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1. Introduction

Field-electron emission is a process by which electrons are
emitted from a material because of the application of an external
electric field. The first successful model for the emission from
bulk metals was proposed by Fowler and Nordheim in 1928.[1]

Canonical Fowler–Nordheim theory of cold electrons’ emission
gives a solution for the Schrödinger equation that describes trans-
mission probability computed for a quantum tunneling process
through a triangular barrier. The linear dependence of potential is
due to the presence of an unscreened external electric field. In
more advanced versions, the interaction of an emitted electron

with its image potential has also been
accounted for. Murphy and Good defined
and formulated a theory[2] for the imple-
mentation of Fowler–Nordheim equations
which became a standard source used in
many following research works and educa-
tional material. In particular, they have
shown that the transmission is given by
the exponentiation of the elliptic integral
of the first and second kind. Forbes and
Deane[3,4] further enhanced the theory by
providing a better approximation for elliptic
functions and showed that the tunneling
process can be described by an underlying
ordinary differential equation.

Experimentally, the field-electron emis-
sion from the surface of a material is a
well-established process. Field-emission
electron sources with low-turn-on electric

fields, high-emission current density, and good stability have a
considerable role in expansive usage as sources for electron
microscopes and in special vacuum nanoelectronic equipment.[5]

Development of micro- and nanotechnology[6,7] inspired further
development of experiments as well as the theory. In a canonical
approach, a perfectly flat, conducting surface has been consid-
ered. This is justified only when a macroscopic geometrical set-
ting of an experiment is much larger than any microscopic
details of the surface. For the smallest devices, that were micro-
and nanoengineered in order to reduce their effective emitting
surface, this assumption does not hold any longer.

The theory of field emission needs to address these develop-
ments and so it remains an active field of research. There is sub-
stantial progress being done using numerical methods, using
single-particle formalism and dedicated to specific experimental
setups. The standard method is to use single-particle formalism
of quantum mechanics such as, for example, transfer matrix
approach: one uses a numerical solution of Poisson (electrostatic)
differential equations to describe the tunneling barrier and then
this is integrated numerically. Obviously, the accuracy of calcu-
lations depends on the knowledge we have about the surface with
a great advantage that it can be easily merged with microscopic
knowledge about resonances on the surface[8] which later inspires
a merger with ab initio calculations.[9,10] However, the entire
sequence of computations need to be repeated if some details
of the surface need to be changed; each microscopic case is con-
sidered separately. This forms quite exhaustive bulk of work on
this subject. When knowledge about the surface is limited, or
the surface changes during the emission process, one actually
needs to extract surface characteristic details from the tunneling
spectrum, which changes the situation. One looks for some general
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guiding principles that can only be provided by an exact analytic
solution for the barrier with a more general shape. The theory then
turns toward a continuous effectivemedium theory for the emitting
surfaces with some well-suited parametrization of the broad and
appropriate class of potentials.[11] The last, Wentzel–Kramers–
Brillouin (WKB), integral still needs to be done numerically.

Here, however, we propose an entirely different approach by pro-
posing a specific, but broad class of potentials for which analytical
formula can be given. Apart from its relevance to benchmark
numerical results, it is always beneficial to acquire a bit more of
a mathematical insight into the subject. Not only will it allow to test
numerical results, such analytic formulas are also relevant when
tunneling is considered as a part of a larger quantum mechanical
problem, when one can simply insert an accurate analytical formula
which massively simplifies their treatment. Finally, and most
importantly, it allows to grasp the mechanism of tunneling in a
more generic case, for example, writing an appropriate differential
equation allows to identify universality class of the problem and also
to understand the physics of tunneling for the many-body problem.

