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Abstract: Lithium-ion batteries are currently one of the most important mobile energy storage units
for portable electronics such as laptops, tablets, smartphones, etc. Their widespread application
leads to the generation of large amounts of waste, so their recycling plays an important role in
environmental policy. In this work, the process of leaching with sulfuric acid for the recovery of
metals from spent Li-ion batteries in the presence of glutaric acid and hydrogen peroxide as reducing
agents is presented. Experimental results indicate that glutaric-acid application improves the leaching
performance compared to the use of just hydrogen peroxide under the same conditions. Obtained
samples of leaching residues after mixed inorganic-organic leaching were characterized with Scanning
Electron Microscopy, Fourier Transform Infrared Spectroscopy, and X-ray diffraction.
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1. Introduction

Lithium-ion batteries and accumulators are used in a wide variety of devices—mobile phones,
laptops, tablets, but also children’s toys and medical equipment. In general, batteries made our life
easier and revolutionized the world—thanks to the possibility of using cells as an electricity source,
many devices have become mobile, making them more attractive. Complex battery packs are also
used in the automotive industry—as a power source for modern hybrid or electric cars. Despite their
many advantages, the widespread use of batteries has some drawbacks, mainly due to the quite
complex composition of the cells. Lithium-ion batteries are made up of a graphite anode and a cathode,
made out of a LixMeyOn type compound—the most commonly used is lithium cobaltate, LiCoO2.
Lithium-ion cells also contain an organic electrolyte, which is usually lithium salts dissolved in a
mixture of organic solvents (e.g., salts—LiClO4, LiPF6, LiBF4; solvents—dimethylsulfoxide, propylene
carbonate, diethyl carbonate). In addition, the electrodes are separated from each other by a synthetic
separator—usually a polyolefin membrane, which enables the transfer of lithium ions while at the
same time protecting against a short circuit that may occur as a result of direct contact of the anode with
the cathode [1–5]. Each component of the Li-ion battery generates large amounts of waste, while the
most hazardous ones are compounds containing heavy metals such as cobalt.

Several studies confirm that one of the main components, the lithium cobaltate, has a negative
influence on the environment as well as on living organisms. It induces oxidative DNA damage causing
mutagenic effect and inflammatory response, mainly caused by the cobalt release [6]. Many data show
the role of Co(II) ions released from batteries, which causes the formation of OH-radical species by a
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Fenton-like reaction, leading to chromosomal breaks and the formation of cancer cells [7,8]. Due to that
effect, battery waste containing cobalt becomes dangerous for aquatic systems and humans, generating
a huge need for recycling of the spent batteries. Compared to the production of new batteries,
the processing of the waste batteries is a much more complicated and costly process. Nevertheless,
due to the constant increase in the amount of this waste, technologies for recycling spent batteries to
recover metals contained in them have been developed, and they are used in industrial practice around
the world. The following processes are distinguished: mechanical separation, thermal treatment
(pyrometallurgy) and acid leaching (hydrometallurgy). Due to the technological, environmental and
economic benefits, the acid leaching of spent Li-ion batteries for cobalt and lithium recovery is widely
studied in the literature. The commonly used leaching agents are inorganic acids, especially sulfuric,
hydrochloric, phosphoric and nitric acids [9–12], and organic acids, e.g., citric, succinic, acetic and malic
acids [13–16]. Cathode powder leaching processes are usually performed with the use of reducing
agents, the presence of which may cause the metals contained in the battery mass to take a bivalent form
(mainly Co(III) to Co(II)), soluble in acid solutions [17]. Most often, hydrogen peroxide is used for this
purpose [18–22]. However, in recent years, there has been an increasing interest among scientists in the
search for organic reducing agents, e.g., ascorbic acid [23–25]. This trend is triggered by environmental
concerns, and it offers more effective metal recovery from spent Li-ion batteries.

During the acid leaching of the powder obtained from spent Li-ion batteries, many chemical
reactions take place between the tested material and the added reagents (leaching agents and reducing
agents), resulting in the formation of various products. In the literature, there are examples of reactions
occurring during the leaching of battery powder (LiCoO2 cathode), where both the leaching agent
and the reducing agent are inorganic compounds (e.g., H2SO4 and H2O2) [26]. The reactions taking
place between the powder material and various organic acids are more complicated. Nayaka G. P. et al.
investigated the leaching process with iminodiacetic and maleic acids with the addition of ascorbic
acid [24]. The authors paid attention to the formation of products in the form of lithium and cobalt
complexes (the initially colorless solution turns pink over time, which indicates the transition of Co3+

to complex forms; lithium complexes are not colored), as well as the reducing effect of ascorbic acid
on cobalt ions—a reduction from Co3+ to Co2+ (in the case of using only iminodiacetic acid in the
leaching solution, two forms of cobalt were present: Co3+ and Co2+, while for maleic acid alone,
only unreduced cobalt was found—Co3+). Nayaka G. P. et al. similarly presented the changes taking
place during the processes, the results of which have been presented in their publications on similar
topics (leaching experiments: citric acid with ascorbic acid, tartaric acid with ascorbic acid, adipic
acid/nitryldiacetic acid) [25,27,28]. However, no specific record of the course of these reactions has
been proposed due to the need to study the structures and chemical composition of powders after
leaching each time in order to determine the compounds present in the material and their forms.

This article is focused on the determination of the chemical composition and form of compounds
present in battery powders after leaching in the presence of 1.5 M H2SO4 as a leaching agent with or
without reducing agents: 30% solution of H2O2 and/or C5H8O4 (glutaric acid). The rates of metal
recovery obtained as a result of acidic reductive leaching and the effects of quantitative and qualitative
analysis performed with the use of the following methods: ICP-OES, SEM-EDS, FT-IR and XRD are
presented and discussed.

2. Materials and Methods

In this study, various types of Li-ion batteries were used. They were obtained from numerous
sources of commercial origins. They were dedicated for laptops from different manufacturers, such as
Lenovo, Toshiba or Hewlett-Packard. Initially, upstream material was dismantled with the manual
procedure described widely in literature, including removal of both steel and plastic cases that cover
the batteries [29–31]. Anode and cathode were crushed carefully and sieved to separate particular
elements such as plastic film, scrap paper, outer metallic body and membrane. Obtained battery
powder was collected and used for further research. The obtained mass was subjected to XRD and SEM
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analyses as well as a mineralization method. To mineralize, 0.5 g of the tested waste battery powder
was spread wet in an open system using the DigiPREP Jr. mineralization system (parameters: 10.00 mL
65% HNO3, digestion time: 5 h, temperature: 120 ◦C). The obtained solution was evaporated to a
volume of approximately 0.5 mL, transferred quantitatively to a plastic container and supplemented
with deionized water to 50 g. At the same time, a blank sample was prepared and included in the final
results. The analyses were performed in parallel in three repetitions. Then the metal concentrations in
the solution were determined using ICP-OES (Agilent 720).

The separated powder from spent Li-ion batteries was subjected to the leaching. Acid leaching
was performed in 1.5 M sulfuric acid (96% analytical grade, STANLAB), as the reducing agents glutaric
acid C5H8O4 (5% w/v) and hydrogen peroxide H2O2 (30% analytical grade, STANLAB; 0.9% v/v) were
used. An experiment without the addition of reducing agents was also performed in order to compare
its results with samples 1, 2 and 3, and to determine the effect of reducers on the obtained recovery
degrees of the tested metals. The ratio of the solid phase to the liquid phase was 1/10 in each case.
Other assumed leaching parameters were: temperature—90◦C, time—2 h and mixing speed—500 rpm
(Table 1). The methodology of these experiments has also been demonstrated in previous studies
where the results of leaching research were compared with different process parameters [32].

Table 1. Summary of the best operational conditions for leaching the battery powder.

Sample Volume of
1.5 M H2SO4

Concentration of
Reducing Agent Time (h) Slurry Density

(w/v) Temp. (◦C) Rotation
Rate (rpm)

Sample 1 100 mL 0.9% H2O2 (v/v) 2 10/100 90 500
Sample 2 100 mL 5% C5H8O4 (w/v) 2 10/100 90 500

Sample 3 100 mL 0.9% H2O2 (v/v) +
5% C5H8O4 (w/v) 2 10/100 90 500

Sample 4 100 mL - 2 10/100 90 500

After leaching was complete, the samples were vacuum-filtered. The content of metals Al, Ca,
Co, Cr, Cu, Fe, Li, Mn, Na, Ni, Si and Zn in the leachates was determined (ICP-OES, Agilent 720)
and their percent recovery degrees were determined in relation to the initial concentrations in the
tested material. The samples of battery powder after leaching with reducing agents (no. 1, 2 and 3)
were dried at 105 ◦C for 24 h in order to characterize the metal content. Then, the dried material was
analyzed with microscopic and spectroscopic techniques. To determine the morphology of powder
the FE-SEM Merlin (Zeiss) equipped with a Gemini II column was used. The device worked in low
kV value range (0.5–1.5 kV) and low probe current 10–20 µA. EDS was used for elemental analysis
of the measured samples. Complementary to the EDS analysis, for determination of the chemical
composition of samples the FT-IR analysis was performed with Nicolet 8700 in range 4000-400 cm−1.
The powder X-ray diffraction patterns were recorded with a powder diffraction X-ray diffractometer
(PXRD) X’PERT Phillips with PW 1830 generator with CuKα radiation with line λ = 1.5405980 Å
and a scan rate of 0.05◦ per minute in 0.016◦ steps covering the 2θ angle range from 20◦ to 130◦.
Measurements were performed at room temperature using DHN software.

3. Results and Discussion

3.1. Mechanical Treatment

As a result of the mechanical processing of individual cells, the following fractions were obtained:
ferromagnetic (metals, e.g., steel housing), diamagnetic (plastics, paper) and paramagnetic (anode and
cathode—battery powder) constituting the material used for further research. The components of the
entire spent cell and a single lithium-ion battery separated as a result of mechanical processing are
presented in Figure 1.
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forms a package of individual (in this case nine) cells. Both the complete battery and a 
single cell are composed of many different components, such as plastics, paper or metals. 
The most valuable raw material is the battery mass (anode and cathode powders), rich in 
metals that can be successfully recovered. Battery powder constitutes more than 36% of 
the total mass of a single spent Li-ion cell, and it was used for further laboratory experi-
ments. The obtained results are very similar to those in the literature [33]. 

3.2. Quantitative and Qualitative Analysis of Battery Powder before Leaching 
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Figure 1. Mechanical treatment of a single spent lithium-ion cell. Stage I: (A) spent lithium-ion battery;
(B) plastic case; (C) lithium-ion cells; (D) paper; (E) metals; (F) PCB and wires. Stage II: (G) single
spent lithium-ion cell; (H) cell after cutting; (I) metal case; (J) cover and other plastics; (K) separator;
(L) battery powder; (M) copper foil; (N) aluminum foil.

From the presented results, it can be concluded that the entire lithium-ion battery forms a package
of individual (in this case nine) cells. Both the complete battery and a single cell are composed of many
different components, such as plastics, paper or metals. The most valuable raw material is the battery
mass (anode and cathode powders), rich in metals that can be successfully recovered. Battery powder
constitutes more than 36% of the total mass of a single spent Li-ion cell, and it was used for further
laboratory experiments. The obtained results are very similar to those in the literature [33].

3.2. Quantitative and Qualitative Analysis of Battery Powder before Leaching

In order to investigate the qualitative composition of the tested material, the battery powder was
subjected to XRD analysis, which showed that the main components in the material are carbon and the
cathode compound—LiCoO2. Then the powder material was mineralized, as was the content of metal
ions: Al, Ca, Co, Cr, Cu, Fe, Li, Mn, Na, Ni, Si and Zn in the obtained solution (ICP-OES, Agilent 720).
It was specified that the tested battery powder contains all the marked metals, mostly cobalt, lithium
and nickel (Table 2).
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Table 2. Metal content in the sample of powder from the spent Li-ion batteries [32].

