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Michał Wichrowski1 Piotr Krzyżanowski2 Luca Heltai3 Stanisław Stupkiewicz4

1Interdisciplinary Center for Scientific
Computing, Heidelberg University,
Heidelberg, Germany
2Faculty of Mathematics, Informatics and
Mechanics, University of Warsaw,
Warsaw, Poland
3Mathematics Area, SISSA – International
School for Advanced Studies, Trieste, Italy
4Institute of Fundamental Technological
Research, Polish Academy of Sciences,
Warsaw, Poland

Correspondence
Michał Wichrowski, Interdisciplinary
Center for Scientific Computing,
Heidelberg University, Im Neuenheimer
Feld 205, 69120, Heidelberg, Germany.
Email: mt.wichrowsk@uw.edu.pl

Funding information
Narodowe Centrum Nauki, Grant/Award
Number: 2015/19/N/ST8/03924;
EffectFact project, Grant/Award Number:
101008140; H2020 Programme, MSC
Action, Grant/Award Number: RISE-2022

Abstract
In this work, we develop a new algorithm to solve large-scale incompress-
ible time-dependent fluid–structure interaction problems using a matrix-free
finite element method in arbitrary Lagrangian–Eulerian frame of reference.
We derive a semi-implicit time integration scheme which improves the
geometry-convective explicit scheme for problems involving the interaction
between incompressible hyperelastic solids and incompressible fluids. The pro-
posed algorithm relies on the reformulation of the time-discrete problem as a
generalized Stokes problem with strongly variable coefficients, for which opti-
mal preconditioners have recently been developed. The resulting algorithm is
scalable, optimal, and robust: we test our implementation on model problems
that mimic classical Turek–Hron benchmarks in two and three dimensions, and
investigate timing and scalability results.
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1 INTRODUCTION

The study of fluid–structure interaction (FSI) is crucial in numerous fields of science and engineering. One of the earliest
references to FSI is attributed to Taylor,1 who described the interaction between a flexible swimming animal and the sur-
rounding fluid. Since then, FSI has remained an active area of research, with significant advancements in computational
methods,2-5 time stepping techniques,6 coupling strategies,7-9 and preconditioning techniques10,11 (see, for example, the
monographs by Bazilevs et al.12 or Richter13 for an overview on the topic).

The governing equations for FSI problems can be formulated in different reference frames. In this article, we focus on
the arbitrary Lagrangian–Eulerian (ALE) formulation,14 although fully Lagrangian15 and fully Eulerian16 formulations
are also used in the context of FSI problems. The ALE formulation is the preferred choice when no topological changes
occur during the simulations and for relatively small domain changes. If the problem requires such features, then one
typically resorts to non-matching methods, for instance, fictitious domain methods,17 distributed Lagrange multiplier
methods,18 or immersed methods.19,20
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The combination of two (generally nonlinear) continuum mechanics models brings with it the inherent complexity of
both of them, which is further compounded by the challenges that arise due to their coupling. It is not surprising that the
solution of a fully-coupled monolithic FSI problem2,21-23 is typically avoided by employing simplified coupling models,
such as partitioned loosely coupled schemes (explicit schemes)24 or partitioned fully coupled schemes (fixed-point or
implicit schemes)4,9,25,26 (see, for example, References 7,27, and 8 for a review of the various methods).

In the case of FSI problems involving incompressible fluids, fully partitioned schemes are often unstable due to
problems with added-mass effect.25,28,29 The natural remedy of leaning towards classical fixed-point methods is often
considered too expensive,30 however, some successful approaches have been developed.31

Implicit schemes lead to a system of nonlinear equations to be solved at each time step. The most complex compu-
tational scheme—and most stable—is the fully implicit scheme,2 where the whole problem is treated implicitly, and all
Jacobians are computed exactly, resulting in a system of equations that couples in a nonlinear way the fluid motion, the
deformation of the solid, and the evolution of the domain geometry. In References 32 and 11 block preconditioners for
such a system were proposed.

Although this is indeed a very robust method, solving such a nonlinear problem is not necessarily needed, since stable
integration schemes can be obtained by first using explicit methods to predict the deformed domain, and then using an
implicit scheme to compute the flow and deformation. This is the idea behind the geometry-convective explicit (GCE)
scheme.6,33-35 Well-posedness of the linear system arising from that discretization has been proven in Reference 36, and
some block preconditioners have been developed.

In this article, we design and evaluate an efficient and scalable, fully-coupled, semi-implicit FSI solver based on a sta-
bilized finite element method, which uses parallel matrix-free computing to deal with large problem sizes and exploits
preconditioners for high-contrast Stokes problems. In the article, we summarize the main results of the PhD thesis37

and report new results on a 3D FSI problem. Our FSI solver has much better stability properties than the GCE scheme,
while retaining a relatively low cost as compared to fully implicit methods. It uses a velocity-based formulation that
allows for a natural coupling between the fluid and solid equations. We model the fluid as an incompressible Newto-
nian fluid and the solid as an incompressible Mooney–Rivlin hyperelastic material38 and complement the solid model
with a volume stabilization technique that improves incompressibility of the solid. Incompressibility is a highly relevant
assumption for a wide range of rubber-like materials and in many biological applications. On the one hand, solid incom-
pressibility makes the computational treatment of the problem more difficult compared to the case of compressible and
nearly-incompressible solids, leading to an additional computational burden. On the other hand, treating the solid as
incompressible opens the way to the reinterpretation of the FSI problem as a high-contrast Stokes problem.

One of the key ingredients of the solver presented in this article is a semi-implicit scheme that improves on the GCE
scheme by applying similar ideas to the nonlinear terms in the fluid and solid equations, treating them semi-implicitly
with a predictor–corrector algorithm, crafted via a careful modification of backward differentiation formulas (BDF). Such
rewriting allows us to reinterpret the major step of the resulting improved GCE scheme as a high-contrast Stokes problem,
where the overall viscosity presents jumps with a ratio of six to nine orders of magnitude. The resolution of the solid
problem in terms of solid velocities is classical, but it is usually discarded from the computational point of view, due to
the lack of efficient solvers for such high contrast coefficients. In this work we revamp this formulation and exploit effi-
cient preconditioners that have recently been developed, for example, References 37,39-41. While direct application of
a high-contrast Stokes solver (as in References 37 and 40) is natural when following the assumption of incompressibil-
ity of the solid, such an assumption can be relaxed with minor modifications on the overall scheme, provided that the
compressibility of the solid is treated semi-implicitly.

A major advantage of the proposed FSI solver is its ability to make a consistent use of matrix-free computing, a tech-
nique where matrix operations are performed directly on the data, without the need to store the matrix explicitly, thus
increasing CPU cache efficiency and lowering the overall memory footprint.42 This is only possible because—thanks to the
crucial connection with the generalized Stokes problem provided by our time-stepping method (see Section 3.1.1)—we are
able to adapt to our problem a specialized preconditioner,40 matrix-free by design, and suitable for high-contrast problems.

The article is organized as follows: in Section 2, we describe the mathematical formulation of the FSI problem and
in Section 3 we introduce a semi-implicit time integration scheme and the spatial discretization using the finite-element
method. Section 4 discusses the preconditioned iterative solvers employed to efficiently solve the resulting linear system
of equations. In Section 5, we present the numerical experiments carried out to validate our method, including a test
resembling Turek–Hron43 benchmarks. We investigate the stability and efficiency of our solver for a range of parameters,
including mesh size and time step. Finally, in Section 6, we summarize the main findings of our work and discuss some
perspectives for future research.
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5448 WICHROWSKI et al.

2 FLUID–STRUCTURE INTERACTION MODEL

2.1 Weak form of the conservation equations

Let us consider an initial (reference) configuration given by the domain ̂Ω ⊂ Rd, consisting of two non-overlapping
sub-domains: a fluid domain ̂Ωf ⊂ ̂Ω, and a solid domain ̂Ωs ⊂ ̂Ω ( ̂Ω = ̂Ωs ∪ ̂Ωf ). In FSI problems, one expects changes in
both the solid configuration and the fluid domain in time. We denote the actual domain at time t ∈ [0,T] by Ω(t), with
the convention thatΩ(0) = ̂Ω. The deformed solid then occupies the domainΩs(t), while the fluid domainΩf (t) occupies
the region Ω(t) ⧵Ωs(t). When it will be clear from the context which instant t is referred to, we will usually drop the time
argument of the domains.

We use plain fonts to indicate scalar Eulerian variables (e.g., p) and indicate vector and tensor Eulerian variables using
boldface characters (e.g., v or 𝝈).

We indicate global fields for both the solid and the fluid without subscripts, and indicate with subscript s fields referring
to the solid domain Ωs, and with subscript f fields referring to the fluid domain Ωf , that is,

v(t, x) =

{
vs(t, x) x ∈ Ωs

vf (t, x) x ∈ Ωf .
(1)

The field v represents the velocity of whatever type of particle happens to be at point x at time t. Similarly, we define
a global Cauchy stress tensor 𝝈, and a global density field for the coupled problem, given by

𝝈(t, x) =

{
𝝈s(t, x) x ∈ Ωs

𝝈f (t, x) x ∈ Ωf ,
𝜌(t, x) =

{
𝜌s(t, x) x ∈ Ωs

𝜌f (t, x) x ∈ Ωf ,
(2)

which will depend on the constitutive properties of the fluid and of the solid. For brevity, we will skip the time and space
dependence of the variables when confusion is not possible.

By imposing conservation of mass and of momentum,13 one obtains the following formal system of equations:

{
𝜌

Dv
Dt
− div 𝝈 = g,

D𝜌
𝜕t
+ 𝜌 div v = 0

in Ω(t) ⧵ Γi(t), (3)

where g(t) is a given external force field (per unit volume), 𝝈 is the Cauchy stress tensor defined above, and Γi(t) is the
fluid–solid interface Γi(t) = 𝜕Ωs(t) ∩ 𝜕Ωf (t). Conservation of angular momentum is guaranteed if the Cauchy stress tensor
is symmetric.

We indicate with “grad” and “div” the spatial differential operators with respect to the coordinates x in the deformed
configuration, and indicate with D𝜿

Dt
the material derivative, that is, for a vector field 𝜿 and a scalar field 𝛼, these are

defined as time derivatives along the flow:

D𝜿
Dt

= 𝜕

𝜕t
𝜿 + (grad 𝜿)v, D𝛼

Dt
= 𝜕

𝜕t
𝛼 + v ⋅ grad 𝛼. (4)

We partition the boundary Γ(t) = 𝜕Ω(t) into Neumann ΓN(t) and Dirichlet ΓD(t) parts, and we set the following
transmission and boundary conditions

⎧⎪⎪⎨⎪⎪⎩

𝝈f nf + 𝝈sns = 0 on Γi

vf = vs on Γi

v = v∗D on ΓD

𝝈n = 𝝉∗ on ΓN ,

(5)

where v∗D(t) is a given prescribed velocity, 𝝉∗(t) is a given prescribed traction, and n, ns, and nf denote the unit outer
normals to 𝜕Ω(t), 𝜕Ωs(t), and 𝜕Ωf (t), respectively.
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WICHROWSKI et al. 5449

F I G U R E 1 Initial domain ̂Ω and deformed domain Ω(t). Solid marked with gray, fluid marked with dots, lines represent
transformation of material points by As(t).

Using standard notations for Sobolev spaces, we indicate with = L2(Ω), 0 ∶= {v ∈ H1(Ω)d s.t. v = 0 on ΓD}, the
affine space D ∶= {v ∈ H1(Ω)d s.t. v = v∗D on ΓD}, and we indicate with  ′0 the dual space of 0. With the conditions
expressed in (5), for any time t, we can formally derive a global weak form of the conservation equations for both the solid
and the fluid as

Problem 1 (Formal weak formulation of the conservation equations). Given g(t) ∈  ′0 and 𝝉
∗(t) ∈

H−1∕2(ΓN)d for each time t in [0,T], find (v, 𝜌) ∈ D × such that

∫Ω
𝜌

Dv
Dt

⋅ 𝝓 dx +
∫Ω
𝝈 ∶ 𝜖(𝝓) dx =

∫Ω
g ⋅ 𝝓 dx +

∫ΓN

𝝉
∗ ⋅ 𝝓 ds ∀𝝓 ∈ 0

∫Ω

D𝜌
Dt

q dx +
∫Ω

𝜌 div(v)q dx = 0 ∀q ∈ ,
(6)

where 𝜖(𝜿) ∶= 1
2
(grad 𝜿 + (grad 𝜿)T) denotes the symmetric gradient of a vector field 𝜿.

In order to close the system and transform the formal definition of the weak formulation above in a well posed problem,
we will need to provide constitutive equations, discussed in Section 2.3, initial conditions, and a suitable representation
for the evolution of the domain Ω(t), discussed in the next section.

2.2 Arbitrary Lagrangian–Eulerian formulation

We concretize the representation of the time-changing domain Ω(t) (Figure 1), by introducing a diffeomorphism A(t) ∶
̂Ω → Rd—the ALE map—that maps points x̂ in the reference domain ̂Ω to points x(t, x̂) = A(t; x̂) on the deformed domain
Ω(t), and such that Ωs(t) = A(t; ̂Ωs) and Ωf (t) = A(t; ̂Ωf ).

In general, we are free to choose the map A(t) arbitrarily, provided that the solid and fluid domains are mapped
correctly at each time t. We choose an ALE map that coincides with the solid deformation map in the solid domain ̂Ωs.
On ̂Ωf , we set A(t) as a pseudo-elastic extension in the fluid domain ̂Ωf .13 Finally, we assume the ALE transformation
equals the identity at time t = 0, that is, A(t = 0; x̂) = x̂ in ̂Ω ≡ Ω(0).

We indicate with û(t, x̂) = A(t; x̂) − x̂ the pseudo-displacement field that represents the domain deformation, and with
ŵ its time derivative, representing the domain velocity, and we adopt consistently the ⋅̂ convention to indicate functions
defined on ̂Ω, or the pullback through A(t) of Eulerian fields defined on Ω(t) to ̂Ω, that is, 𝜿̂ = 𝜿◦A and 𝜿 = 𝜿̂◦A−1, and
“Grad” and “Div” to indicate differential operators w.r.t. x̂. Subscripts s, f indicate the restriction of the field to the solid
or fluid domains ̂Ωs, ̂Ωf or Ωs(t),Ωf (t).

We use a Lagrangian setting in the solid domain, and let ûs coincide with the displacement of solid particles in ̂Ωs, so
that 𝜕tûs = v̂s in ̂Ωs. In the domain ̂Ωf , at every time t, we construct a pseudo-elastic extension ûf of ûs onto ̂Ωf , namely

ûf = Ext(ûs), (7)

where Ext(ûs) is defined as the solution ûf to

⎧⎪⎨⎪⎩
−Div(𝜇AE(ûf )) = 0 in ̂Ωf

ûf = ûs on 𝜕

̂Ωs

ûf = 0 on 𝜕

̂Ωf ⧵ 𝜕 ̂Ωs.

(8)
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5450 WICHROWSKI et al.

Here E(ûf ) = 1
2
(Grad ûf + (Grad ûf )T) is the symmetric gradient of ûf w.r.t. the coordinates x̂, 𝜇A is a possibly variable

coefficient, and for the sake of exposition we assume that the boundary of the fluid domain is not moving, even though
arbitrary deformations could be applied to 𝜕 ̂Ωf ⧵ 𝜕 ̂Ωs. Other (more computationally intensive) choices for the definition
of Ext are possible, for example, using a biharmonic extension.13,44,45

The equations of motion (3) are complemented with an evolution equation for û with zero initial conditions, defined
through the domain velocity field ŵ, that is,

ŵ ∶=

{
v̂s in ̂Ωs
𝜕Ext(ûs)

𝜕t
in ̂Ωf ,

{
𝜕û
𝜕t
(t, x̂) = ŵ(t, x̂) in ̂Ω

û(t = 0, x̂) = 0 x̂ ∈ ̂Ω.
(9)

Notice that, strictly speaking, only the equation for ûs should be interpreted as an ODE with zero initial condition, while
the equation for ŵf is simply a time derivative evaluation.

We rewrite the weak formulation of the equations of motion in ALE form by introducing the ALE time derivative in
Eulerian coordinates, defined as the time derivative of a field at fixed x̂. For an Eulerian vector field 𝜿 or an Eulerian
scalar field 𝛼, we have

d𝜿
dt
(t,A(t; x̂)) ∶= 𝜕𝜿̂

𝜕t
(t, x̂) = 𝜕𝜿

𝜕t
(t,A(t; x̂)) +

(
(grad 𝜿)w

)
(t,A(t; x̂)),

d𝛼
dt
(t,A(t; x̂)) ∶= 𝜕𝛼̂

𝜕t
(t, x̂) = 𝜕𝛼

𝜕t
(t,A(t; x̂)) +

(
w ⋅ grad 𝛼

)
(t,A(t; x̂)),

(10)

giving the following relation with the material time derivative:

D𝜿
Dt

= d𝜿
dt
+ (grad 𝜿)(v −w),

D𝛼
Dt

= d𝛼
dt
+ (grad 𝛼) ⋅ (v −w),

(11)

which coincide with the partial time derivative in the Lagrangian case (v = w) and with the classical material time
derivative in the purely Eulerian case (w = 0).

We consider the mapped Sobolev spaces ̂ ∶= ◦A, ̂ ∶= ◦A, and define, moreover, the space ̂0 ∶= H1
0( ̂Ω)

d.
The weak form of the complete FSI problem in ALE form then reads

Problem 2 (Formal ALE weak formulation of conservation equations). Given g ∈  ′0 and 𝝉∗ ∈ H−1∕2(ΓN)d,
for each time t in [0,T], find (v, 𝜌, û) ∈ D × × ̂ such that

∫Ω
𝜌

(dv
dt
+ (grad v)(v −w)

)
⋅ 𝝓 dx +

∫Ω
𝝈 ∶ 𝜖(𝝓) dx =

∫Ω
g ⋅ 𝝓 dx +

∫ΓN

𝝉
∗ ⋅ 𝝓 ds ∀𝝓 ∈ 0

∫Ω

(
d𝜌
dt
+ (v −w) ⋅ grad 𝜌

)
q dx +

∫Ω
𝜌 div(v)q dx = 0 ∀q ∈  (12)

∫
̂Ωf

𝜇AE(û) ∶ E( ̂𝝓) dx̂ +
∫
̂Ωs

(
𝜕û
𝜕t
− ŵ

)
⋅ ̂𝝓 dx̂ = 0 ∀ ̂𝝓 ∈ ̂ ,

with w defined in (9).
For simplicity of exposition, the first two equations in (12) are written in Eulerian form, but are solved on the

reference domain ̂Ω, using the spaces ̂ , and ̂.

From the numerical point of view, it may be convenient to express the dependency between û and ŵ in a strong form,
rather than using the weak form presented in (12). Time discretization and how to write the time evolution of the grid is
presented in Section 3.1. Similarly to Problem 1, also Problem 2 is at this stage only formally defined: in order to close the
system we need to provide constitutive equations.
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2.3 Constitutive models

2.3.1 Incompressible Newtonian fluid

We consider a classic incompressible Newtonian fluid with constant density 𝜌f so that

𝝈f = 2𝜂f 𝜖(vf ) − pf I, (13)

where pf = − 1
3
tr𝝈f is the fluid pressure, 𝜂f is the viscosity and I is the identity tensor. In this particular case, mass

conservation given in Equation (3) reduces to volume conservation, namely,

div vf = 0. (14)

We note that the pressure pf in Equation (13) plays the role of a Lagrange multiplier enforcing the incompressibility
constraint (14), and is solved for in place of the density 𝜌f which is, in this constitutive model, a material constant of the
fluid.

2.3.2 Incompressible Mooney–Rivlin solid

We assume that the solid is an incompressible hyperelastic material governed by the Mooney–Rivlin model.46,47 In the
solid domain, we define the deformation gradient

̂F ∶= Grad As = I + Grad ûs, (15)

and we have F = ̂F◦A−1
s . The inverse deformation gradient is

F−1 = grad
(
A−1

s
)
= I − grad us. (16)

Incompressibility implies the following constraint on the determinant of ̂F, ̂J = det( ̂F) (J = ̂J◦A−1
s ),

̂J = 1, (17)

which is equivalent to divvs = 0.
In the case of an incompressible Mooney–Rivlin solid, the Cauchy stress can be expressed using the left Cauchy–Green

deformation tensor B ∶= FFT as follows47

𝝈s = 𝜇1B − 𝜇2B−1 − p∗s I, (18)

where p∗s is again a Lagrange multiplier that enforces incompressibility and 𝜇1 ≥ 0 and 𝜇2 ≥ 0 are material param-
eters such that 𝜇s = 𝜇1 + 𝜇2 > 0 is the shear modulus in the reference configuration. For 𝜇2 = 0, the incompressible
neo-Hookean model is obtained as a special case of the incompressible Mooney–Rivlin model.

The Cauchy stress (18) can be equivalently expressed as

𝝈s = 𝜇1(B − I) + 𝜇2(I − B−1) − psI, ps = p∗s − 𝜇1 + 𝜇2, (19)

where ps is a shifted Lagrange multiplier that vanishes whenever 𝝈s = 0. Note, however, that ps is not equal to the solid
pressure, that is, ps ≠ − 1

3
tr𝝈s.

Substituting Equations (15) and (16) into Equation (19) the Cauchy stress over the solid domain can now be expressed
in the following form:

𝝈s = 𝜇1
((

2E(ûs) + Grad ûs(Grad ûs)T
)
◦A−1

s
)
+ 𝜇2

(
2𝜖(us) − (grad us)Tgrad us

)
− psI. (20)
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5452 WICHROWSKI et al.

We note that the second and the third term on the right-hand side are evaluated entirely in the current configuration.
At the same time, the first term involves evaluation of the displacement gradient in the reference configuration, and
the corresponding terms are then pushed forward through A−1

s to the current configuration, where the integration is
performed. In the present implementation, we restrict ourselves to the special case of 𝜇1 = 0 and 𝜇2 = 𝜇s, so that the
first term in Equation (20) vanishes. Note that in 2D plane-strain problems the incompressible Mooney–Rivlin model is
equivalent to the neo-Hookean model with one shear modulus 𝜇s = 𝜇1 + 𝜇2,47 hence the above assumption affects only
3D cases.

2.4 Incompressible fluid–structure interaction problem in ALE form

Let us summarize the results from this section by presenting the weak form of the FSI problem in the ALE frame of refer-
ence. In the incompressible formulation we are using in this work, the conservation of mass transforms to conservation
of volume. The (possibly different) densities 𝜌s and 𝜌f are constitutive constants of the fluid and of the solid, and the pri-
mal unknowns are the velocity field v, the pressure-like field p (acting as a Lagrange multiplier for the incompressibility
constraints on both the solid and the fluid) and the pseudo-displacement û, corresponding to the solid displacement in
Ωs and to the domain displacement in Ωf .

Problem 3 (ALE weak form of the incompressible FSI problem). Given g ∈  ′0 and 𝝉∗ ∈ H−1∕2(ΓN)d, for
each time t in [0,T], find (v, p, û) ∈ D × × ̂ such that

∫Ω
𝜌

(dv
dt
+ (grad v)(v −w)

)
⋅ 𝝓 dx +

∫Ω
𝝈 ∶ 𝜖(𝝓) dx =

∫Ω
g ⋅ 𝝓 dx +

∫ΓN

𝝉
∗ ⋅ 𝝓 ds ∀𝝓 ∈ 0

∫Ω
div(v) q dx = 0 ∀q ∈  (21)

∫
̂Ωf

𝜇AE(û) ∶ E( ̂𝝓) dx̂ +
∫
̂Ωs

(
𝜕û
𝜕t
− v̂

)
⋅ ̂𝝓 dx̂ = 0 ∀ ̂𝝓 ∈ ̂ ,

where, according to the definition in Equation (9), ŵf =
𝜕Ext(ûs)

𝜕t
and ws = vs. The Cauchy stress 𝝈 takes the form:

𝝈 = 𝝈(v,u, p) = pI +

{
2𝜂f 𝜖(vf ) in Ωf

2𝜇s𝜖(us) − 𝜇s(grad us)Tgrad us in Ωs.
(22)

The subdomainsΩs andΩf appearing in integrals in Equation (21) are defined as the images of the undeformed
ones: Ωs = A( ̂Ωs) and Ωf = A( ̂Ωf ), even though the computation is formally performed on the reference domain
̂Ω. Additionally, the following initial conditions have to be met:

⎧⎪⎨⎪⎩
vs(t = 0, x̂) = v∗s in ̂Ωs

ûs(t = 0, x̂) = u∗s in ̂Ωs

vf (t = 0, x̂) = v∗f in ̂Ωf .

(23)

This formulation is similar to the ones appearing in the literature,12,33,36 the major difference being the incompress-
ibility assumption on the solid constitutive equations. At this stage the problem is still fully nonlinear. The most difficult
nonlinearity comes from the fact that all domains are dependent on the (unknown) mapping A, which in turn is hidden
also in the definition of the “grad” and “div” differential operators, when they are expressed in the reference domain ̂Ω.

Note that the interface conditions (5)1,2 are naturally included in the weak form (21)1, and likewise in its earlier formal
definitions (6)1 and (12)1. The kinematic continuity condition (5)2 is satisfied automatically thanks to the continuity of
the velocity v (and of the pseudo-displacement û, which ensures the consistency of the ALE mapping). On the other
hand, by virtue of the continuity of the test function 𝝓, the equality of traction vectors at the interface, Equation (5)1, is
satisfied in a weak manner, see the related discussions in References 48-50.
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WICHROWSKI et al. 5453

3 DISCRETIZATION

3.1 Time integration scheme

We consider a uniform time discretization of the time interval [0,T] with a set of equidistant points {t0
, … , tN} where

tn = n𝜏, with the time step size 𝜏 = T∕N. At the nth time step tn, we define v̂n, ûn
s , and ûn as an approximation of v̂, ûs,

and û, respectively. The approximate pseudo-displacement defines the approximation An of the mapping A(tn; ⋅):

A(tn; x̂) ≈ An(x̂) = x̂ + ûn(x̂) x̂ ∈ ̂Ω, (24)

which in turn defines the approximate domains:

Ω(tn) ≈ Ωn ∶= An( ̂Ω), Ωs(tn) ≈ Ωn
s ∶= An( ̂Ωs), Ωf (tn) ∶= Ωn ⧵Ωn

s . (25)

At the time step n, the relation between the point xn ∈ Ωn and the point x̂ ∈ ̂Ω is defined by the mapping An, that is:
xn(x̂) = An(x̂). That is, the spatial derivatives

grad 𝜅 = 𝜕

𝜕x
𝜅, 𝜖(𝜅) = 1

2
(
grad 𝜅 + (grad 𝜅)T

)
(26)

are associated with transformation An. Since An is defined by a pseudo-displacement, those derivatives are implicitly
defined by ûn.

