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Abstract: The advent of elastic metamaterials at the beginning of the 21st century opened new ven-
ues and possibilities for the existence of new types of elastic (ultrasonic) surface waves, which were 
deemed previously impossible. In fact, it is not difficult to prove that shear horizontal (SH) elastic 
surface waves cannot exist on the elastic half-space or at the interface between two conventional 
elastic half-spaces. However, in this paper we will show that SH elastic surface waves can propagate 
at the interface between two elastic half-spaces, providing that one of them is a metamaterial with a 
negative elastic compliance 𝑠ସସ(𝜔). If in addition, 𝑠ସସ(𝜔) changes with frequency 𝜔 as the dielec-
tric function 𝜀(𝜔) in Drude’s model of metals, then the proposed SH elastic surface waves can be 
considered as an elastic analogue of surface plasmon polariton (SPP) electromagnetic waves, prop-
agating at a metal-dielectric interface. Due to inherent similarities between the proposed SH elastic 
surface waves and SPP electromagnetic waves, the new results developed in this paper can be read-
ily transferred into the SPP domain and vice versa. The proposed new SH elastic surface waves are 
characterized by a strong subwavelength confinement of energy in the vicinity of the guiding inter-
face; therefore, they can potentially be used in subwavelength ultrasonic imaging, superlensing, 
and/or acoustic (ultrasonic) sensors with extremely high mass sensitivity. 

Keywords: ultrasonic sensors; metamaterial elastic waveguides; negative elastic compliance; shear 
horizontal (SH) elastic surface waves; SPP electromagnetic waves; phase and group velocity;  
complex power flow; penetration depth; elastic-electromagnetic analogies 
 

1. Introduction  
Elastic surface waves that exist in solid waveguides seemingly have very little in com-

mon with surface plasmon polariton (SPP) electromagnetic waves propagating in metal-
dielectric waveguides. However, with the advent of new elastic metamaterials, this asser-
tion must be revisited.  

Indeed, one can argue that the invention of metamaterials was one of the most sig-
nificant events in physics at the turn of the XX and XXI centuries [1,2]. In fact, metamate-
rials challenged many tacit assumptions and beliefs accumulated over decades about the 
properties of matter and wave motion herein. Combining basic research with a judicious 
engineering design, researchers devised many new materials with unprecedented prop-
erties. In the domain of elastic media, we observed the emergence of elastic metamaterials 
with a negative mass density [3–5], anisotropic mass density [6], negative elastic constants 
[7,8], etc. Not surprisingly, these new properties opened possibilities for the existence of 
new types of acoustic waves, which were previously considered impossible. 

To date, it has been commonly agreed that shear horizontal (SH) elastic surface 
waves cannot exist at the interface between two elastic half-spaces [9]. In this study we 
challenge the above assertion, showing that SH acoustic (ultrasonic) surface waves can 
efficiently propagate at the interface between two elastic-half-spaces, providing that one 
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of them is elastic metamaterial with special properties, i.e., with a negative shear elastic 
compliance. 

Inspired by the newly developed elastic metamaterials, we propose in this paper a 
new type of shear horizontal (SH) elastic surface waves that were impossible in conven-
tional elastic waveguides [9]. The new SH elastic surface waves can propagate at the in-
terface between two elastic half-spaces one of which is a metamaterial with a negative 
elastic compliance 𝑠ସସ(𝜔) < 0. If, in addition, the compliance 𝑠ସସ(𝜔) changes with angu-
lar frequency 𝜔 as the dielectric function 𝜀(𝜔) in Drude’s model of metals, the proposed 
SH elastic surface waves can be considered as direct elastic analogues of Surface Plasmon 
Polariton (SPP) electromagnetic waves propagating at a metal-dielectric interface. 

As a result, special attention was paid in this paper to similarities between the newly 
proposed SH elastic surface waves and the electromagnetic surface waves of the surface 
plasmon polariton (SPP) type, propagating at a dielectric-metal interface [10–12]. In fact, 
SPP surface waves are transverse magnetic (TM) electromagnetic modes with only one 
transverse component, namely the magnetic field 𝐻ଷ that is analogue of the SH particle 
velocity 𝑣ଷ of the new proposed SH elastic surface wave. It is noteworthy that both types 
of waves share one crucial property, i.e., very strong subwavelength decay in the trans-
verse direction away from the guiding interface 𝑥ଶ = 0, especially in the metal and elastic 
metamaterial half-spaces. 

Due to strong formal similarities between the SPP electromagnetic surface waves and 
the new proposed SH elastic surface waves, most of the results obtained in this paper can 
be transferred verbatim into the SPP domain by mutual substitution of the appropriate 
symbols. However, a transition from the SPP domain into the SH elastic surface wave 
domain can be very beneficiary for the latter due to a very large number of interesting 
new phenomena observed already in the SPP domain, such as trapping of light (zero 
group velocity) [13], transformational optics systems [14] or nonreciprocal and topological 
waveguides [15], just to name a few. Therefore, the proposed new SH elastic surface waves 
may open new fascinating possibilities to control wave phenomena occurring in elastic 
solids. 

The new SH elastic waves have the character of surface waves since they decay expo-
nentially in the direction of axis 𝑥ଶ, perpendicular to the interface (𝑥ଶ = 0) and perpen-
dicular simultaneously to the direction of propagation 𝑥ଵ. 

Another advantage of the proposed new SH elastic surface waves is the fact that they 
have only one component of the mechanical displacement 𝑢ଷ (along axis 𝑥ଷ), which is 
completely uncoupled with the remaining components of mechanical vibrations, such as 
longitudinal (L, along axis 𝑥ଵ) and shear vertical (SV, along axis 𝑥ଶ). Multimodal cou-
pling may be a significant problem in conventional bulk ultrasonic devices [16,17]. 

The proposed new SH elastic surface waves can have deep subwavelength penetra-
tion depth, in both half-spaces of the waveguide, therefore they offer a potential for appli-
cations in subwavelength acoustic imaging, superlensing, and/or acoustic sensors with 
extremely large sensitivity, analogously to their SPP counterparts in electromagnetism. 
These are very attractive properties of the newly discovered SH elastic surface waves. 

The frequency range, in which the new SH elastic surface wave can propagate, covers 
practically the range from several kHz to several MHz. The maximum wave frequency 𝜔௦ 2𝜋⁄  depends on the resonant frequency of local resonators 𝜔 and is given by For-
mula (24) in Section 3.3. For example, when an exemplary waveguide structure depicted 
in Section 2.1 consists of (1) the metamaterial half-space (𝑥ଶ ≤ 0) composed of ST-Quartz 
with embedded local resonators with a selected resonant frequency 𝜔 2𝜋⁄ = 1 MHz and 
(2) a conventional PMMA elastic half-space (𝑥ଶ ≥ 0), the maximum frequency of the new 
SH elastic surface waves equals approximately 𝜔௦ 2𝜋⁄ = 143 kHz, according to the For-
mula (24) in Section 3.3. 

The proposed new SH elastic surface waves have a potential for very high resolution 
(of the order of micrometers) using relatively low ultrasonic frequencies (of the order of a 
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few MHz). So far, using the conventional ultrasonic waves and imaging systems a com-
parable resolution could be achieved using frequencies of the order of 1 GHz. Needless to 
say, such a frequency range is still quite difficult to handle in ultrasonic practice. 

The concentration of the elastic energy near the guiding interface can be of crucial 
importance in subwavelength acoustic imaging, acoustic energy harvesting as well as in 
miniaturized modern ultrasonic devices at the micro and nano-scale. 

Several analytical equations developed in this paper are new and have not yet been 
published elsewhere. As a result, we hope that they can provide fresh physical insight into 
the wave phenomena occurring in both domains, namely SPP electromagnetic waves and 
SH elastic surface waves, proposed in this paper. For example, Equations (30), (33), (36) 
and (37) that relate complex power flow with penetration depths in both half-spaces of 
the waveguide, were to the best of our knowledge not yet published in the literature. 

Due to their close similarity with the electromagnetic SPP waves the proposed new 
ultrasonic waves are characterized by a large confinement of acoustic energy near the sur-
face. For this reason, these newly discovered SH acoustic waves can constitute the basis of 
a new generation of acoustic (ultrasonic) sensors with a giant mass sensitivity. 

The layout of this paper is as follows. Section 2.1 introduces the geometry and mate-
rial parameters of two half-spaces forming the metamaterial waveguide. Section 2.2 pre-
sents the metamaterial half-space with a negative elastic compliance 𝑠ସସ(ଵ)(𝜔) < 0. In Sec-
tion 2.3 we derive a complete quantitative model of a metamaterial, whose elastic compli-
ance 𝑠ସସ(𝜔)  obeys the Drude relation. How to fabricate the elastic metamaterial with 
Drude-like elastic compliance is discussed in Section 2.4. Mechanical displacement 𝑢ଷ 
and shear stresses 𝜏ଵଷ, 𝜏ଶଷ are subject to Section 3.1. Boundary conditions and the disper-
sion equation of the new SH elastic surface waves are presented in Section 3.2. The ana-
lytical formula for the wavenumber 𝑘(𝜔) was derived in Section 3.3. The formulas for the 
phase 𝑣(𝜔) and group 𝑣(𝜔) velocities were developed, in Sections 3.4 and 3.5, respec-
tively. The equations for the penetration depth in both half-spaces of the waveguide are 
given in Section 3.6. The net active power flow 𝑃ଵ(𝜔), in the direction of propagation 𝑥ଵ, 
was determined in Section 3.7. The average reactive power flow 𝑃ଶ(𝜔), in the transverse 
direction 𝑥ଶ was analyzed in Section 3.8. The correspondence between SPP electromag-
netic surface waves and the proposed new SH elastic surface waves is outlined in Section 
4. The results of numerical calculations and the corresponding figures are presented in 
Section 5. The discussion and conclusions are the subject of Sections 6 and 7, respectively. 

2. Physical Model 
2.1. Geometry and Material Parameters of the Waveguide 

The geometry of the waveguide supporting new SH elastic surface waves is sketched 
in Figure 1. The waveguide consists of two semi-infinite elastic half-spaces, one of which 
is a conventional elastic material (𝑥ଶ ≥ 0) and the second an elastic metamaterial (𝑥ଶ <0)  with a negative elastic compliance 𝑠ସସ(ଵ)(𝜔) < 0 , which is a function of angular fre-
quency 𝜔. By contrast, the densities (𝜌ଵ, 𝜌ଶ) > 0 in both half-spaces as well as the elastic 
compliance 𝑠ସସ(ଶ) > 0 in the conventional elastic material are positive and frequency inde-
pendent (see Figure 1). 
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Figure 1. Cross-section of the waveguide supporting the new proposed SH elastic surface waves, 
propagating in the direction 𝑥ଵ, with exponentially decaying fields in the transverse direction 𝑥ଶ. 
The conventional elastic half-space (𝑥ଶ ≥ 0) is rigidly bonded to the metamaterial elastic half-space 
(𝑥ଶ < 0 ) at the interface 𝑥ଶ = 0 . The mechanical displacement 𝑢ଷ  of the new SH elastic surface 
waves is polarized along 𝑥ଷ axis. 

Two elastic half-spaces, rigidly bonded at the interface 𝑥ଶ = 0, are uniform in the 
direction 𝑥ଷ, therefore all field variables of the new SH elastic surface wave will vary only 
along the transverse direction 𝑥ଶ, i.e., as a function of distance from the guiding interface 𝑥ଶ = 0. It is assumed that both half-spaces of the waveguide are linear and lossless. 

2.2. Elastic Drude-like Compliance 𝑠ସସ(ଵ)(𝜔) in the Metamaterial Half-Space (𝑥ଶ < 0) 
The important assumption made throughout this paper is about the elastic compli-

ance 𝑠ସସ(ଵ)(𝜔) in the metamaterial half-space (𝑥ଶ < 0). Namely, it is assumed that 𝑠ସସ(ଵ)(𝜔), 
as a function of angular frequency 𝜔, is given explicitly by the following formula: 𝑠ସସ(ଵ)(𝜔) = 𝑠 ∙ ቆ1 − 𝜔ଶ𝜔ଶቇ (1)

where: 𝜔 is the angular frequency of the local mechanical resonances of the metamate-
rial and 𝑠 is its reference elastic compliance for 𝜔 → ∞. 

It is not difficult to notice that the elastic compliance 𝑠ସସ(ଵ)(𝜔) given by Equation (1), 
is formally identical to the dielectric function 𝜀(𝜔) in Drude’s model of metals [18], in 
which the angular frequency 𝜔 is named the angular frequency of bulk plasma reso-
nance [19]. 

Similarly, the density 𝜌ଵ of the metamaterial half-space (𝑥ଶ < 0) corresponds to the 
magnetic permeability 𝜇 in Drude’s model of metals. 

The second elastic half-space (𝑥ଶ < 0) is a conventional elastic material with a positive 
compliance 𝑠ସସ(ଶ) > 0 and density 𝜌ଶ > 0 that are both frequency independent. 

In the following of this paper, it is assumed that the elastic compliance 𝑠ସସ(ଵ)(𝜔) in the 
metamaterial half-space (𝑥ଶ < 0) is given by Equation (1), which is an exact analogue to 
the dielectric function 𝜀(𝜔) in Drude’s model of metals. This assumption not only sim-
plifies further analysis but also provides us with a full analogy with the SPP electromag-
netic waves propagating at a metal–dielectric interface. Therefore, the results obtained in 
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the SPP domain may be almost automatically transferred to the SH elastic domain and 
vice versa. 

2.3. Quantitative Model of the Elastic Metamaterial with a Drude-like Elastic Compliance 
To develop a quantitative model for elastic metamaterials with the Drude-like elastic 

compliance 𝑠ସସ(ଵ)(𝜔), described by Equation (1), we will consider a number of electrome-
chanical analogies based on the close affinity between the new SH elastic surface waves 
and the SPP electromagnetic modes propagating at a metal–dielectric interface. 

The correspondence between the new SH elastic surface waves and the SPP electro-
magnetic waves stems from the fact that they share formally identical mathematical mod-
els, derived from the first physical principles. Namely, from the equations of motion (sec-
ond Newton’s law) governing the behavior of an elastic continuum with parameters 𝑠ସସ 
and 𝜌 and Maxwell’s electromagnetic equations determining behavior of an electromag-
netic continuum with parameters 𝜀 and 𝜇. 

The correspondence between the dielectric permeability and magnetic permeability 
and shear modulus and density can be expressed as follows: 𝜀 ⇔ 𝑠ସସ and 𝜇 ⇔ 𝜌. In Sec-
tion 4, we compare the properties of the new SH elastic surface waves and electromagnetic 
surface waves of the SPP type. 

Consequently, the mathematical formulas that we can prove in the domain of the SPP 
electromagnetic waves using 𝜀 and 𝜇 can be automatically transferred to the domain of 
the new SH elastic surface waves, which employs 𝑠ସସ and 𝜌. 

We begin our analysis by proposing a one-dimensional model of a mechanical reso-
nator with the elastic properties described by the equation analogous to the dielectric 
function 𝜀(𝜔) in Drude’s model of metals. 

It is assumed that the one-dimensional mechanical resonator shown in Figure 2 per-
forms shear vibrations and consists of an elastic spring with a compliance 𝐶 connected 
in series with mass 𝑚. 

 
Figure 2. Spring-mass model of a mechanical resonator, whose effective shear elastic constant 𝐶(𝜔), as a function of the angular frequency 𝜔, is formally identical to the dielectric function 𝜀(𝜔)  in Drude’s model of metals. 𝐹(𝜔) , 𝑞(𝜔)  and 𝑣(𝜔) = 𝑗𝜔𝑞(𝜔)  correspond, respectively, to 
the mechanical force, mechanical displacement, and acoustic velocity. 

2.3.1. Equivalent Circuit Representation of the Mechanical Resonator Shown in Figure 2 
The mechanical resonator given in Figure 2 can be represented by equivalent me-

chanical and electrical circuits with lumped elements 𝐶 and 𝑚 (Figure 3a) and 𝐶 and 𝐿 (Figure 3b). 



Sensors 2023, 23, 9879 6 of 25 
 

 

  
(a) (b) 

Figure 3. Mechanical (a) and electrical (b) equivalent circuits of the mechanical resonator presented 
in Figure 2. 𝑣(𝜔), 𝐹(𝜔), 𝐶 and 𝑚 represent, respectively, the acoustic velocity, mechanical force, 
and elastic compliance of the spring and mass. Similarly, 𝐼(𝜔), 𝑉(𝜔), 𝐶 and 𝐿 represent, respec-
tively, the electric current, voltage, capacitance, and inductance. 

The mechanical equivalent circuit shown in Figure 3a is governed by the equation of 
motion resulting from Newton’s second law of dynamics. However, the mechanical 
equivalent circuit shown in Figure 3a has its electric counterpart in the domain of electric 
circuits (see Figure 3b). Consequently, in the analysis of the mechanical equivalent circuit 
(Figure 3a) we can employ the methods and notions already developed in the theory of 
electric circuits, such as e.g., impedance or admittance. In particular, the mechanical ad-
mittance of the mechanical equivalent circuit, defined in the frequency 𝜔  domain as 𝑌(𝜔) = 𝑣(𝜔) 𝐹(𝜔)⁄ , can be written as: 𝑌(𝜔) = 𝑗𝜔𝐶 + 1𝑗𝜔𝑚 = 𝑗𝜔𝐶 ቆ1 − 𝜔ଶ𝜔ଶቇ (2)

where 𝜔 = 1/ඥ𝑚𝐶 is the resonant frequency of the mechanical resonator. 
Equation (2) shows that the overall behaviour of the mechanical resonator shown in 

Figure 2 can be expressed in terms of a resulting shear compliance 𝐶(𝜔) represented 
by a lumped element (spring) in Figure 4. 

 
Figure 4. Equivalent lumped elastic compliance 𝐶(𝜔) representing an overall behavior of the 
mechanical resonator from Figure 2. 

By virtue of Equation (2), the equivalent lumped elastic compliance 𝐶(𝜔) shown 
in Figure 4 is given by the following formula: 𝐶 = 𝐶 ቆ1 − 𝜔ଶ𝜔ଶቇ (3)
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The effective lumped (shear) elastic compliance 𝐶(𝜔) is negative in the frequency 
range (0 − 𝜔), in which it grows monotonically from −∞ to 0. It means that the me-
chanical velocity 𝑣(𝜔) lags in phase with respect to the driving mechanical force 𝐹(𝜔) 
by 180°. 

Comparing Equation (3) with Equation (1), it is clear that the effective shear elastic 
compliance 𝐶(𝜔) of the discrete representation of the mechanical resonator shown in 
Figure 2 and the elastic compliance 𝑠ସସ(ଵ)(𝜔) of the metamaterial elastic continuum (𝑥ଶ <0) given by Equation (1) (Drude’s model) share the same frequency dependence, if 𝜔 is 
replaced by 𝜔. This is a very encouraging result since we are now in a position to pro-
pose an elementary cell (local oscillator) which constitutes the basis (microstructure) for 
the design of the elastic metamaterial continuum with a Drude-like elastic compliance 𝑠ସସ(ଵ)(𝜔), described by Equation (1). 

In the development of a quantitative model of the elastic continuum with a Drude-
like elastic compliance 𝑠ସସ(ଵ)(𝜔), it is prerequisite to identify the elementary cell of local 
oscillators embedded in the considered elastic host continuum. 

2.3.2. Unit Cell of Local Mechanical Resonators with SH Polarization 
As a unit cell that can be used as a local resonator, we choose the following structure, 

see Figure 5: 

 
Figure 5. Proposed physical model of a local mechanical resonator with SH polarization embedded 
in an elastic host material. 

The proposed local resonator, embedded in a host elastic material, consists of a 
sphere of mass 𝑚 connected to two microcantilevers, which act as a spring with an effec-
tive compliance 𝐶/2. It is assumed that the local resonator can vibrate only along the SH 
direction perpendicular to the line connecting the mass 𝑚 with the cantilevers and per-
pendicular to the plane of Figure 5. As a result, the proposed local resonator can interact 
only with an SH wave propagating in the host material. 

The elastic compliance of the microcantilever is given by the following formula: 𝐶 =4𝐿ଷ 𝑌𝑤𝑡ଷ⁄  , where 𝐿, 𝑤, 𝑡 𝑎𝑛𝑑 𝑌  stand, respectively, for the length, width, height, and 
Young’s modulus of the considered microcantilever. Consequently, the resonant fre-
quency of the proposed local resonator equals 𝜔 = ඥ2 𝑚𝐶⁄ . 

2.3.3. Elastic Continuum with a Drude-like Elastic Compliance 
The analytical formula for the average mechanical energy 𝑊ெ(𝜔) stored in the me-

chanical resonator represented by the discrete mechanical circuit shown in Figure 3a 
equals: 𝑊ெ(𝜔) = 14 ቆ1 + 𝜔ଶ𝜔ଶቇ 𝐶|𝐹|ଶ (4)



Sensors 2023, 23, 9879 8 of 25 
 

 

Up to now, we are still in the domain of the lumped element circuit theory. However, 
we are going now to perform the first crucial step by transferring the results obtained in 
the discrete 1-D circuit domain to the 3-D domain of the metamaterial continuum. 

Indeed, in analogy to Equation (4) we are in a position to show that the average me-
chanical energy density 𝑤ெ(𝜔) stored in the corresponding elastic continuum equals: 𝑤ெ(𝜔) = 14 ቆ1 + 𝜔ଶ𝜔ଶቇ 𝑠|𝜏ଶଷ|ଶ (5)

where: 𝑠  is the elastic compliance of the corresponding elastic continuum, 𝜏ଶଷ  is the 
shear stress equal to 𝜏ଶଷ = 𝐹 𝐴⁄  and 𝐹 is the shear force acting on the surface 𝐴 of the 
local oscillator, see Figure 6. 

 
Figure 6. Schematic representation of an elementary shear resonator. The shear force 𝐹 is acting on 
the appropriate surface 𝐴. 

Therefore, the mechanical energy 𝑊ெ stored in the reference volume 𝑉 (shown in 
Figure 7) in the elastic metamaterial equals: 𝑊ெ(𝜔) = 14 ቆ1 + 𝜔ଶ𝜔ଶቇ 𝑠|𝜏ଶଷ|ଶ𝑉 = 14 ቆ1 + 𝜔ଶ𝜔ଶቇ 𝑛 ∙ 𝐶|𝐹|ଶ (6)

where: 𝑛 is the number of local shear resonators contained in the reference volume 𝑉 
(see Figure 7). The coefficient (𝑠) in Equation (6) represents the average value of the 
elastic compliance of the resulting 3-D elastic metamaterial continuum. 

Now we are going to perform the second crucial step in our development of the quan-
titative model of the elastic continuum with a Drude-like elastic compliance. This time, 
we will use the equation developed in the electromagnetic domain by V.L. Ginzburg in 
[20] for the energy density of the electromagnetic continuum, whose material parameters 
are dispersive, i.e., they change with the angular frequency 𝜔. 

Indeed, using Equation (5) and transferring the electromagnetic equation B.2.5 from 
reference [20] into the domain of elastodynamics we obtain: 𝑑𝑑𝜔 ቆ𝜔 𝑠ସସ(𝜔)𝑠 ቇ = ቆ1 + 𝜔ଶ𝜔ଶቇ (7)

In the derivation of Equation (7) we employed the correspondence between the die-
lectric function 𝜀(𝜔) and elastic compliance 𝑠ସସ(𝜔), shown in Section 4. 

At this moment we are almost done. To obtain a quantitative model of the elastic 
continuum with a Drude-like elastic compliance we need to perform only a few technical 
steps. At first, we will integrate Equation (7) over 𝜔 arriving at the following formula: 𝑠ସସ(𝜔)𝑠 = ቆ1 − 𝜔ଶ𝜔ଶቇ (8)
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It is not difficult to note that Equation (8) is exactly Drude’s relation describing the 
elastic compliance 𝑠ସସ(𝜔) of the resulting elastic metamaterial continuum as a function 
of angular frequency 𝜔 (see Equation (1) in Section 2.1). 

In the last technical step, we must relate the averaged value of the effective elastic 
compliance 𝑠 of the resultant elastic metamaterial continuum with the parameters of 
the elementary shear resonator embedded in an elastic host material. 

In fact, since the shear stress |𝜏ଶଷ|, acting on an elementary resonator with the surface 𝐴 (see Figure 6), equals |𝜏ଶଷ| = |𝐹| 𝐴⁄ , by virtue of Equation (6) we can write the follow-
ing: 𝑠 = 𝑛𝐶|𝐹|ଶ|𝜏ଶଷ|ଶ𝑉 = 𝑛𝐶𝐴ଶ𝑉  (9)

Now we have all the necessary elements to present our final model of an elastic met-
amaterial with a Drude-like elastic compliance 𝑠ସସ(𝜔), see Figure 7 below. 

 
Figure 7. A model of an elastic metamaterial with a Drude-like dependence of elastic compliance 𝑠ସସ(ଵ)(𝜔) on the angular frequency 𝜔. A set of 𝑛 local mechanical oscillators is embedded into the 
host continuum material in the reference volume 𝑉. The snippet on the right side shows details of 
the local resonator presented in more detail in Section 2.3.2. 

2.4. Fabrication of the Elastic Metamaterial with a Drude-like Elastic Compliance 𝑠ସସ(𝜔) 
Elastic metamaterial with a Drude-like elastic compliance in a certain frequency 

range was already proposed in [21]. The unit cell of the proposed metamaterial was com-
posed of four tungsten rods with four adjacent vacuum cavities embedded in a host foam. 
A circular vacuum cavity was placed in the center of the unit cell. Negative elastic com-
pliance was due to the quadrupolar resonance occurring in the unit cell The negativity of 
the elastic compliance 𝑠ସସ(ଵ)(𝜔)  was confirmed by the corresponding FEM calculations. 
The elastic compliance of the metamaterial had some characteristics of Drude’s model but 
was by no means described by the analytical formula given by Equation (1). 

In the following, we have included numerical data for material parameters of the 
elementary mechanical oscillator shown in Figure 8 as well as the resulting resonant fre-
quency 𝑓 and effective mechanical compliance (𝑠). 

Numerical example: 
As a unit cell that can be used as a local resonator, we can choose the following struc-

ture, see Figure 8: 



Sensors 2023, 23, 9879 10 of 25 
 

 

 
Figure 8. Practical realization of the proposed local mechanical resonator with SH polarization em-
bedded in an elastic host material. 

Effective elastic compliance 𝐶  of the cantilever shown in Figure 8, treated as a 
spring, can be expressed as: 𝐶 = 4𝐿ଷ 𝑌𝑤𝑡ଷ⁄  : where: 𝐿  = length, 𝑤  = width, 𝑡  = height 
and 𝑌 = Young’s modulus. 

Material parameters of the cantilever shown in Figure 8 were chosen as follows: 𝐿 = 5 mm, 𝑤 = 3 mm, 𝑡 = 1 mm and 𝑌 = 100 GPa: (Bronze). 
Reference Volume 𝑉 was assumed as: = 2 × 10ିହ mଷ. 
Surface 𝐴 of the elementary shear resonator from Figure 6 equals 𝐴 = 10 mmଶ. 
The number of local resonators 𝑛 in the reference volume 𝑉 is equal to 𝑛 = 200. 
The mass of the sphere is: = 10ିହ kg: (Tin-lead alloy). 
Employing the above set of parameters, we get: 𝐶 = ଵ଼ 10ିହ  ቂ୫ቃ ; 𝐴ଶ 𝑉 = ଵଶ 10ିହൗ  ሾmሿ. 
The resonant frequency of the local resonator amounts to 𝑓 = ଵଶగ ∙ ඥ2 𝑚𝐶⁄ ≈ 21 kHz. 

As a host material, we can choose one of the plastics, for example: Nylon PA-6. 
Finally, the effective elastic compliance equals: (𝑠) = 𝑛 ∙ 𝐶 ∙ 𝐴ଶ 𝑉⁄ ≈ 6 ∙10ିଵ ሾmଶ N⁄ ሿ. 
Ultrasonic waves in the considered frequency range (e.g., 50 KHz) can be generated 

and received using standard ultrasonic transducers operating in a conventional experi-
mental setup consisting of a pulser-receiver, a measuring head with ultrasonic transduc-
ers, and a control electronic unit (PC computer). 

The velocity of ultrasonic waves can be determined, using the above experimental 
setup, from measurements of the time-of-flight (TOF) between the selected ultrasonic im-
pulses. In the precise determination of the time of flight and therefore the velocity of ul-
trasonic waves, we can employ the cross-correlation method, which can be effectively im-
plemented digitally within the controlling PC computer. 

It should be noted that the new SH elastic surface waves can also propagate in an-
other class of elastic waveguides, in which the elastic compliance 𝑠ସସ(ଵ)(𝜔)  of the met-
amaterial half-space is described by an analytical formula different that the Drude’s for-
mula, given by Equation (1). Namely, the analysis performed in the submitted manuscript 
will be also valid (after some modifications) when the elastic compliance 𝑠ସସ(ଵ)(𝜔) fulfils 
the following 2 conditions: 

1. elastic compliance 𝑠ସସ(ଵ)(𝜔) is negative and increases monotonically in the frequency 
range 𝜔ଵ < 𝜔 < 𝜔ଶ, 

and 

2. elastic compliance 𝑠ସସ(ଵ)(𝜔) equals zero for the frequency 𝜔 = 𝜔ଶ. 

As an example of the elastic compliance 𝑠ସସ(ଵ)(𝜔) that satisfies the above two condi-
tions we can invoke a Lorentz-like function implying the following formula: 𝑠ସସ(ଵ)(𝜔) =
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𝑠 ቀ1 − ఠబమఠమିఠభమቁ . All analytical equations developed in the submitted manuscript will be 

valid (after some modifications) for the Lorentz-like elastic compliance 𝑠ସସ(ଵ)(𝜔). Similar 
can be said about figures presented in Section 5 which will be different, but they will pre-
serve anyway their qualitative properties. However, besides some complications the Lo-
rentz-like elastic compliance does not bring important new phenomena, which are not 
already present in the Drude-like model. 

Therefore, for the sake of simplicity and possible comparison with the SPP electro-
magnetic waves, which are commonly analyzed with the dielectric function 𝜀(𝜔) of the 
Drude type, in the submitted manuscript we assumed that the elastic compliance 𝑠ସସ(ଵ)(𝜔) 
in the metamaterial half-space is described by the Drude-like Equation (1). 

The elastic metamaterial with a Drude-like elastic compliance, described by Equation 
(1) may be fabricated using 3-D printers and dip-in direct-laser-writing optical lithogra-
phy [22]. This activity will be the subject of the author’s future works. 

3. Mathematical Model 

3.1. Mechanical Displacement 𝑢ଷ()(𝑥ଶ) and Stresses 𝜏ଶଷ()(𝑥ଶ), 𝜏ଵଷ()(𝑥ଶ) 
Since new SH elastic surface waves are time-harmonic, propagate in the direction 𝑥ଵ 

and are uniform along the transverse direction 𝑥ଷ, their mechanical displacement 𝑢ଷ(), in 
both half-spaces (𝑖 = 1,2) shown in Figure 1, will be sought in the following generic form: 𝑢ଷ() = 𝑢ଷ()(𝑥ଶ)𝑒𝑥𝑝ሾ𝑗(𝑘 ∙ 𝑥ଵ − 𝜔𝑡)ሿ (10)

where 𝑢ଷ()(𝑥ଶ) expresses variations of the mechanical displacement in the transverse di-
rection 𝑥ଶ, 𝑘 is the wavenumber of the new SH elastic surface wave and 𝜔 its angular 
frequency. 

The mechanical displacement 𝑢ଷ() in both half-spaces of the waveguide is governed 
by the wave equation, resulting from the second Newton’s law, which with the help of 
Equation (10) reduces to the second order ordinary differential equation of the Helmholtz 
type [23]: ቈ 𝑑ଶ𝑑𝑥ଶ + 𝑘ଶ ∙ 𝑢ଷ()(𝑥ଶ) = 𝑘ଶ ∙ 𝑢ଷ()(𝑥ଶ) (11)

where 𝑘 = 𝜔 𝑣⁄  is the wavenumber of SH bulk waves in both elastic half-spaces number 𝑖 = 1, 2. In the conventional elastic half-space (𝑖 = 2) the wavenumber 𝑘ଶଶ = 𝜔ଶ𝑠ସସ(ଶ)𝜌ଶ is 
positive and in the metamaterial half-space (𝑖 = 1) the wavenumber 𝑘ଵଶ = −𝜔ଶห𝑠ସସ(ଵ)ห𝜌ଵ is 
always negative in the angular frequency range 0 < 𝜔 ≤ 𝜔. 

Since the mechanical displacement 𝑢ଷ()(𝑥ଶ) of the new SH elastic surface wave must 
vanish at large distances from the guiding interface 𝑥ଶ = 0 , namely for 𝑥ଶ → ±∞ , the 
solution of the Helmholtz Equation (11) will be sought in the following form: 𝑢ଷ()(𝑥ଶ) = 𝐶𝑒±௫మ (12)

where 𝐶 (𝑖 = 1,2) are arbitrary amplitude coefficients and the transverse wave numbers 𝑞 are real (waveguide is lossless) and according to the Helmholtz Equation (11) is given 

by 𝑞 = ඥ(𝑘ଶ − 𝑘ଶ) , where 𝑘 = 𝜔ට𝑠ସସ()𝜌  are wavenumbers of bulk SH waves in the 
metamaterial half-space 𝑥ଶ < 0  (𝑖 = 1 ) and conventional elastic half-space 𝑥ଶ ≥ 0  (𝑖 =2). 

In the following of this paper, we will use two shear stresses of the new SH elastic 
surface wave, namely 𝜏ଶଷ() and 𝜏ଵଷ() that are defined, respectively, as: 𝜏ଶଷ() = ൫1 𝑠ସସ()⁄ ൯ 𝜕𝑢ଷ() 𝜕𝑥ଶൗ  and 𝜏ଵଷ() = ൫1 𝑠ସସ()⁄ ൯ 𝜕𝑢ଷ() 𝜕𝑥ଵൗ . 

Consequently, we can write the following formulas: 
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𝑢ଷ()(𝑥ଶ) = 𝐶 ∙ 𝑒𝑥𝑝(±𝑞𝑥ଶ) (13)

𝜏ଶଷ()(𝑥ଶ) = 1𝑠ସସ() 𝐶 ∙ (±𝑞) ∙ 𝑒𝑥𝑝(±𝑞𝑥ଶ) (14)

𝜏ଵଷ()(𝑥ଶ) = 1𝑠ସସ() 𝐶 ∙ 𝑗𝑘 ∙ 𝑒𝑥𝑝(±𝑞𝑥ଶ) (15)

𝜏ଶଷ()(𝑥ଶ) = 1𝑠ସସ() 𝐶 ∙ (±𝑞) ∙ 𝑒𝑥𝑝(±𝑞𝑥ଶ) (16)

where the index 𝑖 = 1,2. 
To provide an exponential decay of 𝑢ଷ()(𝑥ଶ), 𝜏ଶଷ()(𝑥ଶ)  and 𝜏ଵଷ()(𝑥ଶ)  the transverse 

wavenumber 𝑞 in Equations (13)–(16) have to be preceded by sign − in the convention 
elastic half-space (𝑥ଶ ≥ 0) and by sign + in the metamaterial half-space (𝑥ଶ < 0), since 𝑞 
(𝑖 = 1,2) in Equations (13)–(16) are real and positive. 

3.2. Boundary Conditions and Dispersion Equation 

From physical considerations it is obvious that the mechanical displacement 𝑢ଷ()(𝑥ଶ) 
and the shear stress 𝜏ଶଷ()(𝑥ଶ) must be continuous at the interface 𝑥ଶ = 0, namely: 𝑢ଷ(ଵ)(𝑥ଶ = 0) = 𝑢ଷ(ଶ)(𝑥ଶ = 0) (17)𝜏ଶଷ(ଵ)(𝑥ଶ = 0) = 𝜏ଶଷ(ଶ)(𝑥ଶ = 0) (18)

Substituting Equations (13) and (14) into boundary conditions, Equations (17) and 
(18), one obtains two linear homogeneous algebraic equations for two unknown ampli-
tude coefficients 𝐶ଵ and 𝐶ଶ, namely: 𝐶ଵ = 𝐶ଶ (19)

𝐶ଵ 𝑞ଵ𝑠ସସ(ଵ)(𝜔) = −𝐶ଶ  𝑞ଶ𝑠ସସ(ଶ) (20)

Combining Equations (19) and (20), we get the following dispersion equation for the 
new SH elastic surface waves: 𝑞ଵ−𝑠ସସ(ଵ)(𝜔) = 𝑞ଶ𝑠ସସ(ଶ) (21)

The sign “−” before the compliance −𝑠ସସ(ଵ)(𝜔) plays a crucial role in the analysis of 
new SH elastic surface waves, since it implies that if the transverse wavenumbers 𝑞ଵ and 𝑞ଶ  are positive, the elastic compliances 𝑠ସସ(ଵ)(𝜔) , 𝑠ସସ(ଶ)  must be of the opposite sign 𝑠ସସ(ଵ)(𝜔) ∙ 𝑠ସସ(ଶ) < 0. Consequently, if the elastic compliance 𝑠ସସ(ଵ)(𝜔) (see Equation (1)) in the 
metamaterial half-space is negative for 𝜔 < 𝜔, the compliance 𝑠ସସ(ଶ) have to be positive 
(see Figure 1). 

Since 𝐶ଵ = 𝐶ଶ (see Equation (19)) in the following of this paper we will use only one 
amplitude coefficient, denoted as 𝐶 = 𝐶ଵ = 𝐶ଶ. 

  



Sensors 2023, 23, 9879 13 of 25 
 

 

3.3. Wavenumber 𝑘(𝜔) 
Substituting Equation (16), for transverse wavenumbers 𝑞ଵ and 𝑞ଶ, in the dispersion 

relation Equation (21), one obtains the following formula for the wavenumber 𝑘(𝜔) of 
the new SH elastic surface wave: 

𝑘(𝜔) = 𝑘ଶඨ 𝑠ସସ(ଵ)(𝜔)𝑠ସସ(ଵ)(𝜔) + 𝑠ସସ(ଶ)  ඩ𝑠ସସ(ଶ) 𝜌ଵ𝜌ଶ − 𝑠ସସ(ଵ)(𝜔)𝑠ସସ(ଶ) − 𝑠ସସ(ଵ)(𝜔)  (22)

where the wavenumber of bulk SH waves in the conventional elastic half-space 𝑘ଶ =𝜔ට𝑠ସସ(ଶ)𝜌ଶ. 
Since the wavenumber 𝑘(𝜔) of the new SH elastic surface wave must be real and 

positive, Equation (22) imposes the following two necessary conditions on 𝑠ସସ(ଵ)(𝜔) and 𝑠ସସ(ଶ): ൫𝑠ସସ(ଵ)(𝜔) < 0൯ 𝑎𝑛𝑑 ൫𝑠ସସ(ଵ)(𝜔) + 𝑠ସସ(ଶ)൯ < 0 (23)

The first condition requires that 𝜔 < 𝜔 and the second gives rise to 𝜔 < 𝜔௦, where 
the cut-off angular frequency 𝜔௦ and the angular frequency of local resonances 𝜔 are 
related by: 

𝜔௦ = 𝜔 ඨ𝑠ସସ(ଶ)𝑠 + 1ൗ  (24)

Since 𝜔 is always higher than 𝜔௦ (𝜔 > 𝜔௦), the two conditions given by Equa-
tion (23) imply that the frequency 𝜔 of the new SH elastic surface wave must be limited 
to the range 0 < 𝜔 < 𝜔௦. 

In the context of the SPP electromagnetic surface waves, the angular frequency 𝜔௦ 
is called the surface plasmon resonance frequency [19]. 

3.4. Phase Velocity 𝑣(𝜔) 
Since by definition 𝑘(𝜔) = 𝜔 𝑣⁄ (𝜔), the analytical formula for the phase velocity 𝑣(𝜔) of new SH elastic surface waves results immediately from Equation (22): 

𝑣(𝜔) = 𝑣ଶඨ𝑠ସସ(ଵ)(𝜔) + 𝑠ସସ(ଶ)𝑠ସସ(ଵ)(𝜔)  ඩ 𝑠ସସ(ଶ) − 𝑠ସସ(ଵ)(𝜔)𝑠ସସ(ଶ) 𝜌ଵ𝜌ଶ − 𝑠ସସ(ଵ)(𝜔) (25)

where 𝑣ଶ = 1 ට𝑠ସସ(ଶ)𝜌ଶൗ  is the phase velocity of bulk SH waves in the conventional elastic 
half-space. 

3.5. Group Velocity 𝑣(𝜔) 
Differentiation of Equation (22) for the wavenumber 𝑘(𝜔), with respect to the angu-

lar frequency 𝜔, leads to the following formula for the group velocity 𝑣(𝜔) = 𝑑𝜔 𝑑𝑘⁄  of 
the new SH surface wave: 𝑣(𝜔)𝑣ଶ 𝑣(𝜔)𝑣ଶ = 

ቂൣ𝑠ସସ(ଶ)൧ଶ − ൣ𝑠ସସ(ଵ)(𝜔)൧ଶቃଶ
𝑠ସସ(ଵ)(𝜔) ቂ𝜌ଵ𝜌ଶ 𝑠ସସ(ଶ) − 𝑠ସସ(ଵ)(𝜔)ቃ ቂൣ𝑠ସସ(ଶ)൧ଶ − ൣ𝑠ସସ(ଵ)(𝜔)൧ଶቃ + 𝜔2 𝑑𝑠ସସ(ଵ)(𝜔)𝑑𝜔 ቂ𝜌ଵ𝜌ଶ ቂൣ𝑠ସସ(ଶ)൧ଶ + ൣ𝑠ସସ(ଵ)(𝜔)൧ଶቃ − 2𝑠ସସ(ଵ)(𝜔)𝑠ସସ(ଶ)ቃ 

(26)
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Despite its relative complexity, Equation (26) is quite elementary and can be easily 
implemented in numerical calculations. 

3.6. Penetration Depths 𝛿ଵ(𝜔), 𝛿ଶ(𝜔) in Both Half-Spaces of the Waveguide 
The penetration depth in the metamaterial half-space 𝑥ଶ < 0 is defined as 𝛿ଵ(𝜔) =1 𝑞ଵ(𝜔)⁄ , where the transverse wave number 𝑞ଵ(𝜔) = ඥ𝑘ଶ − 𝑘ଵଶ (see Equation (16)) and 𝑘ଵଶ = 𝜔ଶ𝑠ସସ(ଵ)(𝜔)𝜌ଵ . Similarly, in the conventional elastic half-space 𝑥ଶ ≥ 0  we have 𝛿ଶ(𝜔) = 1 𝑞ଶ(𝜔)⁄  , where the transverse wavenumber 𝑞ଶ(𝜔) = ඥ𝑘ଶ − 𝑘ଶଶ  (see Equation 

(16)) and 𝑘ଶଶ = 𝜔ଶ𝑠ସସ(ଶ)𝜌ଶ. 
Consequently, substituting Equation (22) for the wavenumber 𝑘 into Equation (16) 

for the transverse wavenumbers 𝑞ଵ and 𝑞ଶ and noting that 𝜆 = 2𝜋 𝑘⁄ , one obtains: 

𝛿ଵ(𝜔) = 𝜆2𝜋 ඩ 𝑠ସସ(ଶ) ቂ−𝑠ସସ(ଵ)(𝜔) + 𝑠ସସ(ଶ) 𝜌ଵ𝜌ଶቃ−𝑠ସସ(ଵ)(𝜔) ቂ𝑠ସସ(ଶ) − 𝑠ସସ(ଵ)(𝜔) 𝜌ଵ𝜌ଶቃ (27)

𝛿ଶ(𝜔) = 𝜆2𝜋 ඩ−𝑠ସସ(ଵ)(𝜔) ቂ−𝑠ସସ(ଵ)(𝜔) + 𝑠ସସ(ଶ) 𝜌ଵ𝜌ଶቃ𝑠ସସ(ଶ) ቂ𝑠ସସ(ଶ) − 𝑠ସସ(ଵ)(𝜔) 𝜌ଵ𝜌ଶቃ  (28)

where 𝜆 is the wavelength of the new SH elastic surface wave. 
In general, the ratio of the penetration depths 𝛿ଵ(𝜔), 𝛿ଶ(𝜔) is expressed by the dis-

persion equation (Equation (21)), i.e., 𝛿ଶ(𝜔) 𝛿ଵ(𝜔)⁄ = −𝑠ସସ(ଵ)(𝜔) 𝑠ସସ(ଶ)ൗ  that is independent 
on 𝜌ଵ 𝜌ଶ⁄ . On the other hand, by virtue of Equations (27) and (28), the product of the nor-
malized penetration depths equals: 𝛿ଵ(𝜔)𝜆 ∙ 𝛿ଶ(𝜔)𝜆 = ൬ 12𝜋൰ଶ  −𝑠ସସ(ଵ)(𝜔) + 𝑠ସସ(ଶ) 𝜌ଵ𝜌ଶ𝑠ସସ(ଶ) − 𝑠ସସ(ଵ)(𝜔) 𝜌ଵ𝜌ଶ  (29)

However, if the density in both half-spaces of the waveguide is the same (𝜌ଵ = 𝜌ଶ) 
then Equation (29) reduces to: 𝛿ଵ(𝜔)𝜆 ∙ 𝛿ଶ(𝜔)𝜆 =   ൬ 12𝜋൰ଶ

 (30)

Thus, if the density in both half-spaces of the waveguide is identical (𝜌ଵ = 𝜌ଶ) the 
product of the normalized penetration depths 𝛿ଵ(𝜔)𝛿ଶ(𝜔) 𝜆ଶ⁄  is independent of angular 
frequency 𝜔  and material constants of the waveguide and equals (1 2𝜋⁄ )ଶ ≈ 0.025 . In 
other words, if 𝜌ଵ = 𝜌ଶ  both normalized penetration depths 𝛿ଵ(𝜔) 𝜆⁄  , 𝛿ଶ(𝜔) 𝜆⁄   are in-
versely proportional. As a result, if 𝛿ଵ(𝜔) 𝜆⁄   increases then 𝛿ଶ(𝜔) 𝜆⁄   decreases accord-
ingly to Equation (30) and vice versa. Simultaneously, if the angular frequency 𝜔 → 𝜔௦ 
then both 𝛿ଵ(𝜔) 𝜆⁄  and 𝛿ଶ(𝜔) 𝜆⁄  are subwavelength and tend to the same value 1 2𝜋⁄ . 

3.7. Net Active Power Flow 𝑃ଵ(ଵ)(𝜔), 𝑃ଵ(ଶ)(𝜔) in the Direction of Propagation 𝑥ଵ 

The complex Poynting vector 𝑃ଵ()(𝑥ଶ), in the direction of propagation 𝑥ଵ, of new SH 
elastic surface waves can be expressed as 𝑃ଵ()(𝑥ଶ) = − ଵଶ ቂ𝜏ଵଷ()(𝑥ଶ) ∙ ൫−𝑗𝜔𝑢ଷ()(𝑥ଶ) ൯∗ቃ, where 𝑢ଷ()(𝑥ଶ)  is the mechanical displacement (Equation (5)) and 𝜏ଵଷ()(𝑥ଶ)  is the mechanical 
stress (Equation (15)), where 𝑖 = 1, 2. 

Similarly, the net complex power flow (per unit length along the axis 𝑥ଷ) in the met-
amaterial half-space (𝑥ଶ < 0) is defined as 𝑃ଵ(ଵ)(𝜔) =  𝑃ଵ(ଵ)(𝑥ଶ)𝑑𝑥ଶିஶ  (see Figure 1) and in 
the conventional elastic half-space (𝑥ଶ ≥ 0) by 𝑃ଵ(ଶ)(𝜔) =  𝑃ଵ(ଶ)(𝑥ଶ)𝑑𝑥ଶஶ . 

Consequently, using Equations (13) and (15), it can be shown that the net complex 
power flows 𝑃ଵ(ଵ)(𝜔) and 𝑃ଵ(ଶ)(𝜔) in both half-spaces of the waveguide are given by: 
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𝑃ଵ(ଵ)(𝜔) = − 14 |𝐶|ଶ 𝑘(𝜔)𝜔−𝑠ସସ(ଵ)(𝜔)𝑞ଵ(𝜔) (31)

𝑃ଵ(ଶ)(𝜔) = 14 |𝐶|ଶ 𝑘(𝜔)𝜔𝑠ସସ(ଶ)𝑞ଶ(𝜔) (32)

where 𝐶 is an arbitrary amplitude coefficient. 
It should be noticed that all field variables entering Equations (31) and (32) are real. 

Therefore, the power flows 𝑃ଵ(ଵ)(𝜔) and 𝑃ଵ(ଶ)(𝜔) in both half-spaces of the waveguide 
are active. In other words, new SH elastic surface waves can effectively transfer the active 
power along the guiding interface 𝑥ଶ = 0 in the direction of propagation 𝑥ଵ. 

Employing the dispersion Equation (21) in conjunction with Equations (31) and (32), 
the ratio of the net active powers flows 𝑃ଵ(ଵ)(𝜔) 𝑃ଵ(ଶ)(𝜔)ൗ  in both half-spaces of the wave-
guide is given by the following: 𝑃ଵ(ଵ)(𝜔)𝑃ଵ(ଶ)(𝜔) = 𝑠ସସ(ଶ)𝑠ସସ(ଵ)(𝜔) 𝑞ଶ(𝜔)𝑞ଵ(𝜔) = − ቈ𝛿ଵ(𝜔)𝛿ଶ(𝜔)ଶ

 (33)

Note that the ratio of the net active power flows in both half-spaces is always nega-
tive, since 𝑠ସସ(ଵ)(𝜔) and 𝑠ସସ(ଶ) are of the opposite sign and the transverse wavenumbers are 
real and positive 𝑞ଵ(𝜔),  𝑞ଶ(𝜔) > 0 . Consequently, 𝑃ଵ(ଵ)(𝜔)  and 𝑃ଵ(ଶ)(𝜔)  propagate in 
opposite directions along axis 𝑥ଵ. 

3.8. Average Reactive Power Flow 𝑃ଶ(ଵ)(𝜔), 𝑃ଶ(ଶ)(𝜔) in the Transverse Direction 𝑥ଶ 

The complex Poynting vector 𝑃ଶ()(𝑥ଶ), in the transverse direction 𝑥ଶ, of new SH elas-
tic surface waves can be expressed as 𝑃ଶ()(𝑥ଶ) = − ଵଶ ቂ𝜏ଶଷ()(𝑥ଶ) ∙ ൫−𝑗𝜔𝑢ଷ()(𝑥ଶ) ൯∗ቃ , where 𝑢ଷ()(𝑥ଶ)  is the mechanical displacement (Equation (13)) and 𝜏ଶଷ()(𝑥ଶ)  is the mechanical 
stress (Equation (14)), where 𝑖 = 1, 2. 

Similarly, the average complex power flow (per unit length along the axis 𝑥ଷ) in the 
metamaterial half-space (𝑥ଶ < 0 ) is defined as 𝑃ଶ(ଵ)(𝜔) =  𝑃ଶ(ଵ)(𝑥ଶ)𝑑𝑥ଶିஶ   (see Figure 1) 
and in the conventional elastic half-space (𝑥ଶ ≥ 0) by 𝑃ଶ(ଶ)(𝜔) =  𝑃ଶ(ଶ)(𝑥ଶ)𝑑𝑥ଶஶ . 

Consequently, using Equations (13) and (14) it can be shown that the average com-
plex power flow 𝑃ଶ(ଵ)(𝜔) and 𝑃ଶ(ଶ)(𝜔) in both half-spaces are given by: 𝑃ଶ(ଵ)(𝜔) = +𝑗 𝜔4 |𝐶|ଶ 1−𝑠ସସ(ଵ)(𝜔) (34)

𝑃ଶ(ଶ)(𝜔) = +𝑗 𝜔4 |𝐶|ଶ 1𝑠ସସ(ଶ) (35)

Thus, if 𝜔 → 0 then 𝑃ଶ(ଵ)(𝜔) and 𝑃ଶ(ଶ)(𝜔) both tend to zero. On the other hand, if 𝜔 → 𝜔௦ then 𝑃ଶ(ଶ)(𝜔) and 𝑃ଶ(ଵ)(𝜔) tend to the same value, namely 𝑗൫𝜔௦ 4⁄ ൯|𝐶|ଶ 𝑠ସସ(ଶ)ൗ . 
Since the elastic compliance 𝑠ସସ(ଵ)(𝜔)  is negative, in the frequency range 0 < 𝜔 <𝜔௦, the average reactive power flows 𝑃ଶ(ଵ)(𝜔), 𝑃ଶ(ଶ)(𝜔), in both half-spaces, are both posi-

tive (+) and correspond to the inductive type of the reactive power, in analogy to SPP 
electromagnetic waves. 

Using Equation (1) together with Equations (34) and (35), the ratio of the average 
reactive power flows in both half-spaces can be written as: 𝑃ଶ(ଵ)(𝜔)𝑃ଶ(ଶ)(𝜔) = − 𝑠ସସ(ଶ)𝑠ସସ(ଵ)(𝜔) = 𝛿ଵ(𝜔)𝛿ଶ(𝜔) (36)
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Comparing Equations (33) and (36), one obtains a rather unexpected relation between 
the net active power flows 𝑃ଵ(ଵ)(𝜔), 𝑃ଵ(ଶ)(𝜔) in the direction of propagation 𝑥ଵ and the 
average reactive power flows 𝑃ଶ(ଵ)(𝜔), 𝑃ଶ(ଶ)(𝜔) in the transverse direction 𝑥ଶ, namely: 𝑃ଵ(ଵ)(𝜔)𝑃ଵ(ଶ)(𝜔) = − 𝑃ଶ(ଵ)(𝜔)𝑃ଶ(ଶ)(𝜔)൩ଶ

 (37)

Thus, if the ratio of the net active power flows 𝑃ଵ(ଵ)(𝜔) 𝑃ଵ(ଶ)(𝜔)ൗ   increases, say 4 
times, the ratio of the average reactive power flow 𝑃ଶ(ଵ)(𝜔) 𝑃ଶ(ଶ)(𝜔)ൗ  grows only 2 times, 
etc. In other words, repartition of the net active power flow (𝑃ଵ(ଵ)(𝜔), 𝑃ଵ(ଶ)(𝜔)) between two 
half-spaces of the waveguide is much more sensitive to changes in the penetration depths 𝛿ଵ(𝜔) 𝜆⁄  and 𝛿ଶ(𝜔) 𝜆⁄  than that of the average reactive power flow (𝑃ଶ(ଵ)(𝜔), 𝑃ଶ(ଶ)(𝜔)) in 
the transverse direction 𝑥ଶ. 

4. Correspondence between the SPP Electromagnetic Waves and the Proposed New 
SH elastic Surface Waves 

As it was stated before, the proposed new SH elastic surface waves can be considered 
an elastic analogue of the SPP electromagnetic surface waves propagating at a metal–die-
lectric interface. In fact, the mathematical models of both types of waves are formally iden-
tical. Therefore, it will be advantageous to identify explicitly the corresponding field var-
iables in both domains, since the results obtained in one domain can be directly trans-
ferred to the other domain, alleviating thereby tedious from scratch derivations of the re-
sulting analytical formulas (see Table 1). 

Table 1. Correspondence between field variables of the SPP electromagnetic waves propagating in 
metal–dielectric waveguides and the proposed new SH elastic surface waves propagating in met-
amaterial waveguides. 

No 
SPP Electromagnetic Surface Waves in Metal–Dielectric Wave-

guides 
New SH Elastic Surface Waves in Metamaterial Wave-

guides 
Property Implementation Implementation Property 

1 Longitudinal electric field 𝐸ଵ 𝜏ଶଷ 
Shear horizontal SH me-

chanical stress 
2 Transverse electric field 𝐸ଶ 𝜏ଵଷ Shear mechanical stress 

3 transverse magnetic field 𝐻ଷ 𝑣ଷ = −𝑗𝜔𝑢ଷ SH particle velocity 𝑣ଷ =𝜕𝑢ଷ 𝜕𝑡⁄  

4 Dielectric function in metal 𝜀ଵ(𝜔) 𝑠ସସ(ଵ)(𝜔) 
Elastic compliance in met-

amaterial half-space 

5 Dielectric function in dielectric 𝜀ଶ 𝑠ସସ(ଶ) Elastic compliance in con-
ventional half-space 

6 Magnetic permeability in metal 𝜇ଵ 𝜌ଵ Density of metamaterial 
half-space 

7 Magnetic permeability in dielectric 𝜇ଶ 𝜌ଶ Density of conventional 
half-space 

8 Wavenumber for 𝜇ଵ 𝜇ଶ = 1⁄  𝑘(𝜔) = 𝑘ଶඨ 𝜀ଵ(𝜔)𝜀ଵ(𝜔) + 𝜀ଶ 𝑘(𝜔) = 𝑘ଶඨ 𝑠ସସ(ଵ)(𝜔)𝑠ସସ(ଵ)(𝜔) + 𝑠ସସ(ଶ) Wavenumber for 𝜌ଵ 𝜌ଶ = 1⁄  

9 
Phase velocity of SPP electromag-

netic waves 𝑣(𝜔) = 𝑣ଶඨ𝜀ଵ(𝜔) + 𝜀ଶ𝜀ଵ(𝜔)  𝑣(𝜔) = 𝑣ଶඨ𝑠ସସ(ଵ)(𝜔) + 𝑠ସସ(ଶ)𝑠ସସ(ଵ)(𝜔)  
Phase velocity of new SH 

elastic surface waves 

10 
Complex Poynting vector in propa-

gation direction 𝑥ଵ 𝑃ଵ = 12 𝐸ଶ × 𝐻ଷ∗ 𝑃ଵ = − 12 𝜏ଵଷ𝑣ଷ∗ 
Complex Poynting vector 
in propagation direction 𝑥ଵ 

11 
Complex Poynting vector in trans-

verse direction  𝑥ଶ 𝑃ଶ = 12 𝐸ଵ × 𝐻ଷ∗ 𝑃ଶ = − 12 𝜏ଶଷ𝑣ଷ∗ 
Complex Poynting vector 
in transverse direction 𝑥ଶ 
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12 
Wave impedance 𝑍்ெ = 𝐸ଶ 𝐻ଷ⁄ , 

TM modes   
𝑍்ெିଵ = 𝑣(𝜔) ