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Abstract The paper investigates the sound field excited by a boundary pure-tone source in rigid-walled 
rectangular rooms. This approach is applicable in the low-frequency range, where sound absorption by wall 
surfaces can be considered negligible. The sound pressure was theoretically determined by applying the 
Green's function based on the cut-on and evanescent modes expansion instead of the usual normal mode 
expansion. The theoretical model was used to predict the spatial distribution of the sound pressure level at 
different source frequencies. The calculation results have shown that for audible frequencies below the cut-
off frequency, the plane wave mode and evanescent modes strongly interfere which results in an 
interference pattern with large dips in the pressure level forming a continuous curve. A shape of this curve 
is highly dependent on the excitation frequency. These dips have been found to occur when the sound 
associated with the plane wave mode is cancelled by the sound produced by evanescent modes.  
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1. Introduction 

The excitation of evanescent modes must be considered in the analysis of acoustic wave propagation 
whenever radiation, reflection, transmission or diffraction of sound waves is investigated. A characteristic 
feature of evanescent modes is that they do not propagate, but decay exponentially in a certain spatial 
direction. A classical problem presented in acoustics textbooks is a sound field produced by a time-
harmonic source placed inside the acoustic waveguide, because in this case the field can be decomposed 
into a sum of a finite number of propagating modes and an infinite number of evanescent modes [1, 2].  

A number of studies conducted in the past have focused on the excitation of evanescent modes in the 
cavity resonators, resulting in an aperture length correction that modifies the resonant frequency [3, 4]. The 
influence of evanescent modes on the natural frequencies was also studied in the system consisting of 
multiple rectangular cavities connected by necks or slits in series [5]. Evanescent modes are also excited in 
rectangular rooms, but the research effort has been directed to the theoretical and numerical analysis of the 
sound field in reverberant and steady-state conditions [6, 7], as well as at determining the optimum 
dimension ratios for small rectangular rooms in order to obtain a smoother frequency response at low 
frequencies [8]. In these studies, the indoor sound field was modelled using the normal mode expansion, 
therefore the influence of evanescent modes on this field was not examined.  

The paper is organized as follows. Following the Introduction, Sect. 2 presents a theoretical model of  
a sound field inside rectangular rooms based on the cut-on and evanescent modes expansion. Section 3 
discusses the results of numerical study. The paper is concluded with final remarks in Sect. 4. 

2. Theoretical analysis 

The most convenient way to describe the sound field inside enclosed spaces is to use the Green’s function 
𝐺𝐺(𝐫𝐫| 𝐫𝐫𝑠𝑠) describing the pressure response at the receiving point 𝐫𝐫 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) to the sound excitation at the 
source point  𝐫𝐫𝑠𝑠 = (𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠, 𝑧𝑧𝑠𝑠). The Green’s function is very useful in room acoustics because knowing its form 
allows to predict the room response to any sound source. If the indoor sound field is produced by the 
boundary source having a time-harmonic behavior 𝑒𝑒j𝜔𝜔𝑡𝑡  with a radial frequency 𝜔𝜔, the pressure response to 
this excitation can be determined from the following equation (the factor 𝑒𝑒j𝜔𝜔𝑡𝑡  was excluded) 

𝑝𝑝(𝐫𝐫) = −j 𝜌𝜌𝜌𝜌𝑘𝑘�𝑢𝑢(𝐫𝐫𝑠𝑠
𝑆𝑆𝑤𝑤

)𝐺𝐺(𝐫𝐫| 𝐫𝐫𝑠𝑠) d𝑆𝑆𝑤𝑤 , (1) 
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where 𝜌𝜌 and 𝑐𝑐 are the air density and sound speed inside the room, 𝑘𝑘 = 𝜔𝜔 𝑐𝑐⁄  is the wave number, 𝑢𝑢(𝐫𝐫𝑠𝑠) is 
the normal velocity on the room walls (positive outward), 𝑆𝑆𝑤𝑤  is the wall surface and j = √−1.  
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Figure 1. A rectangular room under study together with the associated coordinate system. 