Metal Al Ca Co Cr Cu Fe Li Mn Ni Si Zn

C (g/kg) 0.93 0.40 256.0 0.005 3.59 0.27 33.20 0.560 14.40 3.76 0.07

3.3. Acidic Reductive Leaching

As a result of the acidic reductive leaching of the tested battery powder, multiple solutions with
a similar raspberry color, but different saturation, were obtained. This could already indicate the
degrees of leaching of individual metals, especially cobalt responsible for the pink color of the samples.
The contents of the metals in the obtained solutions were determined and presented in the form of
percent recovery degrees (Table 3).

Table 3. Degrees of metal recovery from solutions after acidic reductive leaching.

Metal Al Ca Co Cr Cu Fe Li Mn Ni Si Zn

Recovery, %

Sample 1 71.61 48.73 1.95 67.49 83.53 87.35 84.19 56.42 80.25 71.68 87.58

Sample 2 10.64 24.58 32.30 66.25 82.12 99.45 75.86 31.22 38.77 43.30 47.66

Sample 3 53.66 35.98 59.37 84.60 97.36 100.00 79.81 62.39 81.75 70.25 93.93

Sample 4 49.76 34.09 30.94 47.67 79.96 93.44 72.32 31.10 37.61 58.52 50.55

Based on the results, it can be concluded that all tested metals were leached to some extent in each
of the samples (see Table 3). In the case of aluminum, the highest degree of recovery was obtained
for sample 1 (reducer 30% solution of H2O2), i.e., 71.61%; slightly lower—53.66% for sample 3, where
two reducing agents were dosed; and 49.76% for sample 4 (an experiment without reducing agents).
The lowest Al recovery was noted for sample 2—10.64%. Therefore, it can be concluded that the
addition of glutaric acid does not significantly improve the Al leaching effects and when used with
hydrogen peroxide, it may even inhibit the action of the inorganic reducing agent. Similar relationships
were also obtained for calcium (1—48.73%, 2—24.58%, 3—35.98%, 4—34.09%); and silicon (1—71.68%,
2—43.30%, 3—70.25%, 4—58.52%). Relatively high levels of lithium recovery were achieved in each of
the samples. The greatest amount of lithium was leached in sample 1, where the hydrogen peroxide as
a reducing agent (84.19%) was used. A slightly lower degree of recovery (79.81%) was obtained in
sample 3 (reducing agents—hydrogen peroxide and glutaric acid). The lowest results were recorded in
samples 2 and 4 (respectively: 75.86% and 71.21%). For the other metals, i.e., Co, Cr, Cu, Fe, Mn, Ni
and Zn, the highest levels of their recovery were determined for sample 3 (H2O2 + C5H8O4), which
confirms the assumed synergistic action of two chemical compounds used as reducers, in the tested
reaction environment. Taking into account all the received results of the analyses, it can be seen that
the addition of a reducing agent to the leaching process allows for obtaining higher recovery rates
for most of the metals contained in the leached waste battery powder. However, the type of reagent
used as a reducing agent is important. It is also worth noting that in sample 1 a very low leaching
degree of cobalt was recorded (1.95%), while the use of glutaric acid as a reducing agent in sample 2
increased the recovery degree of this metal to 32.30%. Nevertheless, literature data confirm the positive
influence of the presence of hydrogen peroxide used as a reducing agent on the obtained degrees of
recovery of cobalt ions (reduction of Co (III) to the more easily leached form—Co (II)) [26], which could
not be reproduced in the presented laboratory studies. This may be due to differences in the initial
preparation of the research material and the assumed parameters of the leaching process, especially the
adopted too-low dose of hydrogen peroxide. Such an assumption was made in previously conducted
research [32]. The effect of an H2O2 dose on the sulfuric acid leaching process was investigated,
where glutaric acid was also used as a reducing agent. By increasing the dose of H2O2 to 15 mL, it
was possible to achieve almost 90% cobalt recovery, with about 96% lithium and 91% nickel recovery.
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Thus, the hypothesis, that increasing the volume of H2O2 contributes to higher Co recovery degrees,
was confirmed [32].

