
and make it possible to easily tailored with the organic
shell (Wiedwald et al., 2005). In other work, it is
described that the organic coating makes it possible to
manipulate the magnetic moment and magnetic proper-
ties of the nanosized magnetic particles in the MRF
including the blocking temperature. Haracz et al.
(2015) describe an influence of the magnetic behavior
of particles within the application of various ligands
presenting the correlation of the dynamic response of
the superparamagnetic particles based on cobalt with
the relaxation time. Authors show the influence of the
oleic acid (OA), cethyltrimethylammonium bromide
(CTAB), sodium hyaluronan (HA), and modified poly-
acrylic acid (mPAA) and O-(2aminopropyl)O#(2-meth-
oxyethyl)polypropylene ethylene glycol (PEG) coat on
the interactions between particles indicating that the
magnetic properties of the particles changes. They
show that the application of the OA over CTAB
increases blocking temperature likewise the HA over
mPAA-PEG. The nanoparticles coated with mPAA-
PEG and HA are superparamagnetic, while in presence
of the two other shells the interactions between parti-
cles increase decreasing the relaxation time. Based on
the literature it is seen that the kinetics of MRF is
mainly dependent on the shape and size of the magnetic
core as well as the chemical composition.
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MR fluids have been classically investigated within
several techniques for the determination of their physi-
cochemical including composition, stability, durability
(Desrosiers et al., 2013; Lucking Bigué et al., 2019), and
rheological properties (Frąś, 2015; Gabriel and Laun,
2009; Güth et al., 2013; Laun and Gabriel, 2007; Wang
et al., 2008) like shearing flow conditions (Maurya and
Sarkar, 2021) or dynamic energy dissipation.

MRF is known for being strain-rate dependent on
the viscoplastic behavior of the magnetic suspension in
the liquid media that is highly sensitive to mechanical
stress (Church et al., 2014). Due to its ability to dissi-
pate dynamic energy, MRF can be investigated with the
Split Hopkinson Pressure Bar (SHPB), known in the lit-
erature as the Kolsky bar. That technique enables test-
ing the compression response, principally of metals, but
more recently for polymers and MRF (Lim et al., 2010;
Panowicz and Janiszewski, 2016; Shim and Mohr,
2009).

Initially, Kolsky (Chen et al., 1999) generated the
stress waves in the incident bar with detonation and
condenser microphones, while over decades, this tech-
nique was modified (Wang et al., 2016) to measure the
dissipation of the dynamic energy of the material under-
going deformation at a high strain rate from 102 to
5 3 104/s (Saha et al., 2019; Wang et al., 2008). The
MRF can be tested within SHPB by placing it into the
elastic vessel between two bars, where a pulse wave pro-
pagates through the sample. The measurement is based
on the wave generation in the MRF by the incident bar
passing through the specimen to the transmitted hollow
bar connected with a full-bridge sensor system. The
equipment can generate different magnetic field values.

MRF are materials with a low Young’s modulus
(about 1 MPa) strongly responsive to speed deforma-
tion (Frąś and Pęcherski, 2018). It was necessary to use
nylon rods with a lower wave impedance than steel bars
during measurements. This modification allows chang-
ing the SHPB configuration from the bar-bar system
into the bar-hollow (tube), making it possible to mea-
sure even small MRF’s deformations. At the same
time, the distortions are recorded as the reflected wave
changes. Thanks to that modification, the rearrange-
ment of magnetic particles depending on the applied
stress is measured (Zhang et al., 2019). In Osial et al.
(2022), the MRF, which reacts reversibly and immedi-
ately to stresses occurring at high yield stress, was pro-
posed. The nominal stress varied from 0.001 to
200 MPa during 0.5 ms during the measurements. It
has been experimentally shown that the deformation
rate of similar chain structures changes with the stri-
ker’s speed. As a consequence, this fluid is suitable for
the minimization of damping of vibrations.
Ahmadkhanlou et al. (2010) presented the compression
behaviors and energy absorption studies of porous

copper materials with three different pore sizes showing
controllable energy-absorbing material within the
SHPB technique.

