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Exploring the performance 
of implicit neural representations 
for brain image registration
Michal Byra 1,2*, Charissa Poon 1, Muhammad Febrian Rachmadi 1,3, Matthias Schlachter 1 & 
Henrik Skibbe 1

Pairwise image registration is a necessary prerequisite for brain image comparison and data 
integration in neuroscience and radiology. In this work, we explore the efficacy of implicit neural 
representations (INRs) in improving the performance of brain image registration in magnetic 
resonance imaging. In this setting, INRs serve as a continuous and coordinate based approximation of 
the deformation field obtained through a multi-layer perceptron. Previous research has demonstrated 
that sinusoidal representation networks (SIRENs) surpass ReLU models in performance. In this 
study, we first broaden the range of activation functions to further investigate the registration 
performance of implicit networks equipped with activation functions that exhibit diverse oscillatory 
properties. Specifically, in addition to the SIRENs and ReLU, we evaluate activation functions based 
on snake, sine+, chirp and Morlet wavelet functions. Second, we conduct experiments to relate the 
hyper-parameters of the models to registration performance. Third, we propose and assess various 
techniques, including cycle consistency loss, ensembles and cascades of implicit networks, as well 
as a combined image fusion and registration objective, to enhance the performance of implicit 
registration networks beyond the standard approach. The investigated implicit methods are compared 
to the VoxelMorph convolutional neural network and to the symmetric image normalization (SyN) 
registration algorithm from the Advanced Normalization Tools (ANTs). Our findings not only highlight 
the remarkable capabilities of implicit networks in addressing pairwise image registration challenges, 
but also showcase their potential as a powerful and versatile off-the-shelf tool in the fields of 
neuroscience and radiology.

Pairwise image registration techniques designed to spatially align images are essential for various tasks in bio-
medical imaging. The goal of the registration is to determine a spatial transformation that maximizes the similar-
ity between the moving image and the target fixed image. Accurate image registration enables data comparisons 
across subjects, imaging modalities and time. For example, registration is necessary in neuroscience to map an 
individual brain image to a population based brain atlas space.

Image registration methods have been studied for many years. Classic pair-wise image registration techniques, 
available in the Advanced Normalization Tools (ANTs) or NiftyReg, utilize handcrafted optimization algorithms 
to determine the deformation field1,2. Traditional methods can be used to produce well-behaved deformation 
fields that follow imposed modelling assumptions, for example, that the transformation function is affine or rigid. 
Classic methods can also be applied for deformable image registration, where the aim is to calculate a dense and 
nonlinear mapping between the two images. Unfortunately, classic algorithms can be time consuming for large 
3D images and may underperform for data that violate field modeling assumptions.

Deep learning methods based on convolutional neural networks are gaining momentum in image 
registration3. Convolutional networks, such as VoxelMorph, can be used to process a pair of input images and 
output the deformation field required for image alignment4. Various deep learning methods based on the Vox-
elMorph framework have been proposed to further improve image registration performance. For example, 
TransMorph replaces the standard convolutional layers with transformer blocks5. DiffuseMorph determines 
the deformation field based on a conditioned diffusion process6. CycleMorph utilizes the cycle consistency loss 
to regularize the deformation field7. However, deep learning methods based on the VoxelMorph framework 
exhibit a number of limitations that diminish their practical applicability. First, such neural networks require 
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large training sets and commonly underperform on out-of-distribution data. In practice it is often difficult to 
collect and curate a large dataset of biomedical imaging data. Additionally, utilizing convolutional networks for 
training with large input images demands significant memory resources, necessitating the downsampling of 
images to a predetermined geometry. This constraint complicates the network’s application to images that deviate 
from the training geometry. Furthermore, compared to traditional methods, VoxelMorph-like networks cannot 
serve as off-the-shelf tools for image registration, especially in neuroscience where the experimental data are 
scarce and commonly obtained using different acquisition protocols. SynthMorph has been proposed recently 
to address several limitations of VoxelMorph8. SynthMorph is trained with synthetic pairs of images, where a 
random deformation transformation is applied to cause dis-similarity between the input images. While this 
approach mitigates the requirement for the collection and curation of biomedical data, it does neither address 
the problems related to the image geometry, nor the problem with out-of-distribution image data, especially for 
cases requiring deformation fields that are different from the ones used to generate the synthetic training data.