As mentioned before, the battery powder contained the most cobalt, lithium and nickel in its
composition. The recovery of these metals from spent Li-ion batteries is most commonly studied in the
research. Comparing the obtained results for Co and Ni, it can be clearly stated that the highest levels
of their recovery (59.37% and 81.75%, respectively) were obtained in sample 3 leached in the presence
of two reducing agents. For lithium, the highest result was obtained for sample 1, however, it is not
much higher than in sample 3. Therefore, it can be concluded that taking into account the leaching of all
three metals, the process parameters for sample 3 are optimal and give the best results—high efficiency
of leaching of metals such as Co, Li and Ni. Detailed considerations on this subject are included in the
publication [32]. Moreover, the simultaneous use of hydrogen peroxide and glutaric acid as reducing
agents also allowed obtaining the highest recovery degrees of most of the tested materials: Cr (84.60%),
Cu (97.36%), Fe (100%), Mn (62.39%) and Zn (93.93%). Next, the leaching residues were investigated to
determine the morphology of samples, their chemical composition and crystallinity.

3.4. Morphological Studies

The morphology of leaching residues was investigated with scanning electron microscopy (SEM).
Initially, SEM analysis was performed for waste battery powder before leaching. As can be seen
in Figure 2, the sample has uniform morphology that is mainly based on a granulelike structure.
The sample has homogeneous morphology within the whole surface.
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Figure 2. SEM images of waste battery powder before leaching (sample 0), where (a) and (b) are
presented in different scale.

Figure 3 shows images obtained for sample 1 consisting of irregular structures having a different
shape and size. The morphology of the sample is similar to the whole bulk structure. As can be seen in
Figure 3a, small particles having a grainlike structure about 150–200 nm are visible, however some
of them tend to agglomerate, forming wirelike objects. Following images show irregular structures
that seem to be crystals. They are present in the whole sample. Figure 3c reveals large objects with a
round shape that tends to peel onto their surface. Based on the EDS analysis presented at Figure 3d
as the map of elements the smallest granulelike objects consist mainly of cobalt or its compounds.
The Following crystal-like structures consist of fluorine, while the oxygen accompanies almost all
objects in the sample except the largest ones that are carbon coming from the graphite in the spent
battery powder.



Energies 2020, 13, 6732 7 of 15

Energies 2021, 14, x FOR PEER REVIEW 7 of 16 
 

 

all objects in the sample except the largest ones that are carbon coming from the graphite 
in the spent battery powder. 

  
(a) (b) 

  
(c) (d) 

Figure 3. SEM images of sample 1, where (a–c) show different scales, while (d) is an EDS map of elements. 

Following images recorded for sample 2 are presented in Figure 4. As can be seen in 
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Following images recorded for sample 2 are presented in Figure 4. As can be seen in Figure 4a,b,
this sample has a completely different shape than sample 1, and the main objects seem to be crystal-like.
That sample looks more compact, and grainlike structures are not visible. Figure 4c reveals large
objects that are present in the whole morphology. Their size ranges from about 1 µm up to larger
than 10 µm. EDS analysis indicates that the sample is heterogeneous. Additionally, in comparison to
the previous sample, it also contains manganese or its compounds that were not leaching within the
procedure used for sample 2.
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of elements.