5. The mathematical modeling of
magnetorheological fluid

Another important direction of research in the field of
Magnetorheological Fluid is related to its modeling
(Bingham, 1916; Pei and Peng, 2022). MRF modeling
can be divided into two categories: continuum
approach (i.e. MRF operational modes, rheological
models, and structural models), and discrete approach,
including modeling based on Newton’s law, and using
kinetic models (Ghaffari et al., 2015). Several MRF
rheological models are proposed, including two com-
mon ones, that is the Bingham plastic model (Bingham,
1916) and the Herschel–Bulkley model (Herschel and
Bulkley, 1926). The basic Bingham body model, which
is adapted from classical mechanics of non-Newtonian
fluids, describes the properties of an elastic-viscoelastic
material (Bingham, 1916). The characteristics of such a
body can be divided into two distinct areas separated
by the critical shear stress so-called yield stress t0,
beyond which plastic deformations and thermal effects
begin to occur in the material. Bingham fluids describe
the following dependencies:

tB =Gg for t\t0

tB =h g
:
for t ø t0,

ð4Þ

where G is shear modulus, t—shear stress correspond-
ing to the material flow limit, h denotes the dynamic
viscosity of a fluid, and g

:
is a velocity of shear defor-

mation of the fluid, that is share rate. This approach is
equivalent to modeling the device combing dashpot,
and Coulomb friction element (representation as
mechanical elements). Note, that this model is an idea-
lized one, which treats the MRF as a solid before the
yield stress. It accurately follows the behavior of the
MRF at a high strain rate but is not accurate for the
low strain rate behavior. In Pei and Peng (2021) it was
shown that the highest prediction error was achieved
for the Bingham model (which has only two para-
meters), that is 0.324.

To address the large changes in shear stress the
Eyring model was proposed (Choi et al., 2005).

tE = t0sinh
�1 lE g

:ð Þ, ð5Þ

where lE is a parameter that determines the MRFs
rheological behavior. It presents the continuous shear
stress versus shear rate behavior, and smooth tension
on pre-yield regions, which are much closer to the beha-
vior of the real MRF than the Bingham model.
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In the case of Magnetorheological Fluids yield
strength, t0 is expressed as a function dependent on the
external magnetic field acting on it. In turn, the
Herschel-Bulkley model is described by the following
equation (De Kee and Turcotte, 1980)

tHB =(t0 +Kgj zj
:

)
1
mð Þ, ð6Þ

where K is the consistency constant, which plays a role
in the fit parameter, and is experimentally determined,
m denotes the flow index. In the case of t\t0 MRF
behaves as a non-deformable solid, while in the case of
t ø t0 as fluid. If we assume the value of m is equal to
1, the Herschel-Bulkley model becomes the Bingham
MRF model. For flow index, m . 1 shear-thickening
behavior occurs, while for m\1 shear-thinning.

The generalized model of Magnetorheological Fluid
was proposed by Claracq et al. (2004). The De Kee-
Turcotte model is described by the equation

tDK�T = t0 +h1 _ge�t1 _g, ð7Þ

Where t1 is a constant, which has a unit of seconds, and
h1 is the parameter, which can be estimated from equa-
tion (8) assuming a zero shear rate.

The Bingham model makes it possible to derive
equations describing the constant flow of a liquid using
analytical solutions, while the solution of the equations
exists under the assumption of the mediums’ non-
inertial character. It can be used to support the design
of MFR devices or to predict the behavior of existing
MRF devices. The disadvantage of this model is the
lack of a correct response in the range of very low and
very high shear rates. Another limitation of Bingham’s
model is the fact that it does not reflect good MRF
behavior in the case of velocity deformation below 10/s.
Then the characteristic is no longer linear and yield
strength even disappears. For small deformation veloci-
ties, the Cross model (Sahu et al., 2007) was proposed

tC = h‘ +
h0 � h‘

1+ l _g

� �
_g, ð8Þ

where h0 and h‘ denote low viscosity and viscosity for
high strain rates, respectively.

Herschel–Bulkley model enables the behavior of the
fluid to be predicted in the range of high shear rates (El
Wahed and Balkhoyor, 2018; Zubieta et al., 2009).
Additionally, it allows considering the phenomenon of
shear thickening and shear thinning. However, it has a
weak point, which is the experimental verification of its
parameters (El Wahed and Balkhoyor, 2018). Another
model that makes it possible to consider the same
effects as the Herschel–Bulkley model is the Casson
model (Carlson et al., 2001; Spencer et al., 1997), which
was originally used to describe the rheological proper-
ties of blood. If we treat blood as a suspension of solid

cells, by analogy, we can compare it to the
Magnetorheological Fluid. It is described by the
equation

h

h‘

= 1+
Mn

M�n

� ��1

+ 2
Mn

M�n

� ��1=2
, ð9Þ

where Mn denotes Mason’s critical number, which
determines the transition from magnetization to hydro-
dynamic control of the suspension structure. It can be,
in the most general form, assumed by the relation

Mn[
72hc _g

m0mcrMP
2
, ð10Þ

where hc is the continuous phase viscosity, m0 denotes
magnetic permeability of vacuum, mcr is the relative
magnetic permeability of the continuous medium, MP

is particles’ mean magnetization, which in particular in
a quasi-linear regime is equal to

MPh i= 3bH0 = 3
(mpr � mcr)

(mpr + 2mcr)
H0, ð11Þ

where mpr is the relative magnetic permeability of the
particles.

On the other hand, to enable modeling behavior of
the medium in terms of very low shear rates by describ-
ing the MRF bilinear constitutive relation, the bi-
viscous model was proposed (Goldasz and Sapinski,
2012; Sahoo et al., 2022; Wereley et al., 2004; Williams
et al., 1993)

tBV =
mr

du

dz
for t ł t1

t0 +m
du

dz
for t.t1

8><
>: , ð12Þ

where du
dz

is velocity gradient and mr denotes pre-yield
viscosity. Dynamic yield shear stress t1 can be deter-
mined from the relation t0 = t1(1� g), where g is visc-
osity ratio g =mm�1

r , In the case viscosity ratio g = 1

and mr =m the fluid flow is Newtonian, while in the
case mr ! ‘ or g ! ‘ bi-viscous model becomes the
Bingham model. Mostly, the value of the g varies in the
range 10�5 to 20�2 (Wang et al., 2008).

The extensions of the bi-viscous model enable us to
take into account that the dynamic pre-yield hysteresis
is the hysteretic bi-viscous model (Chopra and Sirohi,
2003). It is described by the following equations

if _g.0 than

tHBV ( _g)=

mp _g � t0for _g ł � _g1

mpr( _g � _g0)for � _gg ł _g ł _g1

mp _g + t0for _g ł � _gg

8<
: ð13Þ

if _g ł 0 than
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tHBV ( _g)=

mp _g + t0for _g.� _g1

mpr( _g � _g0)for � _gg ł _g ł _g1

mp _g + t0for _g ł � _gg

8<
: ð14Þ

where mpr denotes pre-yield viscosity and _gg is yield
strain rate.

In Lim et al. (2010) it was shown that the Herschel–
Bulkley model is more suitable to describe MRF beha-
vior in higher magnetic fields, while the Bingham
model was appropriate for lower magnetic flux densi-
ties. Both, the Bingham plastic model, and Herschel–
Bulkley model are suitable for one-degree of freedom,
rectilinear devices, while they operate in 1-D macro-
scale, and treat MRF like a single continuum system.
Thus, the results obtained by (Panowicz and
Janiszewski, 2016) indicate that MRF can be more
modeled with the Robertson–Stiff model (so-called
Vocadlo model) (Chen et al., 1999), which was pro-
posed to describe the rheological behavior with non-
linear characteristics of the concrete solutions, gels, and
polymers. The Robertson–Stiff model is described by
the following equations being the combination of the
Bingham plastic model (4), and the Ostwald de Waele
equation (Elsaady et al., 2021)