The article is organized as follows. In Section 2, we define the
model. In Section 3, we derive the generalized formula for
tunneling in the case of a barrier described by a power law with
an arbitrary exponent. In Section 4, using Kemble’s improved
Jeffreys–Wentzel–Kramers–Brillouin (JWKB) expression for
tunneling, we assess the validity of this expression against previ-
ous results for the triangular barrier and present results obtained
for arbitrary exponents. We study the dependence on the expo-
nent of the power law. We also show tunneling currents for com-
posite surfaces with locally varying work functions. We also make
a comparison of our analytical results with a numerical scattering
matrix method. Finally, in Section 5, we discuss possible experi-
mental realizations where our theory could apply and build a con-
nection with exact quantum mechanical solutions of the
problem. The article is concluded in Section 6.

2. The Model

We start with the 1D Schrödinger equation for the tunneling
electron

� d2ΨðxÞ
dx2

� k20ðE � VðxÞÞΨðxÞ ¼ 0 (1)

where ΨðxÞ is a 1D wave function, VðxÞ is the electron potential

energy, E is the electron’s total forward energy, and k0 ¼ ð2mÞ1=2
ℏ ≅

5.123168 eV�1=2 nm�1 is a universal constant (see Supporting
Information for its derivation). In our case, VðxÞ will have a spe-
cific form of a sum of two opposite power laws. A similar poten-
tial has been proposed in ref. [12].

2.1. Effective Potential

We see that the entire information about the physics of the prob-
lem is inside the effective potential energy experienced by an
electron, VðxÞ. The electron image-potential-reduced barrier is
shown in Figure 1, where VðxÞ is the electron potential energy,
h is the zero-field (tunneling) barrier height (ω0 is a work func-
tion of a given material), and xin ¼ x1 and xout ¼ x2 are the inner
and outer ends of the barrier (when possible we shall use in this

subsection notation from ref. [13] to facilitate comparisons).
When power law exponent α ¼ 1, it coincides with the exact
triangular barrier at perfectly smooth planar interface, while arbi-
trary α corresponds to the rough surface.

In the past studies, when any attempt for exact analytical
expression was made, the VðxÞ was given by the following
expression with α ≡ 1

VðxÞ ¼ h � eFx � e2

16πε0x
(2)

Now we generalize this expression for a potential to the following
form

VðxÞ ¼ h � eFxα � e2

16πε0xα
(3)

where now x is a dimensionless variable which can be con-
structed either by formal mathematical construct of a surface
fractal[12] or by boundary condition set by experiment (We take
an electric field Fext at a small distance from the surface d0 (small
enough such that a single power law holds), so Fextd0 has a unit of
energy [eV] and then x ¼ xexperim½nm�=d0½nm�). The h is a height
of an effective barrier that the tunneling electron is facing. In the
absence of any additional exciting force, it reduces to the material
characteristic work function ω0. The theory can be straightfor-
wardly generalized to account for, for example, photon-assisted
field emission when electron gains an additional energy ω before
tunneling. Although at present we do not presume to describe
any specific realization, this choice of potential may be justified
on physical grounds as discussed in detail in Section 5.1.1.

3. Solution

In the presence of the image-potential effects, calculations were
done in ref. [13], when α ¼ 1. They obtained the now widely used
elliptic integrals’ result given by Equation (13). We are considering
a more general case of arbitrary α. The evanescent wave function
decay is now given by the following, so-called overlap, integral

Figure 1. Illustration of the image-force-reduced barrier VðxÞ encountered
by a tunneling electron. α ¼ 1 corresponds to the exact triangular barrier at
a perfectly smooth planar interface, while 0 < α < 1 corresponds to
reduced dimensionality seen by tunneling electrons at a rough surface.
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DðF, hÞ ¼ exp
8með Þ12
ℏ

Z
h=2eFð Þ 1þsð Þ1=α

h=2eFð Þ 1�sð Þ1=α
h � eFxα � e2

16πε0xα

� �1
2

dx

" #

(4)

The integration limits are xin;out ¼ ðh=2eFÞð1∓sÞ1=α where s is an
auxiliary parameter defined below. By rescaling the integration
variable ξ ¼ ð2eF=hÞxα, we arrive at

D F, hð Þ ¼ exp

"
� m1=2

e

eℏ

 !
h3=2

F

� �
h
2eF

� �1�α
α 1

α

� �

�
Z

c

d
ξ
1�α
α ξ�1

2 c � ξð Þ12 ξ� dð Þ12dξ
# (5)

where the last term is an integral sometimes called (up to a pre-
factor) the Gamow factor or[2,4] principal Schottky–Nordheim bar-
rier function. It reads

IðξÞ ¼
Z

c

d
ξ
1�α
α ξ�1

2ðc � ξÞ12ðξ� dÞ12dξ (6)

We have found the analytic solution of the integral IðE,FÞ,
which turns out to be given by a Gauss hypergeometric
function

IðF, hÞ ¼ παd
1
α�3

2ð2cððα� 1Þc þ dÞ2F1ð12 , 3
2 � 1

α ; 1; 1� c
dÞ � αdðc þ dÞ2F1ð� 1

2 ,
3
2 � 1

α ; 1; 1� c
dÞÞ

α2 � 4
(7)

where IðF,E ≡ hÞ is an implicit function of F and h since

c ¼ ð1þ sÞ1=α, d ¼ ð1� sÞ1=α and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F

ðω0�ωÞ2
q

.

It is not an accident that the Gamow factor found by us can be
expressed by the function that belongs to the 2F1 family, as it has
been previously identified[4] that for the case α ¼ 1 the defining
equation for Fowler–Nordheim tunneling is indeed the Gauss
hypergeometric ordinary differential equation (ODE). This can
be shown manifestly if we rewrite Equation (7) as follows:

I F, hð Þ ¼ παd
1
αþ1

2

α2 � 4

 
2 α� 1ð Þ c

d
þ 1

� � c
d 2F1

1
2
,
3
2
� 1
α
; 1; 1� c

d

� �

� α
c
d
þ 1

� �
2F1 � 1

2
,
3
2
� 1
α
; 1; 1� c

d

� �!

(8)

It can now be easily observed that by taking a variable z ≡ c
d

(Taking z ≡ c
d implicitly assumes that c=d can vary while d can stay

constant which ismathematically sound but physically hard to rec-
oncile with the fact that the external electric field F is the quantity
that one can easily change, which affects equally both c, d.
However, c ¼ xout is mostly determined by external fields and
one can imagine protocols where only xout varies keeping xin
intact), the two terms in Equation (8) are in fact two solutions
of the hypergeometric ODE

ð1� zÞzw 00ðzÞ þ w0ðzÞðc � zðaþ bþ 1ÞÞ � a bwðzÞ ¼ 0 (9)

Precisely, they are solution of the second type in the Kummer list
of 24 solutions,[14] namely those of the form w2,1ðzÞ ¼ 2F1ða, b;
aþ b� c þ 1; 1� zÞ and w2,2ðzÞ ¼ z2F1ðc � bþ 1, c þ aþ 1;
aþ b� c þ 1; 1� zÞ with the following ODE’s parameters
a ¼ �1=2, b ¼ �1=αþ 3=2, c ¼ �1=αþ 1. Obviously in our
solution wðzÞ there are distinct terms for example the term
ððα� 1Þ c

d þ 1Þ appearing in front of the second solution. This
implies that Equation (9) needs to be modified, for instance,
by changing the expression in front of w 00ðzÞ, as
ð1� zÞz ! ð1� zÞz=ðzþ 1Þ. However, this does not change

the number of singular point and it has been proved[15] that every
second-order ordinary differential equation with at most three
regular singular points can be transformed into the hypergeo-
metric differential equation. Thus WKB problem in general
belongs to this class of ODEs. It should be also noted that previ-
ously analyzed case α ¼ 1 is indeed special, as then some of the
terms �ðα� 1Þ drop, and the differential equation is simpler,
namely, it does not contain the “damping” term �w0ðzÞ.
We thus see that a simpler ODE identified in ref. [4] with solution
Equation (13) is a special case and for any further quasiclassical anal-
ysis of the tunnelingmechanism (for instancewith time dependence),
one should use ODE identified by us, as shown in Equation (9).