The SEM images for sample 3 are presented in Figure 5. The morphology is different from samples
1 and 2. As can be seen in Figure 5a–c, the sample seems to be the most uniform, consisting of rough
and compact structures. The objects present in the sample have a size from a few µm to more than
10 µm. The EDS map presented in Figure 5d reveals the elemental composition of the sample, showing
large areas of carbon, looking like the substrate and objects that contain cobalt, oxygen, fluoride and
even some nitrogen or their compounds. As visible, the surface of carbon is covered uniformly with
sulfur that comes from the sulfuric acid during the leaching process.
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Meshram P. et al. [34] investigated leaching residues consisting of LiCoO2, Li2CoMn3O8 and
(Li0.85Ni0.05)(NiO2) that were leached with H2SO4, and revealed that the morphology of the final
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product is very complex. Similarly to our results, the particles of LiCoO2 are much smaller after
leaching. Additionally, the final cobalt content was smaller, confirming successive recovery of that
element. Lv W. et al. [35] additionally used ammonium chloride as a reducer to treat an initial sample of
Li(Ni0.5Co0.2Mn0.3)O2, showing that after leaching, the morphology is amorphous, and there is a lower
content of Co, Ni and Mn, and a higher content of carbon. This corresponds with our experimental
results. Chen X. et al. [36] treated waste battery powder consisting mainly of the LiCoO2 with sulfuric
acid and an organic reducer, such as glucose, saccharose and cellulose. Their research indicated that
the sample of leaching residue has a more regular structure with well-defined crystallites after leaching.
The efficiency of the leaching was better than without the application of organic additives. All the
above-mentioned studies showed a heterogeneous product that required deep characterization with
spectroscopic techniques. Therefore, to understand the chemical composition of the products obtained
within this work, the FT-IR analysis was performed.

3.5. FT-IR Analysis

As shown in Figure 6, the FT-IR was employed to characterize the possible chemical composition
of the obtained leaching residues. Spectra were recorded in the range of wavenumber from 4000 cm−1

to 400 cm−1 with a resolution of 5 cm−1. Pure KBr pellets were used as reference material. Spectra were
recorded for all three samples.

Energies 2021, 14, x FOR PEER REVIEW 9 of 16 
 

 

LiCoO2 are much smaller after leaching. Additionally, the final cobalt content was smaller, 
confirming successive recovery of that element. Lv W. et al. [35] additionally used ammo-
nium chloride as a reducer to treat an initial sample of Li(Ni0.5Co0.2Mn0.3)O2, showing that 
after leaching, the morphology is amorphous, and there is a lower content of Co, Ni and 
Mn, and a higher content of carbon. This corresponds with our experimental results. Chen 
X. et al. [36] treated waste battery powder consisting mainly of the LiCoO2 with sulfuric 
acid and an organic reducer, such as glucose, saccharose and cellulose. Their research in-
dicated that the sample of leaching residue has a more regular structure with well-defined 
crystallites after leaching. The efficiency of the leaching was better than without the ap-
plication of organic additives. All the above-mentioned studies showed a heterogeneous 
product that required deep characterization with spectroscopic techniques. Therefore, to 
understand the chemical composition of the products obtained within this work, the FT-
IR analysis was performed. 

3.5. FT-IR Analysis 
As shown in Figure 6, the FT-IR was employed to characterize the possible chemical 

composition of the obtained leaching residues. Spectra were recorded in the range of 
wavenumber from 4000 cm−1 to 400 cm−1 with a resolution of 5 cm−1. Pure KBr pellets were 
used as reference material. Spectra were recorded for all three samples. 

The broad bands located around 3440 cm−1, 3200 cm−1 are characteristic for vibrations 
of -OH group, which is absorbed onto the surface of the sample and originates from water. 
The band that can be ascribed to δH2O is visible at 1649 cm−1 [37,38]. The two bands at 
2928 cm−1 and 2880 cm−1 are characteristic for CH2 and CH3, respectively [39,40]. The band 
at 1649 cm−1 can be assigned to C=O stretching vibration [39], while 1745 cm−1 can be as-
cribed to stretching of -COOH [41]. Two bands at 1518 cm−1 and 1401 cm−1 may correspond 
to the asymmetric and symmetric vibrations of the -COO- [42,43]. The band located at 1166 
cm−1 confirms the presence of asymmetric stretch of S=O in -SO3H groups. This comes 
from the leaching process with sulfuric acid. The 1105 cm−1 band corresponds to symmet-
ric stretch [44,45]. The band at 1023 cm−1 is characteristic of the C-O vibration [46,47]. Two 
small bands located at 876 cm−1 and 821 cm−1 can be attributed to -C-H vibration. Follow-
ing bands at 669 cm−1 and 558 cm−1 can be assigned to νCo-O vibrations that confirm the 
formation of Co2O2 nanocrystals [48–50]. The band at 603 cm−1 is unclear, and it can be 
ascribed to Co-O stretching or -OH vibration from the water molecule [50,51]. 