tR�S =K1( _g0 + _g)n, ð15Þ

where parameters K1 and n can be considered similar to
those in the H–B model, and _g0 is a shear rate correc-
tion factor. Another model that was applied for the
modeling of the Magnetorheological Fluid is Mizrahi–
Berk model, which was commonly used in food engi-
neering (Cvek et al., 2016). It is described by the
equation

tM�B

1
2 = t0

1
2 +K1 _gn for _g = 0, and jtj\t0 ð16Þ

In Robertson and Stiff (1976) it was successfully used in
the modeling of concentrated xanthan gum.

An interesting fluid model was proposed by Cho
et al. (2005). It provides a better fitting of poly(acene

quinone) radicals-based electrorheological fluids. This
model is described with the following equations

tc�c�J =
t0

1+ t2 _gð Þa +h‘ 1+
1

t3 _gð Þb

 !
_g ð17Þ

where t2 and t3 denotes time constants, a is a para-
meter, which is related to the decrease in the stress, b is
a dimensionless parameter in the range (0,1.. It can be
successfully applied to the modeling of the MRF (Ahn
et al., 2015; Kim et al., 2013).

The commonly used models of the
Magnetorheological Fluid taking into account numbers
and types of parameters are summarized in Table 2.
The schematic behavior of the Magnetorheological
Fluid according to model type was shown in Figure 4.

We can distinguish several types of MRF devices,
but most of them resist a similar principle of operation,
in particular, three operation modes, that is flow mode,
shear mode, and squeeze mode (Li et al., 2019; Wang
and Meng, 2001), see Figure 5. This division results
from the way of moving the liquid in relation to the
magnetic field vector. Also, the method of converting
the stress in the fluid into an external force is bear in
mind. Flow mode (Figure 5(a)) relies on the operation
of a throttled valve (Cvek et al., 2016). MRF flows with
pressure in the gap between two fixed surfaces. The
external magnetic field is perpendicular to this gap. In
this regime work such devices as dampers (Pelegrine
et al., 2002), shock absorbers (Song et al., 2006), and
servo-valves (de Vicente et al., 2011). Additionally, in
the case of flow mode to describe yield stress the
Bingham model is applied (Ghaffari et al., 2015;
Kostamo et al., 2012). Shear mode is presented in
Figure 5(b). In this case the surfaces between which the
fluid is located move with speed. Clutches (Qiu et al.,
2022), brakes (Milecki and Hauke, 2012), and some
types of vibration dampers are based on this principle.
Squeeze mode (de Vicente et al., 2011; Ruiz-López
et al., 2012), which is the least common, is shown in

Table 2. The commonly used MRFs models.

Model Number of the
parameters

Parameters Reference

Bingham 2 t0, h Bingham (1916)
Casson t0, h Carlson et al. (2001), Sahoo et al. (2022)
Eyring t0, De Kee and Turcotte (1980)
Cross 3 h0, h‘, Sahu et al. (2007)
Herschel–Bulkley t0, g, z Choi et al. (2005), De Kee and Turcotte (1980),

Herschel and Bulkley (1926)
de Kee–Turcotte t0, h1, t1 Claracq et al. (2004)
Robertson-Stiff K1, g, Elsaady et al. (2021)
Mizrahi - Berk K1, g, Cvek et al. (2016)
Bi viscout 4 t0, g, mp,

du
dz Sahoo et al. (2022), Wereley et al. (2004), Williams et al. (1993)

Hysteretic viscous t0, g, mp, mpr Chopra and Sirohi (2003)
Cho-Choi-Jhon model 6 t0, t2,a, h‘, t3,b Cho et al. (2005)
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Figure 5(c). In this case, the surfaces between which the
MRF is located may approach or move away from
each other, causing fluid compression. The magnetic
field strength depends on the coil supply current and
the variable gap width, as a consequence squeeze oper-
ation mode is difficult to control. Thus, it can be
applied to low-amplitude vibration dampers (Salloom
and Samad, 2011), and MRF–elastomer vibration iso-
lators. In practical applications, there may also be com-
binations of these operating modes (Kavlicoglu et al.,
2002).