A considered rectangular room together with the associated coordinate system is shown in Fig. 1. Since 
the theoretical analysis concerns the low-frequency sound range, it is assumed that the room walls are 
perfectly rigid, because in this frequency range soundproofing materials have negligible sound absorption 
[9]. In this case the Green’s function 𝐺𝐺(𝐫𝐫| 𝐫𝐫𝑠𝑠) can be constructed as an infinite double series 

𝐺𝐺(𝐫𝐫| 𝐫𝐫𝑠𝑠) = �𝜒𝜒𝑚𝑚𝑚𝑚(𝑥𝑥| 𝑥𝑥𝑠𝑠) 𝜓𝜓𝑚𝑚𝑚𝑚( 𝑦𝑦, 𝑧𝑧| 𝑦𝑦𝑠𝑠,  𝑧𝑧𝑠𝑠)
𝑚𝑚,𝑛𝑛

, (2) 

where the functions 𝜒𝜒𝑚𝑚𝑚𝑚  and 𝜓𝜓𝑚𝑚𝑚𝑚   satisfy the following boundary conditions 

𝜕𝜕𝜒𝜒𝑚𝑚𝑚𝑚

𝜕𝜕𝜕𝜕
(𝑥𝑥 = 0) =

𝜕𝜕𝜒𝜒𝑚𝑚𝑚𝑚
𝜕𝜕𝜕𝜕

(𝑥𝑥 = 𝐿𝐿𝑥𝑥) = 0, (3) 

𝜕𝜕  𝜓𝜓𝑚𝑚𝑚𝑚
𝜕𝜕𝜕𝜕

( 𝑦𝑦 = 0) =
𝜕𝜕  𝜓𝜓𝑚𝑚𝑚𝑚
𝜕𝜕𝜕𝜕

�𝑦𝑦 = 𝐿𝐿𝑦𝑦� =  
𝜕𝜕  𝜓𝜓𝑚𝑚𝑚𝑚
𝜕𝜕𝜕𝜕

(𝑧𝑧 = 0) =
𝜕𝜕  𝜓𝜓𝑚𝑚𝑚𝑚
𝜕𝜕𝜕𝜕

(𝑧𝑧 = 𝐿𝐿𝑧𝑧) = 0, (4) 

and 𝑚𝑚,𝑛𝑛 = 0,1,2 … According to Ref. [1], the function 𝜓𝜓𝑚𝑚𝑚𝑚 meeting the boundary conditions (4) is given by 

 𝜓𝜓𝑚𝑚𝑚𝑚( 𝑦𝑦, 𝑧𝑧| 𝑦𝑦𝑠𝑠,  𝑧𝑧𝑠𝑠) =
j 𝜖𝜖𝑚𝑚𝜖𝜖𝑛𝑛

2𝑘𝑘𝑚𝑚𝑚𝑚𝐿𝐿𝑦𝑦𝐿𝐿𝑧𝑧
 cos�

𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿𝑦𝑦

� cos�
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿𝑧𝑧

 

� cos�
𝑚𝑚𝑚𝑚𝑦𝑦𝑠𝑠
𝐿𝐿𝑦𝑦

� cos�
𝑛𝑛𝑛𝑛𝑧𝑧𝑠𝑠
𝐿𝐿𝑧𝑧

 

�, (5) 

where 𝜖𝜖𝑚𝑚, 𝜖𝜖𝑛𝑛 are Neumann factors (𝜖𝜖𝑖𝑖 = 1 when 𝑖𝑖 = 0, 𝜖𝜖𝑖𝑖 = 2 when 𝑖𝑖 > 0) and 𝑘𝑘𝑚𝑚𝑚𝑚 is determined by 

𝑘𝑘𝑚𝑚𝑚𝑚 = �𝑘𝑘2 − 𝜗𝜗𝑚𝑚𝑚𝑚2  ,     𝜗𝜗𝑚𝑚𝑚𝑚 = ��
𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿𝑦𝑦

�
2

+ �
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿𝑧𝑧

 

�
2

. (6) 