 
Figure 6. FT-IR spectra of battery waste powder for sample 1 that was leached with H2SO4 and H2O2,
sample 2 that was leached with H2SO4 and C5H8O4, and sample 3 that was leached with H2SO4,
C5H8O4 and H2O2.

The broad bands located around 3440 cm−1, 3200 cm−1 are characteristic for vibrations of -OH
group, which is absorbed onto the surface of the sample and originates from water. The band that
can be ascribed to δH2O is visible at 1649 cm−1 [37,38]. The two bands at 2928 cm−1 and 2880 cm−1

are characteristic for CH2 and CH3, respectively [39,40]. The band at 1649 cm−1 can be assigned
to C=O stretching vibration [39], while 1745 cm−1 can be ascribed to stretching of -COOH [41].
Two bands at 1518 cm−1 and 1401 cm−1 may correspond to the asymmetric and symmetric vibrations
of the -COO- [42,43]. The band located at 1166 cm−1 confirms the presence of asymmetric stretch
of S=O in -SO3H groups. This comes from the leaching process with sulfuric acid. The 1105 cm−1

band corresponds to symmetric stretch [44,45]. The band at 1023 cm−1 is characteristic of the C-O
vibration [46,47]. Two small bands located at 876 cm−1 and 821 cm−1 can be attributed to -C-H vibration.
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Following bands at 669 cm−1 and 558 cm−1 can be assigned to νCo-O vibrations that confirm the
formation of Co2O2 nanocrystals [48–50]. The band at 603 cm−1 is unclear, and it can be ascribed to
Co-O stretching or -OH vibration from the water molecule [50,51].

As can be seen in Figure 6, the spectrum recorded for sample 1 (black curve) that was leached
with H2SO4 and H2O2 reveals strong bands at 1166 cm−1 and 1105 cm−1. These two are the most
intensive among all samples. Obtained results correspond with previous analyses that indicated the
presence of sulfur or its compounds with EDS mapping and formation of Li2SO4 within the XRD
studies. The presence of a strong band in the spectra confirms the formation of the chemical reaction of
the acid with the substrate and formation of a compound with S=O groups. Following samples also
have these bands, while their intensity confirms lower content of sulfur-based compounds. The bands
characteristic to the carbon-based compounds have the highest intensity for sample 3, which confirms
the most efficient leaching and corresponds with the above-mentioned analyses.

Based on the recorded spectra it is clear that depending on the leaching method, the chemical
composition and content of species change. Procedure 2 seems to be the least efficient towards
the recovery of metals, while the most efficient one is procedure 3, where both glutaric acid and
hydrogen peroxide were used as reducing agents. Following measurements were performed for a
deeper understanding of the chemical composition of the species formed in the samples after the
leaching process.

3.6. Crystallographic Structure

The XRD patterns were recorded in the diffraction angle (2θ) range from 15◦ to 85◦, with a scan
rate of 1◦/min. The diffractogram that is presented in Figure 7 shows the patterns for the sample before
leaching. The observed X-ray reflecting Bragg angle positions of LiCoO2 for (003) is about 19.5◦ [49,52].
The following pattern located at 37.3◦ angle can be described as (001), while the next pattern that has
high intensity of about 45◦ is characteristic to the (104) plane.
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Figure 8 shows the reflection patterns recorded for samples after acid treatment. All samples
are highly polycrystalline, and the sharp peaks confirm the formation of well-defined crystallites.
The highest intensity of the reflection patterns was observed for sample 2, where the leaching agents
were sulfuric and glutaric acids. The lowest intensity was observed for sample 3, where the hydrogen
peroxide was used additionally. It suggests that without hydrogen peroxide the leaching process is
less effective than with it.
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Figure 8. XRD pattern of battery waste powder for sample 1 that was leached with H2SO4 and H2O2,
sample 2 that was leached with H2SO4 and C5H8O4, and sample 3 that was leached with H2SO4,
C5H8O4 and H2O2.