Another modeling approach, that is Discrete MRF
modeling methods allows us to model such phenomena
as the flow field of the continuous phase, motion, and
interaction of particles in a discrete phase, and the dis-
tribution of a magnetic field based on the physical laws
(Ghaffari et al., 2015). The discrete approach, assuming
the appropriate initial and boundary conditions, is
based on Newton’s second law, that is Newton’s
motion equations in the case of discrete particles, and

Navier-Stokes equations for continuum fluid (Huang
et al., 2002). The particle’s translational motion
described by Newton’s second law can be expressed as

mi

dvi

dt
=
X

j
Fc

ij +
X

k
Fnc

ik +F
f
i +Fext

i

ui =
dxi

dt
for i= 1, . . . , N ,

ð18Þ

where mi is i-particle mass, ui is i-particle velocity, xi is
i-particle position, Fc

ij the contact force between i-parti-

cle, and j-particle, Fnc
ik the non-contact force acting on

i-particle by k-particle, F
f
i denotes the force of the

particle-fluid interactions, and Fext
i is external force,

which acts on i-particle (Olabi and Grunwald, 2007),
see Figure 6.

Thus, the behavior of any suspension can be
described by applications of the Navier-Stokes equa-
tions (See et al., 2006), which can be presented in com-
pact form as:

Figure 4. The schematic behavior of the Magnetorheological Fluid according to: (a) the Bingham model, (b) the bi-viscous model,
and (c) the hysteretic viscous model. The solid lines denote modeling, while the dashed lines denote actual behavior.

Figure 5. The operating modes of the MRF devices are under the magnetic field (H) under: (a) flow (MRF between two stationary
plates), (b) shear (MRF between movable plates), and (c) squeeze.
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h�r2u�rp= 0

r � u= 0,
ð19Þ

where u denotes fluid velocity, p is fluid pressure, and
h� is fluid dynamic shear viscosity. The system of equa-
tion (18) described the conservation of momentum for
moving fluid. The changes in the momentum of a fluid
element depend only on the mass forces, external pres-
sure, and internal viscous forces in the fluid. The no-
slip or slip boundary conditions hold at the particle
surfaces and in general, the particles are entrained by
an ambient flow. Typically, the MRF’s flow field is
laminar or stationary, or both, which is very close to
Stokes flow (Re \ 1). To provide different particulate
flows in Magnetorheological Fluids the use of modified
with correction factor Navier-Stokes equations (Kim
and Karrila, 2005). Correction factor f is equal to the
product of the inertial correction factor C1 (which
includes the effects of inertial forces on the particles),
Cunningham factor Cc (modification assumption of
no-slip ashore), and correction factor Cf (including the
presence of other particles in the vicinity of the given
particle). The equation (9) are often combined with
other equations, for example, in Han et al. (2010)
Ohm’s law and Maxwell’s equations were combined
with the Navier–Stokes equations to model the
response of the linear damper with MRF. On the other
hand, Pappas and Klingenberg (2006) consider the
effect of particle forces on the flow field in the MRF’s
modeling.

On the other hand, MRFs hysteresis can be identi-
fied from experimental tests. It turned out that the
experimental test of the MRFs dampers, which are
working in valve or shear mode show that hysteresis
appears only around points of change of direction
assuming sinusoidal displacement forces (Bai et al.,
2015). In the case of the MRF damper, which is work-
ing in squeeze mode, can be described using the force-
displacement relation-based model–Bouc-Wen model
(Chen et al., 2018) and resistor-capacitor operator-

based models (Bai et al., 2019). Thus, the above beha-
vior can be also analyzed with the application of the
dipole model of particle energy interaction, in which
the magnetic effect is considered a function of particle
magnetization (Jolly et al., 1996). In this approach,
phenomena such as dynamic effects of the magnetic
field and inertial and rate-dependent effects of the par-
ticles are omitted. According to it, the homogenous
magnetic particles can be modeled as identical induced
dipole moments. Moreover, it is assumed that shear
strains and associated stresses are uniformly distributed
over the length of the particle chain. In turn, Bai and
Chen (2019) introduce the hysteresis mechanism of
MRFs at different excitation amplitudes.