Implicit neural representations (INRs) have recently been used for image registration in magnetic resonance 
imaging (MRI) and computed tomography (CT)9,10. INRs serve as a continuous, coordinate-based approxima-
tion of the deformation field obtained through a multi-layer perceptron (MLP). In this setting, a single implicit 
network is trained to directly determine the deformation field required to register two images. INRs offer a 
hybrid approach to image registration that presents properties of both neural networks and traditional per-case 
optimization techniques. Unlike VoxelMorph-like networks, INR based registration methods do not require 
large training datasets, as the implicit network is trained from scratch for each image pair. Moreover, compared 
to convolutional networks that require dense inputs (e.g. entire images) defined on coordinate grids with a pre-
determined size, implicit networks are defined on continuous coordinate spaces. This makes them suitable for 
the registration of images that differ in geometry and spatial resolution. Compared to traditional registration 
methods, implicit networks can leverage complex objective loss functions during the optimization. Wolterink 
et al. presented that implicit sinusoidal representation networks (SIRENs) can be used for lung registration in CT 
images10. The authors demonstrated that SIRENs outperform networks utilizing the rectified linear unit (ReLU) 
activation function. To perform the registration, the authors trained the implicit network with the standard nor-
malized cross-correlation loss and randomly sampled image pixel coordinates. Similarly, Sun et al. successfully 
applied standard SIREN models for brain image registration in MRI9. The authors trained the implicit network 
based on the local normalized cross-correlation loss using a sampling strategy that utilizes randomly extracted 
3D coordinate vector patches. Both studies demonstrated that INRs can be successfully used to model deforma-
tion fields with deep learning libraries that support GPU computations and automatic differentiation techniques, 
highlighting the potential of implicit networks as versatile off-the-shelf tools for paired image registration.

In this work, we further explore the use of implicit networks for brain image registration. Our main contri-
butions are as follows:

•	 We investigate the registration performance of implicit networks equipped with activation functions that 
have different oscillatory characteristics. We propose several novel activation functions, such as the chirp 
function.

•	 We examine the performance of the INR based registration methods in several ways. For example, we inves-
tigate the trade-off between the registration performance and deformation field folding. Moreover, we inves-
tigate the relationship between the registration performance and oscillatory characteristics of the activation 
functions. Our results indicate several practical challenges in the application of implicit networks, such as 
the requirement for the hyper-parameter tuning.

•	 We propose novel INR based registration approaches that outperform the standard technique based on the 
SIREN network. For example, we present that the registration performance of the implicit networks can be 
improved by the incorporation of the cycle consistency loss. We also consider ensembles and cascades of 
implicit networks. Furthermore, we show that image registration can be combined with image fusion in the 
INR framework. Implemented methods are compared with the ANTs registration algorithm and VoxelMorph 
convolutional network.

Methods
Preliminaries
The goal of pairwise 3D image registration is to determine a transformation T� that spatially aligns a moving 
image M : R3 → R to a fixed image F : R3 → R . Coordinate-based MLPs serve as networks that implicitly 
learn the transformation T� by approximating the underlying deformation field, represented by � : R3 → R

3 . 
This field determines the displacement of the moving image M to spatially align it with the fixed image F10. We 
normalize coordinates with respect to the image dimensions so that all coordinates are within [−1, 1]3 . In this 
setting, a single implicit network Fψ with weights ψ is used to process 3D spatial coordinates x̄ ∈ [−1, 1]3 of the 
moving image to output the displacement vector �x̄ ∈ R

3 . Following the calculations of the displacement vec-
tors, the deformation field is determined as �(x̄) = x̄ +�x̄ and an interpolation algorithm is applied to obtain 
the corresponding moved image T�(M) . INR based registration is illustrated in Fig. 1.

In pairwise image registration, the following loss function is commonly used to determine the deformation 
field:

where Lsim(F,T�(M)) is the loss function designed to assess the similarity between the fixed image F and the 
moved image T�(M) . Lreg (�(x̄)) stands for the regularization loss function used to smooth the deformation 

(1)L(F,T�(M)) = Lsim(F,T�(M))+ αregLreg (�),
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field and to constrain the spatial transformation to be physically plausible. Moreover, αreg indicates the weighting 
term used to balance the similarity and field regularization loss functions.

Activation functions
Wolterink et al. demonstrated that SIRENs, MLPs equipped with the sine activation function, outperform ReLU 
networks in CT image registration10. In this work, we compare the performance of the sine and ReLU activation 
functions in more detail. In addition, we investigate the use of several other activation functions with frequency 
dependent components, listed in Table 1.

ReLU
ReLU became the default activation function for many deep neural networks because of its simplicity and sat-
isfactory performance. It is defined by:

Sine
A common network architecture for modeling signals is the SIREN architecture11, which utilizes the sine activa-
tion function:

where x denotes the input, and ω represents the frequency-related hyper-parameter, typically set to 30 in 
applications11. The sine function addresses several problems associated with the ReLU function, such as the 
absence of higher-order derivatives and a bias towards low-frequency contents that can hinder the modeling of 
fine details in the underlying signals11,12. Additionally, networks with activation functions that possess periodic 
inductive biases are better suited to model functions with oscillating patterns13.

Snake
Ziyin et al. introduced the snake activation function as an alternative to the sine function, demonstrating that 
networks using the snake function are easier to optimize and can show superior performance in classification 
and sequence modeling tasks13. The snake function combines the identity mapping with a scaled cosine function:

Sine+
Sine+ is another function proposed by Ziyin et al. that shares similar advantages with the snake function when 
compared to the sine function13, defined as:

(2)σ(x) = max(0, x).

(3)σ(x) = sin(ωx),

(4)σ(x) = x +
1

ω
cos(ωx)+

1

ω
.

(5)σ(x) = x + sin(ωx).

Figure 1.   Scheme presenting pairwise brain image registration based on implicit neural representations. In this 
setting, a coordinate network is used to estimate the displacement vector �x̄ and determine the deformation 
field. Note changes in the shape of the brain, gyri, and ventricles in the moved image compared to the moving 
image.
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Chirp
We explore a chirp activation function as an alternative to the sine function. The sine function’s frequency is 
constant, controlled by the ω hyper-parameter, whereas the chirp function modulates with respect to frequency, 
and is therefore potentially better suited for oscillatory patterns of varying frequencies. We propose using the 
following chirp function as the activation function:

where aω is a hyper-parameter related to ω , which constrains the rate of change in frequency with respect to the 
output of the hyperbolic tangent function. This way the frequency is variable for x values around 0 and approach 
constant values otherwise.

Morlet
We also explore the potential of the Morlet wavelet as an alternative to the sine function. The Morlet wavelet 
is a windowed modulated sine function, which, due to its locality in both spatial and frequency domains, may 
better adapt frequencies based on the location within the image. For simplicity, we use the imaginary part of the 
Morlet wavelet as the activation function14:

where aω = π− 1
4

(

1+ e−ω2

− 2e−
3
4
ω2
)− 1

2 and bω = e−
1
2
ω2

.
Figure 2 shows the chirp and Morlet activation functions for inputs around 0.

Investigated methods
In this section, we describe several potential extensions of the standard INR based approach to 3D image 
registration.

Attention mechanism
In the regular SIREN architecture, the ω hyper-parameter is constant for each linear layer. Since ω is related to 
the ability of the network to represent local signal variations, it may be beneficial to express this parameter as 
a function of the input coordinate x̄ , allowing the network to adjust the ω hyper-parameter according to local 
field characteristics. To achieve this, we propose a simple attention mechanism and modify the sine activation 
function in the following way:

where ω0 and �ω correspond to the center and modulation parameters, respectively. Function f(x) is used to 
relate the ω hyper-parameter to the output of the linear layer and has the following form:

where a and b are trainable parameters used for scaling, tanh is the hyperbolic tangent activation function and 
the summation goes over all units of the corresponding linear layer. We use the average absolute input values 
because we expect that coordinates associated with larger deformations produce higher outputs through the 
linear layers of the network. We set the ω0 and �ω to 30 and 20, therefore the possible range for the ω hyper-
parameter in Eq. (8) is equal to (10, 50).

Ensemble of implicit networks
Model ensembling is a popular strategy used to improve performance in machine learning15. We investigate 
whether an ensemble of three implicit networks can enhance the registration performance.

(6)σ(x) = sin(ωx + aωxtanh(ωx)),

(7)σ(x) = aωe
− 1

2
x2(sin(ωx)− bω),

(8)σ(x) = sin(ωx) = sin
(

(ω0 +�ωf (x))x
)

,

(9)f (x) = tanh

(

a

n

n
∑

i=1

|xi| + b

)

,

Figure 2.   Sine, chirp and Morlet activation functions around 0 for ω set to 30. For the chirp function the hyper-
parameter aω was set to 10.
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We create an ensemble based on three standard SIREN models with the ω hyper-parameters set to 10, 30, 
and 50, respectively, spanning a wide frequency range. Thus, the ensemble should model deformation fields 
with varying local variability. We generate the deformation field by averaging the output of all three networks, 
and train the networks jointly.

Affine transformation
Coordinate-based MLPs can be extended and jointly optimized with other image registration objectives. We 
present an INR that combines local deformable INR-based registration with a global image transformation by 
jointly training it with an affine transformation16. In this case, the deformation field can be expressed as follows:

where �x̄ is the displacement vector calculated with the implicit network, and the matrix A(M) ∈ R
3×3 and 

the translation vector t(M) ∈ R
3 represent the 12 trainable parameters for the global affine transformation. For 

training, A(M) and t(M) are initialized as the identity transformation.

Cascade of implicit networks
Cascading learning is another strategy used to enhance the performance of machine learning models. In a cas-
cade, each model is trained from scratch, one after another, to correct and improve its predecessor’s outcome17,18. 
Due to its computational cost, this strategy is not often used with deep learning models. Instead, Vos et al. and 
Zhao et al. employed small multi-stage convolutional networks for image registration19,20, which were trained 
jointly in a single training episode. In this study, we investigate two-stage cascades of implicit networks for image 
registration. We develop a single implicit network for registration and train a second network to subsequently 
improve the deformation field. This approach can be expressed as follows:

where �(x̄) is the deformation field calculated by the first network and �x̄′ is the displacement vector estimated 
by the second network. For the first network we use a standard implicit model. For the second network, we 
examine two approaches. First, we train another regular model. Second, we train the second model with a higher 
regularization loss weight α to locally smooth the deformation field outputted by the first network.