4. Results

Moving back to observable quantities, we define an overlap quan-
tity DðF, hÞ

D F, hð Þ ¼ exp � m
1
2
e

eℏP

 !
h

3
2

F

 !
h
2eF

� �1�α
α 1

α

� �
I F, hð Þ

" #
(10)

We can now put together the results of the previous section and
express the transmission probability in the following way:

T ¼ 1
1þ D�1ðF, hÞ (11)

which we shall use in the following to generate the results. This
expression, which is a modification of standard WKB[2,16] that
suits better concave barriers with a single turning point, has been
derived for the first time in ref. [17]. In ref. [18] it was shown that
when the top of the tunneling barrier can be approximated by a
parabola, then T ¼ 1=2 holds for the energy of an electron right
on the top of the barrier and Equation (11) (derived thanks to
improved, “hydrodynamic” connection formulae)[17] reproduces
this result. The formula, Equation (11), has been recently exten-
sively benchmarked against Hill–Wheeler, Wong, and exact
quantum mechanical solutions in ref. [19] showing that
Kemble’s result can be used for the tunneling process both below
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and above the barrier top. Details are explained in Supporting
Information.

4.1. Comparison with Elliptic Integrals

When α ¼ 1, then analytic WKB solution has been previously
obtained[13] as a formula in terms of elliptic integrals

Dpast F, hð Þ ¼ exp � m
1
2
e

eℏP

 !
h

3
2

F

 !
I3 F, hð Þ

" #
(12)

with

I3 ¼ � 2
3

1þ að Þ12 E mð Þ � 1� að ÞK mð Þ½ � (13)

KðmÞ and EðmÞ are the elliptic integrals of the first and second
kind, and m ¼ 2a

1þa is the elliptic parameter.
We are now comparing Equation (10) for the general case

obtained by us and Equation (12) for the known special elliptic
integrals: by definition, they must coincide with each other when
α ¼ 1. The comparison is made to assess the quality of our new
formula since the exact solution is known and widely used in
terms of these elliptic integrals. The result of this comparison
is presented in Figure 2. Indeed, the new function works very
well as the surfaces perfectly overlap for all regimes of the exter-
nal field F and applied photon energy.

4.2. Dependence on α

Thanks to the fact that we have the generalised formula, now we
can explore how the tunneling probability depends on α. In
Figure 3 the transmission probability was obtained by our
general formula, when α is below 1 and when it is above 1
(α ¼ 0.3, 0.5, 0.8, 1.2, 1.5, 1.8). We see that the overall shape of
the tunneling probability changes substantially. For the small val-
ues of α, the transmission probability changes sharply, for exam-
ple, when α ¼ 0.3, there is a very big region where transmission

probability is equal to 0, and a very big region where it is equal to
1. For the larger values of α ð> 0:75Þ, the transmission probabil-
ity seems to be a varying slope as a function of photon energy
capable of shifting the chemical position and thus h. For exam-
ple, when α ¼ 0.8, there is a region where transmission proba-
bility is equal to 0, then, at a small region of work function or
height of the potential, it smoothly elevates from 0 to 1 and there
is also a very big region where it is equal to 1. Furthermore, when
α > 1, an extra edge is appearing.

To investigate this effect further in Figure 4a we show the 3D
image of the transmission probability dependence on α and F, when
effective barrier ðω0 � ωÞ is constant and equal to 0.9 eV, while
Figure 4b shows the 3D image of transmission probability depen-
dence on α and F, when the effective barrier ðω0 � ωÞ is constant
and equal to 0.4 eV. In both cases, α changes from 0.1 to 2.5 and the
profiles shown in the inset are for the case of F ¼ 0.5VÅ�1.