6. Conclusions

In this paper, we overview and discuss the physico-
chemical properties of the Magnetorheological Fluids
and issues connected with their preparation methods,
experimental measurements, and behavior modeling.
MRFs are unique intelligent fluids whose rheological
responsiveness and transition under external magnetic
fields are quite fast. It turned out that, unlike the mod-
eling of the magnetic field distribution, modeling of the
fluid flow has a more complex nature, while it com-
bined different types of flows and non-linearities in the
rheological behavior of fluids. Still, some modeling
approaches do not allow this but can map the dynamic
behavior of the system. Continuum approaches do not
provide a particle level. Due to its simplicity, the most
commonly used model of Magnetorheological Fluid is
the Bingham model. It enables the modeling of both,
the quasi-static and dynamic behavior of the fluids.
The Herschel–Bulkley model is rarely applied to
dynamic MRF modeling. Other models have found use
in modeling MRF devices, but are rarely used to model
the static and dynamic behavior of the fluid itself. The
important disadvantage of more complex analytical
and numerical MRFs models is the requirement of the
experimental data, for example, yield stress ratio and
the viscosity ratio. Discrete models are used in the
development of MRFs control algorithms. Models
that do not take into account the shear behavior of the
fluid give less accuracy. Thus, the modeling of
Magnetorheological Fluids is a compromise between
the accuracy of the selected model and the number of
phenomena that occur in it, and the computational
cost.

The most commonly used magnetic compound used
for MRF is carbonyl iron dispersed in viscous media
like silicone oil, while CI has high magnetism perme-
ability and high saturation magnetization. The shape of
the magnetic particles used also affects the rheological
properties of the MRFs. Spherical shapes are usually
synthesized; however, spheroidal and plate-like shapes

Figure 6. Acting forces in the MRF, according to the discrete
approach.
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have a greater thermal conductivity. In turn, fiber-
shaped particles have had better yield strength.
Reducing the size of the magnetic particles with
increasing temperature improves the thermal conduc-
tivity of the solid suspension (Rahim and Ismail, 2015).
Moreover, the MRFs tribological properties can be
modified by increasing graphite percentage, while the
optimal proportion is below a few percent (Hu et al.,
2022). In order to prevent the separation of the parti-
cles, the viscosity of the magnetorheological fluid
should be sufficiently high. Sedimentation of the fluid
is reduced before adding additives such as stearic acid,
guar gum, xanthan gum, silica gel, stearates, carboxylic
acids, iron naphthalate, and iron stearate. In turn, add-
ing anti-friction compounds reduces the effect of ero-
sion (Kumar et al., 2019).

Recently, MRF has been applied in many fields and
brought attention to new sectors, including medicine.
Reducing the production cost of the fluid is still a chal-
lenge. Currently, due to the high MRFs price, its vol-
ume is minimized in the structures, in particular in
large isolation systems. Tactile knobs based on smart
fluid have also been developed, which will be integrated
with electrical devices in the next few years. MRFs are
increasingly used in the medical field, for example, in
gait-rehabilitation robots, prosthetic knees, or even fin-
ger rehabilitation (Oh et al., 2022). Still, these are unit
solutions, the popularity of MRF in commercial solu-
tions is also low due to the low level of trust in the cus-
tomers who are not aware of the benefits of solutions
based on them. Breaking down these barriers remains a
challenge. On the other hand, also energy-efficient con-
trol algorithms are of huge importance as well as pro-
duction of the adequate magnetic fields without
requiring large amounts of electrical power. Here, the
electro-permanent magnets-based power system may be
a good solution (Mcdonald et al., 2022).
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