The procedure for finding the function 𝜒𝜒𝑚𝑚𝑚𝑚  is as follows. Assume that a point sound source is located 
inside an infinitely long duct of rectangular cross-section 𝐿𝐿𝑦𝑦 × 𝐿𝐿𝑧𝑧 . In this case the Green’s function is 
determined by the following equation [1]  

𝑔𝑔(𝐫𝐫| 𝐫𝐫𝑠𝑠) = �𝑒𝑒j𝑘𝑘𝑚𝑚𝑚𝑚|𝑥𝑥−𝑥𝑥𝑠𝑠|

𝑚𝑚,𝑛𝑛

 𝜓𝜓𝑚𝑚𝑚𝑚( 𝑦𝑦, 𝑧𝑧| 𝑦𝑦𝑠𝑠,  𝑧𝑧𝑠𝑠). (7) 

Equation (7) shows, that in the low-frequency range, the source excites a finite number of modes that 
propagate (𝑘𝑘 > 𝜗𝜗𝑚𝑚𝑚𝑚) and an infinite number of modes that are evanescent (𝑘𝑘 < 𝜗𝜗𝑚𝑚𝑚𝑚), since these modes 
decay exponentially with increasing distance from the source. The Green's function 𝐺𝐺(𝐫𝐫| 𝐫𝐫𝑠𝑠) satisfying the 
boundary condition (3) can be determined by separating an area of length 𝐿𝐿𝑥𝑥  from the duct (0 ≤ 𝑥𝑥 ≤ 𝐿𝐿𝑥𝑥) 
and bounding it on both sides by perfectly rigid surfaces which are perpendicular to the duct walls.  
If there is a sound source located at point  𝐫𝐫𝑠𝑠 = (𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠 , 𝑧𝑧𝑠𝑠) in this area, the Green's function 𝐺𝐺(𝐫𝐫| 𝐫𝐫𝑠𝑠) will have 
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the form of an infinite series whose components represent successive reflections from both surfaces of the 
wave emitted by the source, i.e. 

𝐺𝐺(𝐫𝐫| 𝐫𝐫𝑠𝑠) = �  𝜓𝜓𝑚𝑚𝑚𝑚 �𝑒𝑒j𝑘𝑘𝑚𝑚𝑚𝑚|𝑥𝑥−𝑥𝑥𝑠𝑠| + 𝑒𝑒j𝑘𝑘𝑚𝑚𝑚𝑚|𝑥𝑥+𝑥𝑥𝑠𝑠|

𝑚𝑚,𝑛𝑛

+ �𝑒𝑒j𝑘𝑘𝑚𝑚𝑚𝑚|𝑥𝑥−𝑥𝑥𝑠𝑠−2𝜇𝜇𝐿𝐿𝑥𝑥| + 𝑒𝑒j𝑘𝑘𝑚𝑚𝑚𝑚|𝑥𝑥−𝑥𝑥𝑠𝑠+2𝜇𝜇𝐿𝐿𝑥𝑥| + 𝑒𝑒j𝑘𝑘𝑚𝑚𝑚𝑚|𝑥𝑥+𝑥𝑥𝑠𝑠−2𝜇𝜇𝐿𝐿𝑥𝑥| + 𝑒𝑒j𝑘𝑘𝑚𝑚𝑚𝑚|𝑥𝑥+𝑥𝑥𝑠𝑠+2𝜇𝜇𝐿𝐿𝑥𝑥|
∞

𝜇𝜇=1

�

=�  𝜓𝜓𝑚𝑚𝑚𝑚 �𝑒𝑒j𝑘𝑘𝑚𝑚𝑚𝑚|𝑥𝑥−𝑥𝑥𝑠𝑠| + 𝑒𝑒j𝑘𝑘𝑚𝑚𝑚𝑚|𝑥𝑥+𝑥𝑥𝑠𝑠|
 +

 

4 cos(𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥) cos(𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠)�𝑒𝑒2j𝑘𝑘𝑚𝑚𝑚𝑚𝜇𝜇𝐿𝐿𝑥𝑥

∞

𝜇𝜇=1

�
𝑚𝑚,𝑛𝑛

. 