There are clearly two regimes: there is a regime where the
transmission probability dependence decreases and a regime
where it increases as a function of alpha, and there is a critical
line between these two regimes, where the quantity is indepen-
dent of the values of α. In Figure 4a,b, two different regimes are
shown, we took the cut in the same values of F, and these show
that in some cases the transmission probability increases as a
function of α, while in some cases, it decreases.

4.3. Contributions from Various Areas of the Surface

We are also able to simulate a surface with spatially varying emis-
sion properties. The most general form of emission, for the two-
component surface, reads

T tot ¼ s1TðF,E; α1ÞjE¼ω01�ω þ s2TðF, E; α2ÞjE¼ω02�ω (14)

where TðF,E; αiÞ is given by Equation (11) parameterized by a
given αi. For instance, a corrugated surface (see Section 5.1.1)
can produce the effect of varying α. It is straightforward to realize
that the wrapped surface will contain both concave and convex
regions. One then expects α1 � π � γ and α2 � π þ γ. In order
to match experimental situation, one can assume different area
proportions of these regions (and possibly their different densi-
ties of states) and see how the total emission current changes.
Here, for illustrative purposes, we shall take the simplest situa-
tion, where both contribute equally, that is, s1 ¼ s2 ¼ 1=2.

In Figure 5, the transmission probability from the composite
surface is presented. We consider two distinct situations: either
the work functions ω0i of the two components are equal or dif-
ferent from each other. In Figure 5a, concave and convex regions
have α1 ¼ 0.8 and α2 ¼ 1.8 respectively and ω01 ¼ ω02 ¼ 1 eV.
Here TðEÞ is a monotonically increasing function of F, as it
was expected from the continuously increasing Gamow factor.
There are only small, subtle differences in comparison
with an average α ¼ 1.4 case: the intermediate TðEÞ range
is smaller, its increase is smoother and more concave. As
regards Figure 5b, where α1 ¼ 0.8, ω01 ¼ 1 eV and α2 ¼ 1.8,
ω02 ¼ 0.9 eV, we do have a double-edge structure which comes
from the fact that we have two different work functions of the
surface.

A situation when local work functions are different on differ-
ent areas on the surface may be induced by different

Figure 2. Transmission probability as computed by our general formula,
Equation (7) (case when α ¼ 1) in red and previous result that has been
expressed as the elliptic integrals, Equation (13), in blue. Perfect overlap of
the two opalescent surfaces results in a single surface with purple color.
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crystallographic orientations on the surface (hence differences in
surface electric dipole moment), but can also be induced by
many-body effects (e.g., charge density waves (CDW) formation).
We see that the double edge is particularly visible in the regime
of small ω (deep inside the well) and large enough external field.
In our calculations we have also found that the double edge is
well pronounced when α1 < α2 and ω01 > ω02, but much less
pronounced in the opposite case when α1 < α2 and ω01 < ω02.

Obviously, in the above given expression, we are taking the
constant featureless density of states (DOS) for the entire 2D sur-
face. In reality, this needs to be substituted by independently
computed material specific data, for example, calculated using

ab initio methods. Nevertheless, our formula plays an important
role as any DOS has to be multiplied by our result to obtain a
measurable quantity. It is thanks to this that we will be able
to distinguish what is the proportion of each phase, with different
ω0i, on the surface and perhaps even which phase sits on the
convex and which on the concave structures.

4.4. Comparison with Numerical Methods

The problem of tunneling through a barrier is frequently solved
numerically, using transfer matrix or scatteringmatrix techniques.
We shall here make a small comparison between those methods

Figure 3. Transmission probability calculated by the new general formula expressed by hypergeometric function for the cases (left to right, top to bottom)
when α ¼ 0.3 (red), α ¼ 0.5 (blue), α ¼ 0.8 (green), α ¼ 1.2 (yellow), α ¼ 1.5 (brown), α ¼ 1.8 (purple).
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and our analytic formula using a light–matter equivalence.[20] The
numerical analysis is based on the 2D Fourier modal method with
the implementation of the scattering matrix algorithm and proper
factorization rules, extended to multilayer structures.[21] First, we
should note that any transfer matrix method improves with
increasing number of subsystems and ultimately becomes an ideal
approximation in the limit where one divides the potential into an
infinite number of slabs, that is, there is an infinite multiplications
of matrices involved. Of course, this is impossible from the
numerical viewpoint, but it has been shown[22] that this limit is
actually equivalent to the WKB solution, provided the off-diagonal
reflection coefficients are neglected.

From this fact, two conclusions can be drawn. First, the
smoother the shape of the potential, the smaller the internal

reflectivity, and the better WKB will work. This implies that
WKB should not be used for tunneling through a potential bar-
rier hosting resonant-level subsystems, for example, quantum
dot or adatom on the surface or to be more precise, WKB could
be used only for each subsystem separately and then their trans-
fer matrices combined. Second, in order to make a comparison
with the scattering matrix approach, one needs to take into
account multiple events when the carrier is scattered back (twice)
into the barrier and only after that is transmitted. At present all
scattering formalism by default includes these corrections, so
does the approach introduced in ref. [23], with which we
compare. Fortunately, from our result, one can easily deduce
the reflection coefficient as well, since RðF,ωÞ ¼ 1� TðF,ωÞ.
Thus we can construct a series of higher-order transmission

Figure 4. a) The transmission probability dependence on α, when effective barrier is a) 0.4 eV, b) 0.9 eV, and α changes from 0.1 to 2.5. Profiles in the
insets are shown in the case of F ¼ 0.5 V Å�1.

Figure 5. The transmission probability with the composite surface computed by Equation (14), when a) α1 ¼ 0.8, α2 ¼ 1.8, and ω01 ¼ ω02 ¼ 1 eV and
b) α1 ¼ 0.8, ω01 ¼ 1 eV and α2 ¼ 1.8, ω02 ¼ 0.9 eV.
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terms T ¼ TWKB þ R2ϒ2TWKB þ R4ϒ4TWKB þ : : : which can be
resummed as a geometric series. Above we introduced an addi-
tional factor ϒ which describes the wave function decay as it prop-
agates. For the waves above the barrier, or very close to the barrier
top, we expect ϒ ¼ 1, but deep inside the barrier, for evanescent
wave solution we expectϒ ! 0 and there indeed pure WKBworks
well (see Figure 6). In the plot below we show a comparison of the
numerical method with zeroth-order WKB result and such a

resummation with ϒ ¼ 1. We observe in Figure 7 that the resum-
mation of the geometrical series allows to establish quite good cor-
respondence between the numerical and analytical methods for
larger ω. In the range of the highest transmissions the numerical
method reveals the presence of oscillations that are due to the
quantum interference effect.

Our method cannot capture these; however, an extension in
this direction could be in principle possible. In any case, the

Figure 6. The transmission probability comparison between numerical and analytical solutions: the blue points indicate the scattering matrix method
calculation with 20 slabs, the pink line indicates the WKB solution considering the internal reflections, and the gray line shows the pure WKB solution.

Figure 7. The transmission probability comparison between numerical and analytical solutions: the blue points indicate the scattering matrix method
calculation with 20 slabs, the pink line indicates the WKB solution considering the internal reflections, and the gray line shows the pure WKB solution.
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effect turned out to be tiny for our power law barriers.
There are also advantages of the exact analytical WKB formula:
since the result is given as a single special function (i.e., there is
no demand for a final summation of a series or a convolution of
special functions), its computational cost is negligible, compara-
ble with a few matrix multiplications. For the numerical method
we observe that the result becomes stable when �20 slabs are
taken (see Figure 8); moreover, one needs to be prudent with
numerical stability of the matrix multiplication. Finally, it is a
challenge to compute numerically data that would generate an
analogue of Figure 4, which is particularly relevant for systems
where α may change in the course of experiment, such as sput-
tering phenomena.

5. Discussion

5.1. Experimental Relevance

Due to its technological importance, the research field of field-
emission applied theory is extremely broad. While the largest
amount of work is done purely numerically, we ought to point
out works where an analytical approach to external potential
has been used. These were actually numerous; a literature search
solely for the case of the ellipsoidal tip reveals cases, where the
potential has been approximated either as an ellipsoid[24] (with
logarithmic dependence VðrÞ) or a power series in terms of
Legendre functions.[25] An extensive list of such analytical poten-
tials has been given in ref. [26]. The need for these works was due
to the fact that the authors wished to have an insight in how
parameters of the potential affect the transmission, hence a sim-
ilar motivation to ours. However, the last WKB integral was
always performed numerically. In our work, we assume a given
shape of the potential to get a closed analytical formula for the
final result, the transmission itself. We cannot presume to
achieve similar detail description of potential as the aforemen-
tioned works, dedicated to this subject. However, we wish to
point out a few arguments showing that our assumption is actu-
ally plausible, certainly not unrealistic.

5.1.1. Metallic Surfaces

If the surface is metallic, then we can use knowledge from basic
electrostatics to predict power law behavior in its vicinity. For a
wrapped metallic surface electrostatic, textbooks [e.g., Jackson,[27]

Chap. 2.11] tell us that the power law of external potential
depends on the angle of each metallic corner. In general, one
expects the following power law of electric field: xπ=β. For elevated
areas, with corner angles larger than π we then expect a behavior
like rα with α < 1, hence faster decay of external field (but defi-
nitely as a power law). In the extreme case of sharp tip, we have
β ¼ 2π ⇒ α ¼ 1=2, which is the smallest possible value of α for
the entirely metallic 2D surface. On the other hand, for lower
(convex) areas, the corner angles are smaller than π and so we
now expect a behaviour like rα with α > 1 for the external field.
The image potential, the other term in Equation (3), will also
change depending on surface corrugation: when an electron
approaches narrow, fine corners, it is necessary to introduce
more (artificial) image charges. This corresponds to dipolar
and quadrupolar moments and so the potential diverges faster
than 1=r. Overall the spatial dependence of both terms, the exter-
nal field and image potential, changes, but in both cases these
changes can be potentially captured by our formula Equation (3).

5.1.2. Other, Nonmetallic Surfaces

In the above given situation, we considered a purely metallic, but
corrugated surface, where the elementary electrostatic solution is
readily accessible. In general, we can assume two coexisting
phases on the surface: a dielectric and a metal. The details will
depend on the system under consideration, but a few general
remarks can be made. For the dielectric, for example, a layer
of an oxide gradually covering all available areas, it is likely that
we shall encounter a fractal structure, with a partial (Hausdorf )
dimension which upon averaging will lead to varying dielectric
constant εðxÞ that goes down to � 1 as we move toward the out-
side medium. In the effective medium approximation, the local
εðxÞ will be proportional to the surface coverage of the dielectric
(within a given cross section) which leads to a power law depen-
dence εðxÞ � xb. Naturally, this shall affect both ingredients in
the interaction part of the Hamiltonian: the image potential will
be rescaled by a factor 1=εðxÞ, while the external potential by a
factor εðxÞ. This simply means that in the absence of corrugation,
but in the presence of the oxide layer, one should take α ¼ 1þ b.

The reasoning can be also extended to the case when the
kinetic energy part of the Hamiltonian is varying in the direction
perpendicular to the surface. As shown in ref. [12], by a proper
substitution of the x-variable, we are able to rewrite the system
with varying content of metallic phase (again as a fractal) or a
system with a varying mass mðxÞ into the form Equation (3);
hence, our formalism should be also applicable.

5.2. The Case of α ¼ 2 and Connection with an Exact
Quantum Solution

We observe that the expression we found, Equation (7), suffers
from a singularity when α ¼ 2. Numerical studies allowed us to
check that any small deviation �ε ! 0 removes instability and

Figure 8. The transmission probability calculated by scattering matrix
method: red points indicate calculation with 5 slabs and green ones with
20 slabs.
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produces a sensible result. Hence only the case α ¼ 2 requires a
separate insight. First we note that the 1=x2 potential well is
known[28] to be a pathological case where the well-defined quan-
tum states can be defined only upon imposing an UV cutoff in
the problem and upon adding an extra-boundary condition for a
derivative.

The need to add the derivative boundary condition suggests
that one needs to go beyond WKB to remove the singularity.
Quite remarkably, when α ¼ 2, Equation (7) actually simplifies
as now the second index of hypergeometric functions 2F1 equals
1, and so it simplifies to 1F1 otherwise known as Kummer and
Triconi confluent hypergeometric functions (since the third
index is also equal to 1, it could be simplified further to a bino-
mial, but we shall refrain from that because of reasons that will
become clear momentarily). On the other hand, by a substitution
of variables x2 ! ξ we write the following Schrödinger equation

ξ∇2ψ þ ∇ψ þ ð1=ξþ f ξ� νÞ ¼ 0 (15)

Here the presence of the external force f introduces a natural
energy scale in the problem. It is not a pathological case any lon-
ger and actually it admits an exact analytic solution. Remarkably,
it can be written as a combination of Kummer and Triconi
confluent hyperbolic functions (Some languages of symbolic
calculations return the solution in terms of generalized
Laguerre polynomial, but the latter one is equivalent to
the Kummer function) in the following form

ψ að Þ ¼ exp �ık0að Þ 1� að Þ 1F1

�
�1=2þ ı a

1�a , 1þ 2ı a
1�a ,

2a
1�a

�
. The

form is remarkably similar to our Equation (7) when α ¼ 2.
To elaborate on this comparison, one can expand the

exponential function (for small argument) in Equation (11)
and compare it with an exact quantum mechanical tun-
neling expression T � 1=½2þ 2 expðık0xin � xoutÞððf ðxin=xoutÞ �
gðxin=xoutÞÞ=ðf 0ðxin=xoutÞ � g 0ðxin=xoutÞÞÞ�where we used energy
current conservation and f , g are the two linearly independent
solutions of Schrödinger equation, the Kummer and Triconi
functions in our specific case. We see that for α ¼ 2 we can make
a full connection with quantum mechanical solution provided we
add an extra phase shift in the first two indexes of 1F1 functions
and that we include the f 0, g 0 derivatives in the denominator, as
they were naturally neglected in WKB. Please note that the deriv-
ative of Equation (7) will naturally contain the problematic
1=ðα2 � 4Þ factor and so in the full solution the singularities
in the numerator and denominator will cancel each other.

In summary, this detailed study of α ¼ 2 case allowed us to
make a direct link with the exact quantum mechanical solution
of the problem. This not only justifies the Kemble version of
JWKB, but also shows that making a generalization of tunneling
expression and writing it in terms of hypergeometric 2F1 func-
tions is very useful from the fundamental viewpoint. It remains
to be shown whether the corrections to JWKB identified here can
be applied for any value of α (the general solution of the quantum
mechanical problem for an arbitrary α is not available at present),
but it can serve as a relevant benchmark for future experiments
and numerical studies.

6. Conclusion

In conclusion, the main result of our article is to derive in the
JWKB approximation the exact analytic tunneling formula for
the barrier described by a fractional power law. The formalism
incorporates the external electric field as well as interaction with
an image charge left behind in the surface. Our potential is quite
specific, as it involves two power laws of precisely opposite expo-
nents, but the existence of the exact closed analytic solution for
the transmission TðEÞ, expressed in terms of an easy-to-evaluate
single special function, is nevertheless a remarkable result We
showed that quite rich tunneling spectrum is possible for the
composite surface, paving the way for future analytical modeling
of experimental findings. Finally, we showed that our result is
general enough to build a connection with some cases of the
exact quantum mechanical result.
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