We approximate the time derivative of an arbitrary field 𝜅̂ defined on ̂Ω × [0,T] by the k-step BDF,51

𝜕𝜅̂(t = tn
, x̂)

𝜕t
≈ 𝜕

𝜏

𝜅̂

n(x̂) ∶= 1
𝛾𝜏

k∑
i=0
𝛼i𝜅̂

n−i(x̂), (27)

with the coefficients normalized so that 𝛼0 = 1. Here, we restrict ourselves to k ≤ 2. The case k = 1 corresponds to the
classical implicit Euler scheme (𝛾 = 1, 𝛼1 = −1), while for k = 2 there holds 𝛾 = 2

3
, 𝛼1 = − 4

3
, 𝛼2 = 1

3
.

Therefore, at t = tn, we will have

𝜕û
𝜕t
≈ 𝜕

𝜏

ûn
, ŵf =

𝜕Ext(ûs)
𝜕t

≈ ŵn
f ∶= 𝜕𝜏Ext(ûn

s ).

For the ALE time derivative of the velocity, we follow the identity dv
dt
(t, x) = 𝜕v̂

𝜕t
(t, x̂) and approximate, compare for

example, References 5,36, and 13, at xn = An(x̂), by moving back to the reference configuration:

dv
dt
(t = tn

, xn) ≈ d
𝜏

vn(xn) ∶= 𝜕
𝜏

v̂n(x̂) = 1
𝛾𝜏

k∑
i=0
𝛼ivn,i(xn), (28)

where we set vn,i ∶= vn−i◦An−i◦(An)−1.
After replacing the time derivatives in (21) by their approximates, we obtain an implicit time integration scheme:

Problem 4 (Fully implicit BDF time discretization of ALE weak form of the incompressible FSI problem).
Given g ∈  ′0, 𝝉∗ ∈ H−1∕2(ΓN)d, and initial conditions (v0

, û0) ∈ 0
D × ̂

0, find (vn
, pn

, û0) ∈ n
D ×

0 × ̂ for
each time tn, n = 1, … ,N, such that

∫Ωn
𝜌

(
d
𝜏vn + (grad vn)(vn −wn)

)
⋅ 𝝓 dx +

∫Ωn
𝝈

n ∶ 𝜖(𝝓) dx =
∫Ωn

g ⋅ 𝝓 dx +
∫ΓN

𝝉
∗ ⋅ 𝝓 ds ∀𝝓 ∈ n

0

∫Ωn
div(vn) q dx = 0 ∀q ∈ n (29)

∫
̂Ωf

𝜇AE(ûn) ∶ E( ̂𝝓) dx̂ +
∫
̂Ωs

(
𝜕
𝜏

ûn − v̂n) ⋅ ̂𝝓 dx̂ = 0 ∀ ̂𝝓 ∈ ̂ ,

with ŵn
f = 𝜕𝜏Ext(ûn

s ) and wn
s = vn

s ; the stress 𝝈n = 𝝈(vn
,un

, pn) specified in (22) and the initial data prescribed
by (23). Here n

D and n denote the corresponding spaces over domain Ωn, which is implicitly defined by (24)

 10970207, 2023, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7350 by Instytut Podstaw
ow

ych Problem
ow

 T
echniki PA

N
, W

iley O
nline L

ibrary on [15/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5454 WICHROWSKI et al.

and (25). If a scheme of order k > 1 is used then first k − 1 steps have to be done with lower order schemes so that
(vi
, ûi), i = 1, … , k − 1 are obtained.

Note that the last equation of (29) effectively splits into two,

ûn
f = Ext(ûn

s ), 𝜕
𝜏

ûn
s = v̂n

s .

From the latter and the linearity of Ext it follows that

ŵn
f = 𝜕𝜏Ext(ûn

s ) = Ext(𝜕
𝜏

ûn
s ) = Ext(v̂n

s ). (30)

3.1.1 Semi-implicit scheme

Problem 4 needs be solved on every time step, it is nonlinear, and it is usually solved by the Newton’s method23,52,53 or a
fixed-point method (without significant impact on stability, as demonstrated in Reference 54).

Here, we take a different approach inspired by Crosetto et al.,5 Xu and Yang,36 and Badia et al.,34 and simplify the
nonlinear problem by splitting the solid displacement into an explicitly predicted displacement and an implicit velocity
dependent part. We exploit the structure of Problem 4 and in particular of the Cauchy stress definition (22) to expose a
solution strategy based on fixed point iterations defined through a semi-implicit splitting of the BDF scheme defined in
(27) for a simpler problem. The current pseudo-displacement and the current ALE velocity are affinely equivalent, and
we expose this dependency together with the dependency on previously computed solutions (û#, ŵ#) by expressing the
currently unknown velocity and pseudo displacement (û□, ŵ□) as

û□ ∶= 𝛾𝜏ŵ□ −
k∑

i=1
𝛼iûn−i = 𝛾𝜏ŵ□ + (û# − 𝛾𝜏ŵ#), (31)

where ŵ# is the most recently computed velocity (i.e., the velocity from the previous time step or from a previous fixed
point iteration) and

û# ∶= 𝛾𝜏ŵ# −
k∑

i=1
𝛼iûn−i (32)

represents an explicit approximation of the pseudo-displacement.
This splitting is based on an explicit prediction u# of the next displacement, to be used in the computation of a tem-

porary A#, and thus Ω#, and in an explicit computation of nonlinear correction terms of the solid Cauchy stress. The
remaining velocity dependent part is solved for implicitly, resulting in the following splitting of the global Cauchy stress

𝝈 = pI + 2𝜂𝜖(v□) +
⎧⎪⎨⎪⎩

0 in Ω#f
𝜇s

[
2𝜖
(∑k

i=1𝛼iun,i
)
− (grad u#s )Tgrad u#s

]
in Ω#s ,

(33)

where

𝜂 =

{
𝜂f in Ω#f
𝛾𝜏𝜇s in Ω#s ,

(34)

making the problem equivalent to a Stokes-like system on the domainΩ#, with jumps in the viscosities across the interface
Γi. We remark here that such jumps have a ratio of six to nine orders of magnitude. The resolution of the solid problem
in terms of solid velocities is classical, but it is usually discarded from the computational point of view, due to the lack of
efficient solvers for such high contrast coefficients.

The key contribution of this work comes from exploiting the robust preconditioner for Stokes-like systems with
high-contrast jumps in the viscosities developed in References 37 and 40 also for the solution of FSI problems; see
Section 4.
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WICHROWSKI et al. 5455

The final scheme, GCsIk(M1, … ,MS) (geometry-convective semi-implicit), which computes the solution on the next
time step, is defined in Algorithm 1; its concept loosely resembles an S-stage predictor–corrector scheme. Here, k and
M1, … ,MS are parameters of the scheme, with k corresponding to the order of the BDF formula (27). The algorithm
proceeds in stages, according to prescribed operational mode Ms, where s = 1, … , S. We consider two modes: if Ms =  ,
the scheme computes the geometry and convective terms in an explicit way, while for Ms = , it treats the convective
term more implicitly (the details are provided later in this section). The simplest and cheapest scheme of this kind, a
one-stage GCsIk() method, coincides with the kth order GCE scheme of Reference 5, so our scheme can be considered
a generalization of this approach.

Although schemes such as one-stage GCsIk() or two-stage GCsIk( ,) are more costly per time step than GCE, by
adding more implicit stages to the scheme we stabilize the method, therefore allowing for significantly larger time steps
as compared to the GCE scheme. This improves the overall performance of the solver—see Section 5, where we discuss
the results of numerical experiments.

Algorithm 1. kth order, S–stage GCsIk(M1, … ,MS) scheme. The bilinear forms aM , b and functionals gvM , and
gp are defined in (36)–(38), and (47), respectively

Data: ûn−i
, v̂n−i

, ŵn−i
, i = 1,… , k

Result: ûn
, v̂n

, ŵn

begin
ŵ# ∶= ŵn−1

for M in (M1,… ,MS) do

û# ∶= 𝛾𝜏ŵ# −
k∑

i=1
𝛼iûn−k

⊲ Explicit step

A# = I + û#, Ω# = A#( ̂Ω) ⊲ New geometry

Find v□ ∈ H1(Ω#) and p□ ∈ L2(Ω#) ∶ ⊲ M-mode step

{
aM(v□,𝝓) + b(𝝓, p□) = gvM(𝝓) ∀𝝓 ∈ H1

D(Ω
#),

b(v□, q) = gp(q) ∀q ∈ L2(Ω#).
(35)

ŵ□ ∶= Ext(v̂□) ⊲ Extension

ŵ# ∶= ŵ□

end

v̂n ∶= v̂□, ŵn ∶= ŵ□

ûn ∶= 𝛾𝜏ŵn −
k∑

i=1
𝛼iûn−i

⊲ Displacement recovery

end

The bilinear forms aM(⋅, ⋅), b(⋅, ⋅) and functionals gM(⋅) which appear in (35) are as follows:

aM(v□,𝝓) ∶=
(
𝜌

(
d
𝜏

v□ + (grad v⋆M)v
◦
M
)
, 𝝓

)
Ω# +

(
𝜂𝜖(v□), 𝜖(𝝓)

)
Ω# , (36)

b(v□, q) ∶=
(
∇ ⋅ v□, q

)
Ω# , (37)

gvM(𝝓) ∶=(g ⋅ 𝝓)Ω# + (𝝉∗ ⋅ 𝝓)Γ#N − 𝜇s

(
2𝜖

( k∑
i=1
𝛼iun,i

)
− (grad u#s )Tgrad u#s ,𝝓

)
Ω#s

, (38)

where v◦M , v⋆M are prescribed below. Let us note in passing that d
𝜏v□ involves velocities v□, vn−1

, … , vn−k.
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5456 WICHROWSKI et al.

• If M =  , we define v◦M using explicit extrapolation, as in Reference 55: depending on the order of the scheme k,

v◦M ∶= vn,1 −w# for k = 1,
v◦M ∶= 2(vn,1 −w#) − (vn,2 −wn,1) for k = 2. (39)

For the convective velocity v⋆M we use an explicit velocity

v⋆M ∶= vn,1 for k = 1,
v⋆M ∶= 2vn,1 − vn,2 for k = 2, (40)

which makes the bilinear part of the form aM(⋅, ⋅) symmetric.
• For M = , we make the step a bit more implicit and set

v◦M ∶= v# −w#
, (41)

and turn to the semi-implicit advection,

v⋆M ∶= v□, (42)

to ensure a better stability of the scheme. For further discussion we refer to Reference 56 or 57. Since the velocity is
updated after the corrector step, we use the (cheaper) explicit advection in the predictor. This provides a good balance
between accuracy and efficiency.

The functional gp(⋅) will be introduced in the following section, see (47).

3.1.2 Volume-preserving correction

In our case, 𝜌s = const and mass conservation is equivalent to incompressibility, that is,

div(vs) = −
1
𝜌s

𝜕𝜌s

𝜕t
= 0. (43)

If, for whatever reason, the solid density is perturbed (e.g., by a numerical approximation of the zero-divergence con-
straint), such perturbation is accumulated and maintained through time evolution, resulting in a solid volume that may
change as a result of these errors.

We provide a dynamic and strongly consistent correction to the volume of the solid by introducing an additional term
in (43) with the aim of restoring ̂J = 1 whenever the scheme moves away from it:

𝜕𝜌s

𝜕t
= J 𝜌s

𝜂V

(
𝜌s

𝜌s 0
− 1

)
= J 𝜌s

𝜂V
(J − 1), (44)

so that the solution would approach the density 𝜌s 0 regardless of its starting point. The damping parameter 𝜂V can be
interpreted as a volumetric viscosity which controls the dynamic rate of density correction and leads to a modified volume
constraint for the solid with volume-preserving correction,

div(vs) = −
J
𝜂V
(J − 1). (45)

Accordingly, we reformulate the weak form (21)2 of the volume constraint in the solid by adding the respective right-hand
side, expressed in the reference configuration as

∫Ωs

q(div v)dx = −
∫
̂Ωs

1
𝜂V
(det( ̂F) − 1)q̂ dx̂ ∀q ∈ L2(Ω). (46)
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WICHROWSKI et al. 5457

In the actual time-discrete scheme outlined in Algorithm 1, the volume-preserving correction is treated in an explicit
manner, so that the right-hand side in the weak form (35) is defined as

gp(q) ∶=
(
− 1
𝜂V
(̂J# − 1), q̂

)
̂Ωs

, (47)

where ̂J# = det( ̂F#), and ̂F# = I + Grad û#s is the most recent algorithmic approximation of the deformation gradient ̂F.

3.2 Spatial discretization

Let us now introduce the fully discrete approximation of the fluid–structure interaction problem. We consider triangu-
lation  of domain ̂Ω with characteristic element size of h. In our case, triangulation  consists of quadrilateral (2D) or
hexahedral (3D) elements. We consider a regular matching grid, that is, assume that the initial fluid–solid interface does
not intersect with any element. With sets of polynomials p(K) of order p on each element K, we define the finite element
spaces on triangulation 

̂Vh = {v ∈ H1( ̂Ω) ∶ v|K ∈ p1(K) ∀K ∈  }d
,

̂Qh = {q ∈ H1( ̂Ω) ∶ q|K ∈ p2(K) ∀K ∈  }. (48)

where p1 and p2 are the orders of finite elements for the velocity and pressure, respectively. We first discretize the solid
displacement ûs ∈ ̂Vh and the pseudo-displacement û ∈ ̂Vh that defines discrete mapping A#. We then define the trian-
gulation of Ω# as a transformed triangulation  by mapping A#. The finite element spaces on domain Ω# are defined
as:

Vh = {v◦(A#)−1 ∶ v ∈ ̂Vh}d
,

Qh = {q◦(A#)−1 ∶ q ∈ ̂Qh}. (49)

We assume that Vh and Qh satisfy the Ladyzhenskaya–Babuska–Brezzi condition.58

3.2.1 Streamline stabilization

Problem (36) is of convection–diffusion type, so for flows with high Reynolds numbers the convection becomes domi-
nating. Since in such cases a straightforward finite element discretization typically results in oscillatory solutions, some
additional stabilization to the original form aj(⋅, ⋅) is necessary. While that might not be an issue on the finest grid, it
clearly occurs on the coarser ones, which turns out to spoil the performance of the preconditioner. Hence, stabilization
is crucial for the linear solver described in Section 4. In our scheme, we simply used

astab
j (v,𝝓) = aj(v,𝝓) +

∑
K∈
∫K

r (v◦ ⋅ grad v) (v◦ ⋅ grad 𝝓) dx; (50)

another possibility would be to use, for example, the streamline-upwind Petrov–Galerkin (SUPG) scheme.59 The stabi-
lization parameter inside cell K is59,60

r = hK

2||v◦||p1

coth(PeK) − 1
PeK

,

where hK is the diameter of cell K ∈  and the Peclet number PeK computed with respect to the cell size is

PeK = ||v◦|| hK

2𝜇 p1
.

In cells where PeK < 1 we set r = 0 to avoid problems with floating-point arithmetics. Note that for a sufficiently fine
mesh PeK < 1 and thus the stabilization term vanishes, therefore it does not affect the solution. However, we intend to
use a multigrid preconditioner to solve the linear system, thus we also need non-oscillatory solution regardless how large
the element size is.
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5458 WICHROWSKI et al.

4 A MULTILEVEL, MATRIX-FREE PRECONDITIONER FOR THE LINEAR
SYSTEM

On every time step, there are two computationally intensive parts inside the “for” loop in Algorithm 1: the computation
of the extension of the velocity, Ext(v̂□) on the fluid domain, and the solution of the discretized system (35) in order
to determine the velocity and the pressure on the entire domain. To perform the former, we use a geometric multigrid
preconditioned CG, which in our experiments worked just fine. The latter system is much more challenging and therefore
we will focus on this subproblem in the present section.

The linear system (35) has a block structure of a generalized Oseen-type saddle point problem

[
A BT

B 0

][
v
p

]
=

[
gv

gp

]
, (51)

where the square matrix A corresponds to a discretized convection–diffusion–reaction operator (50) with the viscosity
coefficient which is discontinuous across the fluid–solid interface, while B corresponds to the discrete divergence operator.
Since the number of unknowns in (51) is very large, compare Table 2, direct solution of this system is infeasible. On the
other hand, the system is also challenging for iterative solvers: it is ill-conditioned due to both the fine mesh size and
the high-contrast in the effective viscosities between the fluid and solid domains (𝜂f vs. 𝛾𝜏𝜇s), so it requires an efficient
preconditioner, see Reference 23. Since the fluid and the solid typically have very different properties, the viscosity contrast
plays a substantial role even when the time step 𝜏 is relatively small.

Many existing preconditioners for FSI problems in the monolithic formulation exploit the block structure of the
problem.35,36 Others may be based on the multigrid, compare References 21,23,61, and 62 or the domain decomposition
method.5,63 See References 64 and 8 and references therein for a broad survey of classical and recent developments in this
field.

We base our implementation on the deal.II library,65 taking advantage of the specific structure of the linear
problem, and leveraging the properties of modern computer hardware, such as the availability of vectorized SIMD instruc-
tions and parallelism—by choosing to implement the preconditioner (and the solver) using the matrix-free approach,42

which is very well supported in the deal.II library. The CPU cache efficiency is improved because the data is accessed
in a more localized manner, reducing the number of cache misses and increasing the overall performance of the solver.66

Furthermore, the solver’s memory footprint is kept low, which means that it can deal with larger problems or function
on computers with limited memory resources.

To this end, we adapt the multilevel preconditioner developed for a generalized stationary Stokes problem with dis-
continuous viscosity coefficient, proposed and analyzed in References 37 and 40. This preconditioner is not only robust
with respect to the mesh size and the viscosity contrast, but also supports the matrix-free paradigm by design. Theoretical
foundations for a very similar preconditioner have recently been laid in Reference 41. While matrix-free preconditioners
have successfully been applied in various contexts, for example, phase-field fracture problems67 or mantle convection sim-
ulations,68 its application within FSI solver frameworks is much less common, and state-of-the-art FSI solvers are often
matrix-based.69 See also Reference 70 for a recent application of matrix-free methods in the case of finite-strain solids.

If the convection is treated explicitly, (51) already defines a generalized Stokes system, so the preconditioner of Refer-
ence 40 can be applied directly. In the case of implicit convection, however, the matrix A becomes nonsymmetric, so the
preconditioner needs some adjustments. For the convenience of the reader, below we briefly recall the main ingredients
of the preconditioner, already adapted to the nonsymmetric case.

Since the preconditioner is of multilevel type, we will assume that the underlying grid  is a result of a J-level uni-
form refinement of some coarse grid 0 aligned with the fluid–solid interface, resulting in a family of nested conforming
triangulations of ̂Ω:

0 ⊂ 1 ⊂ · · · ⊂ J =  . (52)

These, in turn, generate a family of discrete problems defined on mesh j, with corresponding block matrices

j =

[
Aj BT

j

Bj 0

]
. (53)
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WICHROWSKI et al. 5459

Algorithm 2. One iteration of a multigrid V-cycle procedure for a systemjy = Fj with initial guess x

Function y = MGM(j,Fj,j,m, x, j)
if j = 0 then

Solve0y = F0; ⊲ Direct solve on the coarsest grid 0
return y;

end
x0 = x;
for s = 1 to m do

xs = xs−1 +j(Fj −jxs−1); ⊲ pre-smoothing
end
rj−1 = Rj

(
Fj −jxm); ⊲ restriction to the coarser grid

ej−1 = MGM(j−1, rj−1,j−1,m, 0, j − 1); ⊲ coarse correction; recursive call
ej = RT

j−1eH ; ⊲ prolongation from the coarser grid

y0 = xm + ej;
for s = 1 to m do

ys = ys−1 +j(Fj −jys−1); ⊲ post-smoothing
end
y = ym;
return y

end

The preconditioner is formulated as n iterations of the V-cycle multigrid forJ (see Algorithm 2), with m smoothing
steps which use a customized block smoother on the jth level

j =

[
Âj BT

j

Bj BjÂ
−1
j BT

j − ̂Sj

]−1

. (54)

In order to applyj to a vector, two solves with Âj and one with ̂Sj are required. Both are implemented as matrix-free
operators as follows:

Â−1 = Cheb(A, diag(A), kA), ̂S−1 =

{
ChebMINRES(nS, kS) when A = AT

,

ChebBiCGStab(nS, kS) otherwise,

making it possible to formulate a multiplication ofj by a vector as a matrix-free operation. Here, Cheb(M,D, k) denotes
k iterations of the Chebyshev smoother71 for M preconditioned with D,

Cheb(M,D, k) = Pk(D−1M)D−1
, (55)

where Pk is a linearly transformed kth degree Chebyshev polynomial of the first kind which minimizes the supremum
norm over the interval [ 2

25
𝜆M ,

30
25
𝜆M], and 𝜆M is the largest eigenvalue of D−1M; see Reference 40 for details.

By ChebMINRES(nS, kS)we denote the result of nS iterations of the MINRES method applied to the system with matrix
S = BÂ−1BT , preconditioned with Cheb(S, diag

(
B(diagA)−1BT)

, kS). This form of ̂S−1 is thus used when solving (35) if the
time-stepping procedure is in “” operational mode. The only difference between ChebMINRES and ChebBiCGStab is
that in the MINRES iteration in the former is replaced with the BiCGStab method in the latter, which is suitable in “”
working mode of the scheme. All these iterative methods take the zero vector as the initial guess.

While our solver employs efficient matrix-free operations for smoothing and solution transfers, the use of a direct
solver as a coarse grid correction is not well-suited for parallel environments. Although direct solvers offer high accuracy,
they often exhibit limited scalability in distributed computing settings, creating computational bottlenecks for large-scale
parallel simulations. This impact on performance is particularly pronounced when the number of refinement levels is
relatively low, resulting in a higher ratio between the number of coarse degrees of freedom and the total number of degrees
of freedom.
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5460 WICHROWSKI et al.

5 NUMERICAL RESULTS

In this section, we present the results of numerical experiments conducted to evaluate the performance and efficiency
of the method on a set of benchmark problems. As mentioned in Section 4, the experimental framework was imple-
mented using the deal.II library65 and its matrix-free framework.42 The stable Taylor–Hood finite element pair, which
corresponds to choosing p1 = 2 and p2 = 1 in (48), was consistently used in all tests.

5.1 Test problems

We evaluate the solver on test problems very closely resembling the well-known Turek–Hron two-dimensional bench-
marks FSI2 and FSI3.43 These benchmarks consist of an elastic beam attached to a cylindrical obstacle inside a channel,
which interacts with the flow. To test the solver in 3D we use the benchmark problem FSI3D from Reference 11, which con-
sists of an elastic plate attached to a cylinder (depicted in Figure 2). This geometry is obtained by extruding the geometry
of 2D tests into the third dimension; the detailed geometrical settings are presented in Figure 2 together with dimensional
parameters in Table 1.

Our experimental framework differs from the original benchmarks mentioned above in two ways. The most important
departure is due to the choice of the model of the solid (see Section 2.3.2) which, in contrast to Turek and Hron setting,
is assumed incompressible. To mark that our test problems involve an incompressible solid, we will refer to them as
FSI2i, FSI3i, and FSI3Di, respectively. For this reason, our goal will not be to replicate the exact results of the original
benchmarks, but rather to demonstrate the performance of our method in simulation of incompressible FSI problems. (To
the best of our knowledge, there are no available results for Turek–Hron benchmark problems using an incompressible
solid.)

Second, in contrast to the approach used in Reference 43, where the flow gradually accelerates, our simulation starts
with an instantaneous acceleration of the flow at the initial time. This modification allows us to evaluate the solver’s
capabilities in handling a fully developed flow in a nearly undeformed configuration, and provides a fixed geometry for
solver performance comparison—particularly when considering various time step sizes. However, it induces artificial
pressure jumps during the first few time steps. From our observations, it can be seen that these pressure oscillations are
damped within a few subsequent initial time steps and have a negligible impact on the final results.

Apart from that, all other settings are identical as in the benchmarks mentioned above.
In order to improve mass conservation and incompressibility of the solid, unless stated otherwise, we will apply the

volume-preserving correction, see Section 3.1, with default parameter 𝜂V = 0.1.

F I G U R E 2 Geometry for test problems: x − y view (top), used for experiments in two dimensions (FSI2i, FSI3i), and as a base for the
extrusion in three dimensions (FSI3Di), see the x − z view (bottom). The plotting point A is shown in both views.

T A B L E 1 Geometry of test problems—List of dimensional parameters (all expressed in meters).

L H W l h w Cx Cy r g

2.5 0.41 0.41 0.35 0.02 0.2 0.2 0.2 0.05 0.1
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WICHROWSKI et al. 5461

5.2 Mesh and deformation handling

To discretize the reference spatial domain ̂Ω, we start with a coarse grid 0 as illustrated in Figure 3, which then undergoes
J rounds of uniform refinement, including adjustments to accommodate the curved boundary of the cylinder. This results
in a family of refined grids 0, … , J . The numbers of degrees of freedom corresponding to selected unknowns for specific
J used in the experiments are summarized in Table 2. For brevity, in what follows we denote by N the total number of
unknowns in the momentum equation.

To handle the mesh deformation, we employ a linear elasticity problem with a variable coefficient distribution to
enhance the quality of the resulting computational grid. The coefficient distribution is as follows:

𝜇A(x̂, ŷ, ẑ) = 1 + 50 exp(−800((x̂ − Ax̂)2 + (ŷ − Aŷ)2)), (56)

where Ax̂ and Aŷ are the coordinates of the point A, shown in Figure 2.

5.3 Linear solver settings

The solution to (35) was obtained using the FGMRES iterative solver, preconditioned with the method outlined in
Section 4, whose parameters are specified in Table 3. The iteration was terminated when the Euclidean norm of the resid-
ual dropped below the threshold value 𝜀 = 10−6 in FSI2i and FSI3i testcases or 𝜀 = 10−3 in FSI3Di. The initial guess for
the FGMRES iteration was set equal to the most recent values of the velocity and pressure.

The extension (8) was computed by the CG iteration preconditioned with a classical matrix-free multigrid method
with fourth order Chebyshev smoother based on the diagonal, compare Reference 42. There, the stopping criterion was
always to reduce the Euclidean norm of the residual below 10−6.

5.4 Tests in 2D

In both FSI2i and FSI3i testcases, the cylinder, upper, and lower sides of the channel are considered as rigid walls and
no-slip boundary conditions are imposed there. At the right end of the channel, a do-nothing boundary condition is

F I G U R E 3 Coarse grid and distribution of the mesh stiffness parameter, see (56). Solid marked in gray.

T A B L E 2 Number of degrees of freedom corresponding to grids in 2D or 3D obtained after J refinements of the coarse meshes (N =
velocity + pressure).

J 1 2 3 4 5 6 7 8

2D case Velocity 12k 50K 198k 790k 3.15M 12.6M 50.4M 201M

Pressure 1.6k 6k 25k 99k 395k 1.58M 6.30M 25.2M

N 14k 56k 223k 889k 3.55M 14.2M 56.7M 227M

Displacement 12k 50K 198k 790k 3.15M 12.6M 50.4M 201M

3D case Velocity 533k 4.11M 32.2M 255M – – – –

Pressure 24k 178k 1.37M 10.7M – – – –

N 557k 4.27M 33.6M 266M – – – –

Displacement 533k 4.11M 32.2M 255M – – – –
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5462 WICHROWSKI et al.

T A B L E 3 Default parameters of the preconditioner described in Section 4.

Parameter  

Order of the Chebyshev smoother defining Â−1 kA 4 6

Number m of outer MG smoothing steps m 2 2

Number of outer MG iterations n 1 1

Order of the Chebyshev smoother defining ̃S−1 kS 1 1

Number of inner MINRES/BiCGStab iterations nS 1 1

T A B L E 4 Material parameters.

Parameter Units FSI2i FSI3i FSI3Di

𝜌s kg m−3 104 103 103

𝜌f kg m−3 103 103 103

𝜇s kg m−1 s−2 0.5 × 106 2 × 106 2 × 106

𝜂f kg m−1 s−2 1 1 1

Vin m s−1 1 2 1.75

Re – 100 200 175

assumed, while on the left side of the channel a parabolic inflow velocity profile is prescribed, compare Reference 43. The
flow is defined by the average velocity at the inlet, Vin, and by the Reynolds number (computed with respect to the obstacle
diameter). Here, we consider Vin = 1 or Vin = 2, corresponding to Re = 100 and Re = 200, respectively. The detailed test
data is presented in Table 4.

We conduct FSI2i and FSI3i tests using the GCsI2( ,) scheme on a fixed spatial grid after J = 5 levels of refinement
(see Table 2 for details on the number of degrees of freedom). By varying time step size 𝜏 we evaluate the stability and
convergence (in time) of our numerical method. Additionally, for qualitative comparison, we run the FSI2i benchmark
using a one-stage method, GCsI2(). Let us note that the standard GCE scheme (which, in our notation, corresponds to
the GCsI2() method) turned out unstable for time steps larger than 𝜏 = 0.00025 (and thus for all time steps considered
below), so we excluded this method from the following analysis.

In Tables 5 and 6 we report the amplitude, average displacement, and period of the last computed oscillation at point A,
see Figure 2. Apparently, with 𝜏 decreasing, both GCsI2( ,) and GCsI2() schemes converge to similar results, with the
former settling for larger time step values than the latter. Lower amplitude of oscillations of uy(A) in the case of GCsI2()
suggests that the single-stage method introduces more artificial damping compared to the two-stage scheme.

As expected, the results obtained from FSI2i and FSI3i tests are close to FSI2 and FSI3 from Reference 43. However,
they are not identical, since our solid model uses partially different constitutive laws.

The number of FGMRES iterations required to reduce the residual below prescribed threshold remains, as seen in
Figure 4, roughly constant over time, with lower convergence rate observed during the initial stages of the simulation,
which then improves in the steady oscillation phase. During this second phase, the solver performs no more than 15
iterations in  stage of the GCsI2( ,) scheme (and significantly less in  mode), confirming high efficiency of the
preconditioner described in Section 4 even when the linear problem is nonsymmetric (see also Table 8).

5.5 Tests in 3D

In the FSI3Di test case (illustrated in Figure 5), a non-slip condition is imposed on the long outer sides of the channel. On
the right side of the domain a do-nothing outflow condition is prescribed, while the left side is subject to the prescribed
inflow velocity profile Dirichlet boundary condition:

vin(x, y, z) =
36Vin

H2W2 y(H − y)z(W − z), (57)
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WICHROWSKI et al. 5463

T A B L E 5 Comparison of displacements and frequency in FSI2i (incompressible material) test problem obtained with GCsI2( ,)
(top) and GCsI2() (bottom) schemes, for various time step sizes 𝜏. Spatial mesh with J = 5 levels.

𝝉 ux(A) × 10−3 uy(A) × 10−3 Frequency (uy(A))

FSI2i, GCsI2( ,) 0.04 (No steady oscillations)

0.02 −14.83 ± 11.65 1.29 ± 76.38 1.96

0.01 −15.09 ± 13.04 1.25 ± 80.26 2.00

0.005 −14.85 ± 12.89 1.23 ± 80.77 2.00

0.0025 −14.72 ± 12.55 1.23 ± 80.77 2.00

FSI2i, GCsI2() 0.04 (No steady oscillations)

0.02 −13.87 ± 11.80 1.38 ± 76.45 1.92

0.01 −14.26 ± 12.65 1.32 ± 79.42 1.96

0.005 −14.53 ± 12.71 1.30 ± 80.51 1.98

0.0025 −14.52 ± 12.52 1.23 ± 80.77 2.00

FSI2 (compressible)43 0.001 −14.58 ± 12.44 1.23 ± 80.6 2.0

Note: For qualitative comparison, in the last row we also report results of the FSI2 benchmark for a compressible material.

T A B L E 6 Comparison of displacements and frequency in the FSI3i (incompressible) testcase with J = 4.

𝝉 ux(A) × 10−3 uy(A) × 10−3 Frequency (uy(A))

FSI3i, GCsI2( ,) 0.02 (No steady oscillations)

0.01 −2.85 ± 2.06 1.80 ± 32.19 5.38

0.005 −2.79 ± 2.46 1.47 ± 34.38 5.47

0.0025 −2.88 ± 2.69 1.45 ± 34.56 5.51

FSI3 (compressible)43 0.0005 −2.69 ± 2.53 1.48 ± 34.38 5.3

Note: For qualitative comparison, in the last row we also report results of the FSI3 benchmark for a compressible material.

F I G U R E 4 Number of FGMRES iterations per time step in 2D case (FSI2i), as a function of time. Results for J = 5 and 𝜏 = 0.005.

which results in Re = 175 for Vin = 1.75 (calculated with respect to the cylinder diameter). For the handling of grid
deformations, we use the linear elasticity problem with the same coefficient distribution as in 2D case, compare (56).

To generate the computational grids, we first extrude the 2D grid used in our earlier experiments along the third
dimension, resulting in six elements in that direction. Then, the grid is uniformly refined J times to obtain a multilevel
structure. We conduct the experiments dealing with four different levels of refinements, J = 1, … , 4 (see Table 2 for
details on the number of degrees of freedom) and several time step sizes.

To assess the quality of the solution, we again record the oscillation frequency, the average, and the amplitude of the
displacement of point A, see Table 7. The results indicate that, as the time step size decreases, the oscillation frequency,
average and amplitude of displacement of point A, each settle at a certain value, supporting the expectation that the
scheme is convergent as 𝜏 → 0.
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5464 WICHROWSKI et al.

(A) (B)

F I G U R E 5 (A) Visualization of the geometry of the FSI3Di testcase. (B) Plot of the streamlines and of the deformed plate.

T A B L E 7 Comparison of displacements and frequency in FSI3Di test with J = 3.

𝝉 ux(A) × 10−3 uy(A) × 10−3 Frequency uy(A))

FSI3i, GCsI2( ,) 0.008 −2.39 ± 2.23 2.51 ± 28.47 5.63

0.004 −2.39 ± 2.44 2.45 ± 29.20 5.73

0.002 −2.39 ± 2.49 2.43 ± 29.24 5.77

lFSI3D (compressible)11 0.001 −2.143 ± 2.383 2.699 ± 25.594 5.60

Note: For qualitative comparison, in the last row we also report results of the FSI3D benchmark for a compressible material.

F I G U R E 6 Number of FGMRES iterations per time step in 3D case (FSI3Di), as a function of time.

As in the 2D case, the results of the FSI3Di test are again slightly different from FSI3D,11 due to different material laws
for the solid.

From Figure 6 it follows that, after a short transition period, the number of FGMRES iterations required to converge
does not exceed 6 during the  stage of the GCsI2( ,) scheme. During the  stage it remains below 25 for most of the
steps; however, this number fluctuates and from time to time increases up to about 40.* This shows that the preconditioner
works efficiently for the linear systems of equations being solved in each stage of the GCsI2( ,) scheme in 3D as well;
see also Table 9.

5.6 Influence of the volume-preserving correction on the quality of the solution

Here we investigate how effective is the volume-preserving correction, introduced in Section 3.1.2, in resolving certain
issues related to the deformation of the beam. In Figure 7, we compare the results obtained for the FSI2i testcase with a
relatively large time-step size, 𝜏 = 0.01, when the volumetric damping is either weak, strong or absent. It is evident that
without the volumetric correction (𝜂V = ∞) the maximum amount of horizontal displacement, |ux|, at point A tends to
slowly increase over time (so that the edge of the beam drifts away from A), whereas it remains stable for both 𝜂V = 0.1
and 𝜂V = 0.02. Moreover, the displacement graphs obtained for the latter values of 𝜂V practically overlap.
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WICHROWSKI et al. 5465

F I G U R E 7 Influence of volume-preserving correction on the displacement of the point A versus time, for varying damping parameter
𝜂V of the volume-preserving correction. (By convention, 𝜂V = ∞ corresponds to no correction.) FSI2i test case, grid with J = 5 levels,
GCsI2( ,) scheme with timestep 𝜏 = 0.01.

F I G U R E 8 Volume of the solid versus time, for varying damping parameter 𝜂V of the volume-preserving correction. (By convention,
𝜂V = ∞ corresponds to no correction.) FSI2i test case, grid with J = 5 levels; GCsI2( ,) scheme with time step 𝜏 = 0.01.

The importance of the volume-preserving correction is even more pronounced when one compares the evolution of
the volume of the solid in time, see Figure 8. Without stabilization, its volume is diminishing (a similar effect also occurs
in the case of the first-order time integration scheme GCsI1( ,)where the beam is gaining volume). The presence of the
volume-preserving correction term resolves the problem with the incompressibility condition, thus paving the way to use
large time steps in our scheme. Let us mention that, to some extent, the final result seems quite insensitive to the (small)
value of the damping parameter 𝜂V .

5.7 Performance

In order to evaluate the performance of our solver, we plotted the time spent per degree of freedom versus the number
of degrees of freedom for both the 2D and 3D cases, as seen in Figure 9. The tests were performed on four nodes, each
equipped with two Intel Xeon 8160 @2.1GHz processors. The results demonstrate that our method is highly efficient,
with the time spent per degree of freedom decreasing as the number of degrees of freedom increases. This trend can be
attributed to the relatively inefficient coarse grid solver becoming a smaller fraction of the overall timing as the problem
size increases. We also note that the number of iterations of the FGMRES linear solver required for convergence is roughly
independent of the problem size, as demonstrated in Tables 8 and 9.

We compared its efficiency with results reported in the literature,11(tab. 9) as shown in Table 10. Notwithstanding the
fact that Reference 11 used a different discretization scheme and compressible constitutive equations, the comparison
clearly shows that matrix-free algorithms can outperform matrix-based ones in terms of throughput. This is especially
true in 3D simulations.
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F I G U R E 9 Efficiency of the solver, as a function of the total number N of degrees of freedom in the momentum equation. FSI2i
problem (top) and FSI3Di (bottom).

T A B L E 8 Number of FGMRES iterations required for convergence (𝜀 = 10−6) at the first time step 𝜏 = 0.004 in 2D tests during both
stages { ,} of the GCsI2( ,) scheme and for varying number of levels J.

Stage ↓ J → 3 4 5 6 7 8

FSI2i  8 9 9 10 10 10

 15 13 11 10 9 9

FSI3i  11 11 12 12 12 12

 26 28 23 20 19 18

T A B L E 9 Number of FGMRES iterations required for convergence (𝜀 = 10−3) at the first time step 𝜏 = 0.005 in the 3D test during
both stages { ,} of the GCsI2( ,) scheme and for varying number of levels J.

Stage ↓ J → 1 2 3 4

FSI3Di  9 10 8 8

 9 15 18 15

Notably, as the problem size increases, our solver’s efficiency improves significantly, making it well-suited for
large-scale simulations. When solving problems with lower numbers of degrees of freedom, the impact of a suboptimal
coarse solver degrades significantly the performances, which are quickly recovered when the problem size increases, and
the relative cost of the coarse solver becomes more and more negligible.

The comparison highlights the advantage of the matrix-free implementation in terms of computational speed and
scalability, reinforcing its potential for addressing complex FSI problems efficiently.
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T A B L E 10 Comparison of diverse strategies from literature, reported in Reference 11 (tab. 9).

Approach DoFs 𝝉 Cores DoFs
Second

DoFs
Second × Core

Source

2D GMRES 16M 0.01 64 65,040 s−1 1016 s−1 72

Red. Newton-MG 1.28M 0.002 16 27,943 s−1 436 s−1 11

GCsI2( ,) 1.68M 0.005 192 357,978 s−1 1864 s−1 Figure 9

GCsI2( ,) 428M 0.005 192 6,259,254 s−1 32,600 s−1 Figure 9

3D GMRES 14M 0.001 256 1223 s−1 4 s−1 72

Red. Newton-MG 3.53M 0.002 32 14,413 s−1 450 s−1 11

GCsI2( ,) 8.38M 0.004 192 439,318 s−1 2288 s−1 Figure 9

GCsI2( ,) 521M 0.004 192 2,067,736 s−1 10,769 s−1 Figure 9

Note: We highlight the impact of the degrees of freedom, time-step size, and the number of cores employed on the “degrees of freedom per second computed
for each time step,” and the corresponding value normalized with respect to the number of cores. Higher ratios signify improved performance.

6 CONCLUSIONS

In this article, we presented a numerical method for solving FSI problems with an incompressible, hyperelastic
Mooney–Rivlin solid. For a fully-coupled finite element discretization, we have designed a semi-implicit kth order
BDF-based time integration scheme, GCsIk(⋅), augmented with a correction term aimed at improving the volume
preservation. The method uses the ALE formulation to track the moving parts.

The scheme, which resembles an S-stage predictor–corrector method, possesses improved stability properties, as com-
pared to the GCE scheme introduced in Reference 5. This makes it possible to use much larger time steps while still
capturing the dynamics of the interaction between the fluid and the solid. Although each time step is roughly S times
more expensive than the corresponding step of the GCE method, numerical experiments demonstrate that already for
S = 2, the GCsI2( ,) scheme is stable enough so that the gains in the efficiency, due to taking larger time steps, easily
outweigh the increased cost of a single step.

The splitting between the explicit and implicit parts of the integration step has been designed in such a way that,
in the latter, a solution to a generalized nonsymmetric Stokes-like problem needs to be computed. This is challenging,
because the problem’s condition number is adversely affected not only by the number of the unknowns, but also by a very
large contrast in the coefficients of the underlying Stokes-like PDE. To address this issue, we adapted a preconditioning
method from Reference 40 and proved its robustness and efficiency in this type of application. While the number of pre-
conditioned FGMRES iterations fluctuated in time, it was always bounded by a reasonably moderate constant, regardless
of the problem size.

The method described above has been implemented in a matrix-free fashion using thedeal.II library and performed
very well on classical FSI benchmarks in 2D and 3D, with as many as 250M spatial degrees of freedom, being solved in
parallel on four computing nodes, each equipped with two Intel Xeon 8160 @2.1GHz CPU processors. The throughput of
the method was compared to the throughput of other methods found in the literature,11 and the results are summarized
in Table 10, clearly showing that our solver has a significantly higher throughput than matrix-based methods, thanks to
the efficiency of our preconditioner, and to the matrix-free implementation.

We believe that this approach has the potential for further improvement—that we plan to investigate in future
research—for example through the introduction of a more efficient coarse solver, which is one of the bottlenecks in the
current implementation, as shown by the efficiency results.
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DATA AVAILABILITY STATEMENT
Data available on request from the authors.

ENDNOTE
∗The unusual peak occurring at t = 2.24 is caused by restarting the simulation from a checkpoint—in that case, the initial guess for the FGMRES
was not the previous solution but just the zero vector.
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