XRD data revealed that sample 1 presented in Figure 8 has multiple patterns with predominant
peaks at the angles: 18.7◦, 19.5◦, 27◦ and about 45◦. The peak located at 18.7◦ diffraction angle can be
ascribed to Co3O4 (111), along with lower peaks at 37.5◦ corresponding to the (111), 39.1◦ for (222),
while 45◦ can be attributed to the (400) plane or (104) that is characteristic to LiCoO2 [53,54]. Based on
the literature, this peak could be also attributed to the CoSO4 [55]; however, based on the EDS analysis
it can be also ascribed to the LiF [56–58]. As can be seen, the pattern that spears at all samples about
19.5◦ is ascribed to LiCoO2 for (003) [49,52], while 37.3◦ angle can be described as (001), 39.1◦ as (102) as
well as the above mentioned (222) plane for Co3O4. The peak around the 55◦ angle can be ascribed to
the presence of carbon in the sample. The peak at 27◦ can be ascribed to the carbon [59] or formation of
Li2SO4 under the sulfuric acid treatment, which may be also ascribed to the small peak at 42.1◦ [60,61].

Application of glutaric acid instead of hydrogen peroxide leads to the changes in the XRD patterns.
The main difference for sample 2 is presented in Figure 8. The difference is the lack of the peak at
the 19.5◦ angle that corresponds to the (003) LiCoO2. However, other peaks have a higher intensity
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than for sample 1. Additionally, the presence of the peak corresponding to the C (102) is more
visible. The diffractogram also reveals a pattern for carbon at about a 77.5◦ angle. XRD patterns
obtained for sample 3 reveal similar crystallinity to sample 2, while the intensity of reflection patterns
is slightly lower.

Diffractograms confirm that the main components of all samples are LiCoO2 and Co3O4. The results
are in good agreement with JCPDS data no. 75-0532 that are indexed to the hexagonal structure LiCoO2,
JCPDS data no. 43-1003 for literature data [62–65].

All results of XRD analyses were normalized between 0 to 1 values. As can be seen, the peak
visible at 26.6◦ corresponds to the carbon (JCPDS 98-061-7290). The presence of carbon comes from the
graphite-base anode. The high content of LiCoO2 as well as Co3O4 in all samples suggests that the
leaching agents did not completely dissolve inorganic species in the waste battery powders.

4. Conclusions

In this paper, the influence of the leaching reagent on the metallic component recovery was
investigated. Sulfuric acid was used as a leaching agent, while different reducing agents were used:
sample 1—treatment with H2SO4 and H2O2, sample 2—treatment with H2SO4 and C5H8O4, and sample
3—treatment with H2SO4, C5H8O4 and H2O2. Application of the ICP-OES technique revealed that
procedure 2 was the least effective towards metal recovery. In this procedure H2O2 was used as
a reducing agent. The most effective procedure was observed for sample 3, where both hydrogen
peroxide and glutaric acid were used.

The results of morphological studies by SEM and elemental analysis with EDS indicated that
the samples were highly heterogeneous with large carbon content. A sample that was leached with
both inorganic and organic reducer was the most regular, and the leached residue mainly had large
objects that were carbon. The smaller crystallites came from an inorganic phase containing metals.
Moreover, the results of FT-IR and XRD analysis revealed that the main components of the waste Li-ion
battery powders and leaching residues were LiCoO2, Co3O4 and carbon originating from the graphite
in the battery. The content of LiCoO2 and Co3O4 was the largest in the sample that was leached with
use of glutaric acid and hydrogen peroxide in the same bath. Thus, this work presents a successful
attempt to use glutaric acid in the presence of hydrogen peroxide towards metal recovery from spent
Li-ion batteries.
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1. Czerwiński, A. Akumulatory, Baterie, Ogniwa; WKŁ: Warszawa, Poland, 2018. (In Polish)
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