Cycling implicit networks
The cycle consistency loss has found application in deep learning, particularly for tasks like image-to-image 
translation21. Kim et al. showcased that it can be used to enhance the performance of VoxelMorph through 
deformation field regularization7. In their framework, two convolutional networks are employed for image 
registration: the first network registers the moving image to the fixed image, and the second network does the 
reverse. After this initial registration, the roles of the networks are swapped, and the previously transformed 
images are registered once more. As a result, by the end of the two rounds of registration, the images should 
revert to their original spaces. The goal of introducing the cycle consistency loss is to enhance topological pres-
ervation. This idea of the symmetric normalization is not novel; it has been a crucial component of traditional 
image registration frameworks22. Drawing inspiration from this, our study introduces an analogous approach. 
Given that implicit networks operate on coordinates, we use coordinate specific displacement vectors to define 
the consistency loss. Let FM and FF stand for the implicit networks trained to transform the moving and the 
fixed image, respectively. The proposed cycle consistency loss is based on the following equations:

which promote correspondence between the displacement vectors. Next, we add the cycle consistency loss func-
tion Lcycle(x̄) to the registration loss function in Eq. (1):

where αcycle indicates the loss weighting parameter.

Registration guided image fusion
In computer vision, implicit networks have been used to jointly perform several tasks, for example image recon-
struction and style transfer23,24. In this study, we demonstrate that implicit networks can be used to connect brain 
image registration with the image fusion task. The proposed method is illustrated in Fig. 3. Various custom image 
processing algorithms have been designed to improve image registration. For example, for some applications it is 
common to utilize edge enhancing filters to highlight tissue contours, thereby guiding the registration algorithm 
to better match the edges between the moving and fixed images25. On the contrary, image smoothing filters 
have been also applied to improve the registration26. For example, the Gaussian filter can be used to process the 
moving image to remove local noise patterns that confound the similarity loss function designed to assess the 

(10)�A(x̄) = A(M)x̄ + t(M)+�x̄,

(11)�C(x̄) = �(x̄)+�x̄′,

(12)LMF(x̄) =
(

FF(FM(x̄)+ x̄
)

+FM(x̄))2,

(13)LFM(x̄) =
(

FM(FF(x̄)+ x̄)+FF(x̄)
)2
,

(14)Lcyc(x̄) =
1

2

(

LMF(x̄)+LFM(x̄)
)

,

(15)L(F,T�(M)) = Lsim(F,T�(M))+ αregLreg (�)+ αcycLcyc(x̄),
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alignment between the moving and fixed images. We develop an implicit network to combine these two image 
pre-processing approaches, namely edge enhancing filters and image smoothing filters, in an automatic and 
registration guided way. The proposed method can be used to fuse the edge enhanced and smoothed images 
in a coordinate-wise manner, enhancing the edge information in particular regions while smoothing the other 
areas. We formulate the image fusion problem in the following way:

where ML and MG stand for the moving images filtered with the Laplacian and Gaussian filters, respectively. 
Weights s(x̄) = [sM(x̄), sL(x̄), sG(x̄)] are used to fuse the corresponding images in a pixel-wise manner. In addi-
tion, we impose the following condition on the weights to constrain the fusion:

During the training of the deformation network, we jointly train a separate fusion network F fus
ψ  to output the 

weight vector s(x̄) . For the fusion network, we use the standard SIREN model with the default ω parameter of 
30. To train the network, we use the Lfus loss function based on the standard registration similarity loss, Eq. (1), 
which can be expressed in the following way:

where Lsim stands for the standard image similarity loss function and T�(M
′) is the transformed moved fused 

image. The aim of the above loss function is to jointly estimate the deformation field and provide means for the 
image fusion mechanism. Some regions for which the similarity score function underperform might be uplifted 
with the second component of the Lfus loss function. To take into account the fused image, the general registra-
tion loss function in Eq. (1) is modified in the following way:

Evaluations
Mindboggle dataset
To evaluate the registration performance, we used the MindBoggle dataset, which consists of 101 labeled 
T1-weighted 3D brain MR images from five sources27. The dataset includes detailed manual segmentations for 
62 cortical brain regions, with 31 regions in each of the the right and left hemispheres.

We used MR images pre-processed by the authors of the dataset. Pre-processing included affine alignment 
to a standard MNI template, skull stripping and re-sampling to volume spacing of 1 mm × 1 mm × 1 mm27. In 
addition, we cropped the 3D brain images to dimensions of 176 × 192 × 176 voxels. We excluded one brain scan, 
because a skull-stripped version was not available. Next, we manually screened all data and found 14 incorrectly 
aligned images, for which we re-run an initial affine registration. The participants, consisting of 53 males and 
47 females, ranged in age from 19 years to 61 years, with a mean age of 28 years. Two brain scans served as 
fixed images, the remaining 98 cases were divided into training, validation and test sets with a split of 73, 5, 20, 
respectively. For the validation and test set, images were sampled uniformly from each of the five MindBoggle 
dataset subfolders, such that each Mindboggle dataset subfolder was equally represented in the validation and 
test sets. The remaining 3D images were included in the training set.

Implementation
Except for the activation functions, we used the same MLP architecture for all experiments. Each network 
included five fully connected hidden layers, each with 256 neurons. In addition, we used the Fourier mapping 
with six frequencies to encode the input coordinates12. We also concatenated the encoded coordinates with the 
middle layer of the network to form a residual connection. Weights of the networks were initialized depending 
on the utilized activation function following the original papers. For the chirp and Morlet activation functions, 
we initialized the weights in a similar way as for the SIREN model. Moreover, initial weights of the last linear 
layer of the implicit networks were sampled uniformly from [-0.0001, 0.0001] interval to ensure that only small 
displacement vectors are outputted by the networks during the first training epochs. AdamW optimizer with a 
learning rate of 0.0001 was used to train the networks28. Each model was trained on a single NVIDIA A100 GPU.

Due to the large dimensions of 3D images, implicit networks are commonly trained using 3D patches. In this 
work, we trained the networks with 3D patches of size 32 × 32 × 329. For each epoch, we sampled 500 patches 
at random spatial locations. To assess the similarity between the moved and fixed images, we used the following 
loss function9,10:

where Lncc indicates the normalized cross-correlation loss ( |1−NCC(F,T�(M))| ), calculated based on the 
entire 32 × 32 × 32 patch. Llncc is the averaged local normalized cross-correlation loss computed using 9 × 9 × 9 
windows over the 32 × 32 × 32 patch, determined to combine local and global alignment information. Following 
the previous study on the INR based registration, we used the following loss to condition the deformation field10:

(16)M ′(x̄) = sM(x̄)M(x̄)+ sL(x̄)ML(x̄)+ sG(x̄)MG(x̄),

(17)sM(x̄)+ sL(x̄)+ sG(x̄) = 1.

(18)Lfus(F,T�(M),T�(M
′)) =

1

2

(

Lsim(F,T�(M))+Lsim(F,T�(M
′))

)

,

(19)L(F,T�(M)) = Lfus(F,T�(M),T�(M
′))+ αregLreg (�).

(20)Lsim(F,T�(M)) = Lncc(F,T�(M))+Llncc(F,T�(M)),

(21)Lreg (�(x̄)) = |1− |J�(x̄)||,
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where |J�(x̄)| is the Jacobian determinant of the deformation field.
Calculations were done in Python using the PyTorch library29. Our implementations of the described methods 

are available at http://​www.​github.​com/​Brain​Image​Analy​sis/​INRsR​egExp.

Performance assessment
The validation set was utilized to determine the better performing hyper-parameters. For the SIREN model, we 
examined five different ω values (10, 20, 30, 40, 50) and three αreg values (1, 0.1, 0.01). Based on the validation 
set results we also determined the optimal number of training epochs. The SIREN models were compared with 
MLPs utilizing implemented activation functions, see Table 1. The αcyc weight related to the cycle consistency 
loss, Eq. (15), was set to 100. Chirp rate aω was set to 10.

To assess the registration performance, we calculated the Dice scores between the manual segmentations of 
brain regions in the moved image and the fixed image30. The MindBoggle dataset consists of 62 annotated brain 
regions. First, we averaged the Dice scores calculated for each region. Second, to evaluate the performance for 
the most poorly aligned regions, we determined the lowest Dice score out of all 62 brain regions. Next, these 
two Dice scores obtained for each brain were averaged over all moving/fixed image pairs. To assess the deforma-
tion field folding, we calculated the percentage of non-positive Jacobian determinant values. We benchmarked 
the performance of our proposed methods against two established techniques: the ANTs symmetric image 
normalization (SyN) registration algorithm and the diffeomorphic VoxelMorph convolutional network1,4,22,31. 
For VoxelMorph, we constructed two networks using the training dataset, dedicating one for each fixed image. 
The networks were trained for 100 epochs using the same loss function as our implicit networks, Eq. (1). The 
regularization weights, denoted by αreg , were set to 0.1. For the SyN method, we optimized its parameters on 
the validation set with the objective to maximize the Dice score. The most optimal results were achieved using 

Table 1.   Investigated activation functions. aω and bω indicate constants that depend on the frequency related 
hyper-parameter ω.

Name σ(x)

ReLU max(0, x)

sine sin(ωx)

snake x + 1
ω
cos(ωx)+ 1

ω

sine+ x+sin(ωx)

chirp sin(ωx + aωxtanh(ωx))

Morlet aωe
− 1

2
x2 (sin(ωx)− bω)

Figure 3.   Scheme illustrating the proposed registration guided image fusion technique. The fused image is 
generated based on the weighted pixel-wise combination of the original image and images processed with the 
Laplacian and Gaussian filters. Weights used for image fusion are calculated using an implicit network trained 
to improve the registration. The weights of the distribution s(x̄) = [sM(x̄), sL(x̄), sG(x̄)] can be visualized with 
a parametric map, which pixel color intensities in the RGB space are proportional to each component of the 
distribution. For instance, the first weight, sM(x̄) ∈ [0, 1] , was mapped to [0, 255] in the red color channel. The 
parametric map indicates the filtering operations used to process particular image area.

http://www.github.com/BrainImageAnalysis/INRsRegExp
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the cross-correlation loss function coupled with a three-level multi-resolution scheme. We allowed up to 500 
iterations at the first level, 500 iterations at the second level and 500 iterations at the full resolution.

Results
Validation set experiments
Figure 4 presents the validation set results obtained for the investigated methods. For the SIREN models trained 
with the regularization weight αreg set to 0.1, we found that the value of the ω hyper-parameter affected the con-
vergence characteristics and the deformation field properties. Similar Dice scores of around 0.57 were obtained 
for all investigated values of ω except for 10, for which the SIREN did not reach plateau for over 50 epochs. 
Deformation field folding was positively correlated with the value of the ω hyper-parameter, with the largest 
folding obtained for ω equal to 50. Moreover, the Spearman’s rank correlation coefficient between the Dice score 
and the percentage of the non-positive determinant values was equal to 0.92 for the SIREN network with ω set to 
30. Overall, Fig. 4 suggests that ω equal to 30 provides well-balanced results with respect to convergence speed 
and deformation field folding. Setting ω equal to 30 also provided slightly better Dice scores on the validation 
set. For this case, the Dice score of the network plateaued after approximately 40 training epochs. Moreover, we 
also investigated the relationship between the registration metrics and the regularization weight αreg obtained 
for the SIREN with ω set 30. We found that the regularization weight was important for image registration 
performance and deformation field characteristics, with αreg equal to 0.1 providing good performance. For αreg 
equal to 1, field regularization dominated the training and resulted in low Dice scores. On the contrary, αreg of 
0.01 was too small to address the problem of the deformation field folding.

Validation performance achieved by implicit networks equipped with different activation functions is illus-
trated in Fig. 4. In this case, the hyper-parameters ω and αreg were set to 30 and 0.1 following the results from the 
previous paragraph. We found that networks with activation functions that have an oscillatory pattern, such as 
sine, sine+, chirp and Morlet, yielded comparable results. However, network with the snake activation function 
resulted in lower Dice scores. Due to the division of the cosine function by the ω parameter in the snake activa-
tion function (Eq. 4), the identity mapping probably dominated the activation function. The ReLU network did 
not reach plateau for over 50 epochs, therefore we trained it for up to 500 epochs, additionally examining three 

Figure 4.   Registration performance scores obtained for the investigated implicit networks on the validation 
set. We found that the SIREN model trained with the ω hyper-parameter of 30 and αreg of 0.1 performed best. 
Compared to the SIREN, network with the ReLU activation function required around ten more training epochs 
to reach performance plateu.
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regularization weights αreg of 0, 0.1 and 0.01, see Fig. 4. We found that network with the ReLU function required 
around 400 training epochs to reach plateau corresponding to the Dice score of around 0.53.

Activation functions
Following the validation set experiments, we compared the test set performance of the implicit networks trained 
for 40 epochs with the ω hyper-parameter set to 30. The regularization weight αreg was set to 0.1. Results are pre-
sented in Table 2. In addition, we also included the results for the network with the ReLU function trained for 400 
epochs. We found that the networks utilizing ReLU and snake activation functions achieved worse performance 
scores compared to functions presenting oscillatory patterns. We obtained similar results for the sine, sine+, chirp 
and Morlet activation functions, confirming that the presence of the frequency component is important for the 
performance. Table 2 shows that the regular SIREN model achieved the highest Dice score of 0.576.

Proposed methods

Table 3 compares the performance of the standard methods and the techniques proposed to improve the INR 
based registration. A SIREN model with ω parameter set to 30 was used as the backbone for the proposed tech-
niques. Following the validation set results, regularization weight αreg was set to 0.1 and networks were trained 
for 40 epochs. For comparison, we also developed a SIREN model with a trainable ω hyper-parameter (initially 
set to 30) and a SIREN with the ω hyper-parameter modulated with respect to the layer width. In the latter case, 
for each layer unit of the network we linearly modified the ω values from 10 to 50. All methods based on implicit 
networks achieved higher Dice scores than the ANTs SyN optimization technique and the VoxelMorph. Figure 5 
quantitatively compare registration performance of the selected techniques. In addition, Fig. 6 illustrates Dice 
scores for anatomical structures annotated in the MindBoggle dataset.

SIREN models with a trainable ω parameter achieved comparable scores to SIREN models with a fixed fre-
quency parameter, suggesting that the ω value of 30 was optimally selected for the investigated registration task. 
Similarly, the utilization of the proposed attention mechanism or the modulation mechanism did not improve 
the performance compared to the SIREN with optimized ω hyper-parameter. This suggests that SIREN models 
with trainable ω can maintain the performance of the best networks with fixed parameters without the need for 
extensive hyper-parameter tuning.

Table 2.   Test set results (mean±std) on the MindBoggle dataset obtained for implicit networks equipped with 
different activation functions.

Method, epochs Diceavg ↑ Dicemin ↑ |J�| ≤ 0 [%] ↓

sine, 40 0.576 ± 0.113 0.258 ± 0.097 0.673 ± 0.116

ReLU, 40 0.401 ± 0.098 0.169 ± 0.058 < 0.01

ReLU, 400 0.521 ± 0.103 0.225 ± 0.097 0.065 ± 0.035

snake, 40 0.360 ± 0.102 0.121 ± 0.050 < 0.01

sine+, 40 0.574 ± 0.112 0.253 ± 0.109 0.668 ± 0.115

chirp, 40 0.569 ± 0.112 0.258 ± 0.098 0.786 ± 0.131

Morlet, 40 0.570 ± 0.107 0.251 ± 0.097 0.620 ± 0.090

Table 3.   Test results (mean±std) on the MindBoggle dataset obtained for the proposed INR based registration 
methods.

Method Diceavg ↑ Dicemin ↑ |J�| ≤ 0 [%] ↓

None 0.325 ± 0.041 0.116 ± 0.047 –

ANTs SyN 0.544 ± 0.019 0.260 ± 0.103 < 0.01

Diffeomorphic VoxelMorph 0.539 ± 0.131 0.209 ± 0.077 0.202 ± 0.015

SIREN 0.576 ± 0.113 0.258 ± 0.097 0.673 ± 0.116

SIREN, trainable ω 0.576 ± 0.111 0.254 ± 0.098 0.674 ± 0.113

SIREN, ω width modulation 0.564 ± 0.112 0.247 ± 0.099 0.787 ± 0.132

SIREN, attention 0.567 ± 0.110 0.256 ± 0.101 0.686 ± 0.187

SIREN and affine 0.576 ± 0.112 0.250 ± 0.102 0.682 ± 0.120

SIREN, ensemble 0.585 ± 0.113 0.255 ± 0.104 0.711 ± 0.117

SIREN, cycle consistency loss 0.578 ± 0.112 0.263 ± 0.105 0.372 ± 0.051

SIREN, cascade, αreg = 0.1 0.594 ± 0.115 0.272 ± 0.101 0.666 ± 0.104

SIREN, cascade, αreg = 1 0.579 ± 0.112 0.260 ± 0.099 0.123 ± 0.027

SIREN, fusion 0.579 ± 0.113 0.260 ± 0.106 0.648 ± 0.112
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Method combining the trainable affine layer and the SIREN model achieved similar scores to the standalone 
SIREN model, presumably due to the accurate initial pre-alignment of the brain images to the standard MNI 
template space. Ensembling implicit networks achieved higher Dice score compared to the standard SIREN 
model. We found that utilization of the cycle consistency loss improved deformation field characteristics, decreas-
ing the number of the folding pixels. Cascade of two identical SIREN models achieved the highest Dice score 
of 0.594. Cascade with the second network trained using αreg equal to 1 resulted in the improvement of the 
deformation field. The method based on image fusion achieved slightly better performance than the standard 

Figure 5.   Qualitative comparison of the registration performance between the implicit networks, diffeomorphic 
VoxelMorph and ANTs SyN algorithm. The presented warp fields correspond to the implicit network.

Figure 6.   Boxplots illustrating Dice scores for various anatomical structures for image registration using ANTs 
SyN algorithm, diffeomorphic VoxelMorph, SIREN and cascade of SIRENs. Structures are ordered based on 
average ANTs Dice scores obtained for each structure in the left hemisphere. The approach based on the cascade 
of SIRENs achieved better performance than the other investigated methods.
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SIREN model. Sample results for this approach are presented in Fig. 7. The weight distribution maps shows the 
automatic utilization of the image filtering operations. We found that the method utilized mainly the original 
image pixels with approximately 10% and 25% pixels extracted from the images processed by the Laplacian and 
Gaussian filters, respectively.

Discussion
We presented several novel approaches to INR-based image registration. We conducted extensive experiments to 
show the impact of hyper-parameter selection and design choices on the performance of implicit networks. Our 
results demonstrated that implicit networks can achieve superior performance to traditional image registration 
methods (ANTs SyN) and standard deep learning image registration frameworks (VoxelMorph). In biomedical 
image analysis, traditional registration algorithms remain the go-to tools due to the diversity of complexity of 
the registration tasks. However, implicit networks, which combine the characteristics of standard optimiza-
tion techniques with modern deep learning methodologies, offer a promising alternative. Unlike convolutional 
networks, which often demand extensive training data defined on fixed spatial grids, INR-based methods can 
function efficiently without such extensive datasets. Furthermore, for specific applications, implicit networks 
can be optimized on a case-by-case basis, potentially leveraging complex objective loss functions during the 
optimization. This adaptability also provides a solution to the out-of-distribution issues frequently encountered 
with large convolutional networks.

Presented validation set results illustrated that the choice of the hyper-parameters, such as the regularization 
weights, are important for the brain image registration performance. Optimization of model hyper-parameters 
based on the validation set is usually difficult to conduct with convolutional networks because the model must be 
retrained on the entire training dataset for each set of hyper-parameter values. Optimization of multiple hyper-
parameters, each of which may affect another, may consume considerable time and computing resources32. In 
contrast, a small annotated validation set can be used to quickly explore the hyper-parameter space of implicit 
networks. Different combinations of hyper-parameters can also be utilized during the inference to generate a set 
of registered images for visual comparisons. Therefore, our results suggest that implicit networks are easier to 
optimize than methods based on convolutional networks, which should result in better registration capabilities.

We investigated image registration performance associated with six activation functions. To the best of our 
knowledge, our study demonstrated for the first time that the chirp function and the Morlet wavelet can be used 
as activation functions for implicit networks. However, we achieved similar registration scores for these two acti-
vation functions compared to the standard sine function. Our results indicated that the center frequency of the 
oscillations was the most important for the performance. Four activation functions, namely the sine, sine+, chirp 
and Morlet functions, achieved comparable registration performance. We presented that the frequency hyper-
parameter ω is strictly related to the registration performance, with large values of ω correlated to the deformation 
field folding. Moreover, networks with activation functions presenting low-frequency contents, such as ReLU, 

Figure 7.   Sample results obtained for the implicit networks based on the proposed registration guided image 
fusion. Weight distribution indicates the utilization of the original image (red) and the Laplacian (green) 
and Gaussian (blue) filtered images. For this particular case, the average weights, Eq. (16), were equal to 0.57 
(original), 0.15 (Laplacian) and 0.28 (Gaussian), indicating that all operations were utilized to process the brain 
image.
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were not suited to produce variable deformation fields. Network equipped with the ReLU function required many 
more training epochs to reach the performance score plateau compared to SIREN models. However, networks 
with ReLU require less hyper-parameter tuning, therefore might be attractive for some applications.

In this work, we examined several novel approaches to the INR based registration. Our findings demonstrated 
that implicit networks can serve as an efficient and flexible technique for pairwise brain image registration. 
First, it is possible to develop cascades of implicit networks to subsequently improve the deformation field and 
consequently the registration performance. While we only investigated cascades of implicit networks, the same 
approach can be applied to improve the deformation field determined by a convolutional network or a traditional 
optimization algorithm. Moreover, improvement of the deformation field can be restrained to a spatial region. 
Second, implicit networks can be easily used to form ensembles. For example, we trained the implicit network 
jointly with an affine transformation model. Third, since implicit networks can be trained with back-propagation, 
it is possible to associate the registration problem with other tasks. Here, we presented that INR based registra-
tion can be performed jointly with image fusion based on a second implicit network. The proposed INR based 
fusion method can provide some interpretability about the registration model, since it can be used to visualize 
image regions that require texture filtering for the registration. While we only utilized the Laplacian and Gauss-
ian filters, any other operations can be easily considered within the proposed framework. The investigated INR 
based methods can also be combined. For example, it would be straightforward to combine the method based 
on image fusion with the technique utilizing the cycle consistency loss.

Our study presented several challenges associated with INR based registration methods. First, in our setting 
the implicit networks had to be trained from scratch for each image pair, slowing the inference time compared 
to standard convolutional networks. To address this problem, we would like to investigate methods that speed 
up computations. For example, it may be interesting to utilize hyper-networks to pre-initialize the weights of 
the implicit networks33. Second, while in this study we extensively explored the usefulness of the INRs for reg-
istration, our experiments were based on a single dataset. Although the MindBoggle dataset includes brain MR 
images from multiple sources and detailed annotations, it would also be interesting to utilize additional datasets 
for evaluation, e.g. computer tomography images or ultrasound data34,35. Third, we trained the networks with 
loss functions based on the cross-correlation function and the Jacobian determinant of the deformation field. 
To reduce potential biases in our experiments, we used the same network architecture and coordinate sampling 
procedure. Investigating other network architectures and training routines future studies would be interesting.

Conclusion
In this work, we explored implicit neural representations for the registration of magnetic resonance brain images. 
We performed extensive experiments to compare different activation functions, including two novel functions 
proposed in this study: the chirp function and the Morlet wavelet. We also developed several novel implicit 
network based approaches to the registration, which outperformed the previously proposed method. Presented 
results indicate that implicit networks are well suited to address the problem of the pairwise image registration.

We believe that our work is an important pre-liminary step to a wider adoption of the implicit networks as a 
versatile off-the-shelf image registration tool. In the future, we plan to conduct additional experiments to further 
highlight the usefulness of the implicit networks for the image registration.

Data availability
All data used during this study are included in this published article and its supplementary information files: 
https://​doi.​org/​10.​3389/​fnins.​2012.​00171, https://​mindb​oggle.​info/data27. Implementations of the investigated 
neural networks are available at http://​www.​github.​com/​Brain​Image​Analy​sis/​INRsR​egExp.
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