(8) 

Considering that in Eq. (8) the infinite series in the square brackets may be replaced by the formula [10] 

�𝑒𝑒2j𝑘𝑘𝑚𝑚𝑚𝑚𝜇𝜇𝐿𝐿𝑥𝑥

∞

𝜇𝜇=1

=
j cot(𝑘𝑘𝑚𝑚𝑚𝑚𝐿𝐿𝑥𝑥) − 1

2
, (9) 

the following expression for the Green's function 𝐺𝐺(𝐫𝐫| 𝐫𝐫𝑠𝑠) can be found  

𝐺𝐺(𝐫𝐫|𝐫𝐫𝑠𝑠) = 2j�
 𝜓𝜓𝑚𝑚𝑚𝑚( 𝑦𝑦, 𝑧𝑧| 𝑦𝑦𝑠𝑠,  𝑧𝑧𝑠𝑠)

sin(𝑘𝑘𝑚𝑚𝑚𝑚𝐿𝐿𝑥𝑥)
�

cos(𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠) cos[𝑘𝑘𝑚𝑚𝑚𝑚(𝐿𝐿𝑥𝑥 − 𝑥𝑥)],  𝑥𝑥 > 𝑥𝑥𝑠𝑠,  

cos(𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥) cos[𝑘𝑘𝑚𝑚𝑚𝑚(𝐿𝐿𝑥𝑥 − 𝑥𝑥𝑠𝑠)],  𝑥𝑥 < 𝑥𝑥𝑠𝑠.  
𝑚𝑚,𝑛𝑛

 (10) 

Now assume that 𝑥𝑥𝑠𝑠 = 0 in Eq. (10), then after substituting Eqs. (5) and (10) into Eq. (1), the equation for 
the sound pressure, valid for 𝑥𝑥 > 0, is obtained  

𝑝𝑝(𝐫𝐫) =
j 𝜌𝜌𝜌𝜌 cos[𝑘𝑘(𝐿𝐿𝑥𝑥 − 𝑥𝑥)]
𝐿𝐿𝑦𝑦𝐿𝐿𝑧𝑧 sin(𝑘𝑘𝐿𝐿𝑥𝑥)

�𝑢𝑢(𝐫𝐫𝑠𝑠
𝑆𝑆𝑤𝑤

) d𝑆𝑆𝑤𝑤  +  

j𝜌𝜌𝜌𝜌𝜌𝜌
𝐿𝐿𝑦𝑦𝐿𝐿𝑧𝑧

��
𝜇𝜇𝑚𝑚𝑚𝑚cos[𝑘𝑘𝑚𝑚𝑚𝑚(𝐿𝐿𝑥𝑥 − 𝑥𝑥)]
𝑘𝑘𝑚𝑚𝑚𝑚 sin(𝑘𝑘𝑚𝑚𝑚𝑚𝐿𝐿𝑥𝑥)

𝑚𝑚,𝑛𝑛

−�
𝜈𝜈𝑚𝑚𝑚𝑚cosh[𝛽𝛽𝑚𝑚𝑚𝑚(𝐿𝐿𝑥𝑥 − 𝑥𝑥)]
𝛽𝛽𝑚𝑚𝑚𝑚 sinh(𝛽𝛽𝑚𝑚𝑚𝑚𝐿𝐿𝑥𝑥)

 

𝑚𝑚,𝑛𝑛

�  cos�
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿𝑦𝑦

� cos�
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿𝑧𝑧

 

�

× �𝑢𝑢(𝐫𝐫𝑠𝑠) cos�
𝑚𝑚𝑚𝑚𝑦𝑦𝑠𝑠
𝐿𝐿𝑦𝑦

� cos�
𝑛𝑛𝑛𝑛𝑧𝑧𝑠𝑠
𝐿𝐿𝑧𝑧

 

� d𝑆𝑆𝑤𝑤
𝑆𝑆𝑤𝑤

, 

(11) 

where 𝛽𝛽𝑚𝑚𝑚𝑚 = �𝜗𝜗𝑚𝑚𝑚𝑚2 − 𝑘𝑘2 and 𝜇𝜇𝑚𝑚𝑚𝑚 = 0 for 𝑚𝑚,𝑛𝑛 = 0 and values of 𝑚𝑚,𝑛𝑛 for which 𝑘𝑘 < 𝜗𝜗𝑚𝑚𝑚𝑚 , and 𝜇𝜇𝑚𝑚𝑚𝑚 = 𝜖𝜖𝑚𝑚𝜖𝜖𝑛𝑛 
for other 𝑚𝑚,𝑛𝑛, and then, 𝜈𝜈𝑚𝑚𝑚𝑚 = 0 for values of 𝑚𝑚,𝑛𝑛 for which 𝑘𝑘 > 𝜗𝜗𝑚𝑚𝑚𝑚 , and 𝜈𝜈𝑚𝑚𝑚𝑚 = 𝜖𝜖𝑚𝑚𝜖𝜖𝑛𝑛 for other 𝑚𝑚,𝑛𝑛. The 
first term in Eq. (11) describes the contribution of a plane wave to the sound field, while the other two terms 
describe the influence of propagating modes (so-called cut-on modes) and evanescent modes (so-called cut-
off modes) on this field. The case where the boundary excitation takes the form of a source point is of 
particular importance from a theoretical point of view, because in such a situation the sound field is not 
affected by the shape and size of the source. If it is assumed that a source is located at the point  
 𝐫𝐫0 = (0,𝑦𝑦0, 𝑧𝑧0), then 𝑢𝑢(𝐫𝐫𝑠𝑠) = 𝑢𝑢𝑎𝑎𝛿𝛿(𝐫𝐫𝑠𝑠 −  𝐫𝐫0), thus, in this case Eq. (11) takes the form 

𝑝𝑝(𝐫𝐫) =
j 𝜌𝜌𝜌𝜌𝑈𝑈 cos[𝑘𝑘(𝐿𝐿𝑥𝑥 − 𝑥𝑥)]

𝐿𝐿𝑦𝑦𝐿𝐿𝑧𝑧 sin(𝑘𝑘𝐿𝐿𝑥𝑥)
 +  

j𝜌𝜌𝜌𝜌𝜌𝜌𝑈𝑈
𝐿𝐿𝑦𝑦𝐿𝐿𝑧𝑧

��
𝜇𝜇𝑚𝑚𝑚𝑚cos[𝑘𝑘𝑚𝑚𝑚𝑚(𝐿𝐿𝑥𝑥 − 𝑥𝑥)]
𝑘𝑘𝑚𝑚𝑚𝑚 sin(𝑘𝑘𝑚𝑚𝑚𝑚𝐿𝐿𝑥𝑥)

𝑚𝑚,𝑛𝑛

−�
𝜈𝜈𝑚𝑚𝑚𝑚cosh[𝛽𝛽𝑚𝑚𝑚𝑚(𝐿𝐿𝑥𝑥 − 𝑥𝑥)]
𝛽𝛽𝑚𝑚𝑚𝑚 sinh(𝛽𝛽𝑚𝑚𝑚𝑚𝐿𝐿𝑥𝑥)

 

𝑚𝑚,𝑛𝑛

�  cos�
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿𝑦𝑦

� cos�
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿𝑧𝑧

 

� cos�
𝑚𝑚𝑚𝑚𝑦𝑦0
𝐿𝐿𝑦𝑦

� cos�
𝑛𝑛𝑛𝑛𝑧𝑧0
𝐿𝐿𝑧𝑧

 

� , 

(12) 

where 𝑈𝑈 = 𝐴𝐴𝐴𝐴𝑎𝑎 is the volume velocity and 𝐴𝐴 = 1 m2 is the unit area. The following expression  

𝐮𝐮(𝐫𝐫) = −
1

j𝜌𝜌𝜌𝜌
𝛁𝛁𝑝𝑝(𝐫𝐫), (13) 

allows to determine a distribution of the velocity vector field in a room, where 𝛁𝛁 is the vector gradient 
operator 𝛁𝛁 = 𝐢𝐢 ∂ ∂x⁄ + 𝐣𝐣 ∂ ∂y⁄ + 𝐤𝐤 ∂ ∂z⁄  and 𝐢𝐢, 𝐣𝐣, 𝐤𝐤 are the versors in the rectangular coordinate system. In 
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terms of the pressure 𝑝𝑝(𝐫𝐫) and the velocity 𝐮𝐮(𝐫𝐫), the complex sound intensity vector 𝐈𝐈c describing the 
acoustic energy flux in a time-harmonic sound field can be determined using the well-known formula 

𝐈𝐈c(𝐫𝐫) = 1
2
𝑝𝑝(𝐫𝐫) u*(r) = 𝐈𝐈(𝐫𝐫) + j𝐐𝐐(𝐫𝐫), (14) 

where an asterisk in the superscript indicates the complex conjugate, 𝐈𝐈 is called the active sound intensity 
or the acoustic intensity and 𝐐𝐐 is termed as the reactive sound intensity. The active component of the sound 
intensity describes the flow of acoustic energy in the sound field, while the reactive sound intensity 
represents the non-propagating, oscillatory sound energy flux. As follows from Eqs. (12) and (13), in the 
analyzed case the sound intensity 𝐈𝐈c is represented only by the imaginary component. This is consistent 
with the results of previous studies [11] showing that for non-absorbent room walls, there is only oscillatory 
sound energy flow inside a room space. 

3. Numerical study 

As part of a numerical study, the sound pressure level was computed from the formula 

SPL = 20 log[𝑃𝑃(𝐫𝐫) 𝑝𝑝ref⁄ ], (15) 

where 𝑃𝑃(𝐫𝐫) is the pressure amplitude determined from Eq. (12) and 𝑝𝑝ref = 2 ∙ 10−5 Pa. Calculations were 
run for the following room dimensions: 𝐿𝐿𝑥𝑥 = 4 m, 𝐿𝐿𝑦𝑦 = 5 m and 𝐿𝐿𝑧𝑧 = 3 m. It was assumed that an air filling 
the room interior is characterized by the density 𝜌𝜌 = 1.21 kg/m3 and the speed of sound 𝑐𝑐 = 343 m/s, thus, 
the cut-off frequency 𝑓𝑓𝑐𝑐 = 𝑐𝑐 2𝐿𝐿𝑦𝑦⁄  is equal to 34.3 Hz. The room was excited by the boundary source located 
at the point: 𝑥𝑥0 = 0 m, 𝑦𝑦0 = 2.5 m and 𝑧𝑧0 = 1 m. Such location of the point source enables to obtain  
a symmetrical distribution of sound field relative to the plane 𝑦𝑦 = 2.5 m, which facilitates the interpretation 
of calculation results. The SPL was determined on the observation plane 𝑧𝑧 = 1.6 m for the volume velocity 
U of 0.01 m3/s. The first 1000 modes were used in the calculations. 

As can be seen from Eq. (12), when the sound frequency 𝑓𝑓 is much smaller than the cut-off frequency 𝑓𝑓𝑐𝑐, 
the formula for the pressure amplitude simplifies to the form   

𝑃𝑃 ≅
 𝜌𝜌𝑐𝑐2𝑈𝑈
2𝜋𝜋𝜋𝜋𝜋𝜋

 , (16) 

where 𝑉𝑉 is the room volume, so the pressure amplitude is the same at any point in the room. Moreover, 𝑃𝑃 
decreases inversely with frequency, thus, it has a very large value when the frequency tends to zero. This 
phenomenon is known as an excitation of the Helmholtz mode. A special feature of this mode is that its 
eigenfrequency is equal to zero and the eigenfunction is a trivial solution of the eigenvalue equation [11].  
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Figure 2. Changes in the SPL with the frequency 𝑓𝑓: solid line – Eq. (15), red points – results obtained from 
Eq. (12) based on the mean value of the pressure amplitude on the observation plane. 

Calculation data in Fig. 2 illustrate the frequency dependence of SPL in the frequency range from 0.1 Hz 
to the cut-off frequency 𝑓𝑓𝑐𝑐. The results obtained from Eq. (15) are marked with a solid line. The red point 
denote the calculation results received from Eq. (12), but since the pressure amplitude is dependent on the 
spatial coordinate, the mean value of the pressure amplitude on the observation plane was used in 
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calculations of SPL. As shown in Fig. 2, the results obtained from Eqs. (12) and (15) are practically the same 
for frequencies up to 17.5 Hz. Therefore, it can be concluded that in the infrasonic frequency range, the 
evanescent modes have a negligible effect on the sound field. This impact is much greater for audible 
frequencies, as evidenced by the increase in discrepancies between the results obtained from Eqs. (12) and 
(15) for frequencies equal to or greater than 20 Hz. 

 

 

Figure 3. Distribution of SPL on the observation plane at the excitation frequency: a), b) 20 Hz,  
c), d) 30 Hz, a), c) resultant sound field, b), d) sound field produced by evanescent modes. 

The contour maps in Fig. 3a,c show distributions of SPL on the observation plane at the excitation 
frequency of 20 Hz and 30 Hz. In both cases, large dips in the SPL are observed, which form a continuous 
curve, the shape of which is different for both frequencies. The contour maps in Fig. 3b,d correspond to the 
case when the plane wave mode is excluded in Eq. (12), so they show the sound field produced only by 
evanescent modes. As can be seen, in both cases, distributions of SPL are very similar and this is due to the 
fact that the same set of evanescent modes co-create the sound field. This proves that the results depicted 
in Fig. 3a,c are the outcome of the interference of evanescent modes with the plane wave mode having 
different shape for the considered frequencies. This is confirmed by the calculation results in Fig. 4 showing 
the distributions of SPL only for the plane wave mode. As seen in Fig. 4a, for the frequency of 20 Hz, the 
value of SPL changes relatively little in the plane wave mode. Much more large changes in SPL are observed 
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for the frequency of 30 Hz. They result from a big decrease in the SPL at 𝑥𝑥 = 1.14 m, because for this value 
of 𝑥𝑥 the function cos [𝑘𝑘(𝐿𝐿𝑥𝑥 − 𝑥𝑥)] in Eq. (12) equals zero, which means that the component corresponding to 
the plane wave mode does not contribute to the resultant SPL. 

 

Figure 4. Distribution of SPL on the observation plane for the plane wave mode at the excitation 
frequency: a) 20 Hz and b) 30 Hz. 

In order to explain unusual forms of a sound field at the excitation frequency of 20 Hz and 30 Hz, Fig. 5 
shows SPL changes on the section : 0 < 𝑥𝑥 ≤ 4 m, 𝑦𝑦 = 2 m, 𝑧𝑧 = 1.6 m, for both the plane wave mode (blue 
line) and evanescent modes (red line). These data indicate that large dips in the SPL observed in Fig. 3a,c 
occur when the sound associated with the plane wave mode is cancelled by the sound produced by 
evanescent modes. This means that the sound pressures generated by the plane wave and evanescent 
modes have the same amplitude but different sign, so the resultant sound pressure changes sign and goes 
through zero. This is evidenced by the fact that in Fig. 5 the blue and red lines intersect at point 
corresponding exactly to the large drop in the resultant SPL (black dashed line). 
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Figure 5. SPL changes on the section: 0 < 𝑥𝑥 ≤ 4 m, 𝑦𝑦 = 2 m, 𝑧𝑧 = 1.6 m, for the excitation frequency:  
a) 20 Hz and b) 30 Hz. Blue line – SPL for plane wave mode, red line – SPL for evanescent modes,  

black dashed line – resultant SPL.  
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Figure 6. Vector field showing the direction of the reactive sound intensity 𝐐𝐐 on the observation plane 

at the excitation frequency: a) 20 Hz and b) 30 Hz. 

The theoretical results in Sect. 2 show that in the rigid-walled room there is only the reactive sound 
intensity 𝐐𝐐 representing the imaginary part of the complex sound intensity 𝐈𝐈c. Unfortunately, it turned out 
that the magnitude |𝐐𝐐| varies in a very wide range, which means that it is very difficult to reproduce the 
vector 𝐐𝐐 correctly. However, assuming that this magnitude is the same at every point inside the room, it is 
possible to reconstruct the direction of 𝐐𝐐 on the observation plane. The vector fields obtained in this way 
are depicted in Fig. 6, which shows the direction of 𝐐𝐐 at the excitation frequency of 20 Hz and 30 Hz. As can 
be seen from the comparison between Figs. 3a,c and 6, the reactive sound intensity vector is pointed in the 
direction of decreasing pressure. This regularity is confirmed mathematically by the equation [11] 

𝐐𝐐(𝐫𝐫) = −
1

2𝜌𝜌𝜌𝜌
𝑃𝑃(𝐫𝐫)𝛁𝛁𝑃𝑃(𝐫𝐫), (17) 

which also shows that the vector 𝐐𝐐 is always perpendicular to the surfaces of constant pressure.  

 

Figure 7. Distribution of SPL on the observation plane at the excitation frequency of 110 Hz,  
a) resultant sound field, b) sound field produced by cut-on modes.  

Above the cut-off frequency 𝑓𝑓𝑐𝑐, more and more evanescent modes become cut-on modes when the 
excitation frequency 𝑓𝑓 increases. The number 𝑀𝑀 of cut-on modes up to the frequency 𝑓𝑓 for a rigid-walled 
rectangular room can be determined from the expression [12] 
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𝑀𝑀 =
1
𝐿𝐿𝑦𝑦
�

 𝜋𝜋𝜋𝜋
6𝐿𝐿𝑦𝑦2

�
𝑓𝑓
𝑓𝑓𝑐𝑐
�
3

+
 𝜋𝜋𝜋𝜋

16𝐿𝐿𝑦𝑦
�
𝑓𝑓
𝑓𝑓𝑐𝑐
�
2

+
𝐿𝐿

16
�
𝑓𝑓
𝑓𝑓𝑐𝑐
��, (18) 

where V, as before, is the room volume, 𝑆𝑆 = 2�𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦 + 𝐿𝐿𝑥𝑥𝐿𝐿𝑧𝑧 + 𝐿𝐿𝑦𝑦𝐿𝐿𝑧𝑧� is the surface of all room walls and  
𝐿𝐿 = 4�𝐿𝐿𝑥𝑥 + 𝐿𝐿𝑦𝑦 + 𝐿𝐿𝑧𝑧� is the sum of lengths of room edges. As follows from Eq. (18), if the frequency is much 
higher than the cut-off frequency, then the effect of evanescent modes on the sound field is expected to 
decrease. This is confirmed by calculation results, which demonstrate that above the excitation frequency 
of 100 Hz, the impact of evanescent modes on the sound field is small, and this is especially noticeable for 
frequencies equal to or close to resonance frequencies. Such a case is depicted in Fig. 7 because it shows 
that at the excitation frequency of 110 Hz, which is close to the frequency of the 18th normal acoustic mode, 
the resultant sound field and the sound field produced by cut-on modes are almost the same. 

4. Concluding remarks 

This paper was concerned with the theoretical and numerical studies of the sound field generated by  
a boundary time-harmonic source in rigid-walled rectangular rooms. The analytical model showed that an 
excited sound field is produced by a finite number of cut-on modes and an infinite number of evanescent 
modes. The obtained numerical results demonstrated that below the cut-off frequency there is a strong 
interference between the plane wave mode and evanescent modes, which results in large pressure level 
drops forming a continuous curve on the observation plane. The shape of this curve was found to be highly 
dependent on the excitation frequency. Calculation data has shown that these dips occur when the sound 
associated with the plane wave mode is cancelled by the sound produced by evanescent modes. The 
influence of evanescent modes on the sound field turned out to be small when the frequency is much higher 
than the cut-off frequency, and this is especially evident for frequencies equal to or close to resonance 
frequencies of a room.  
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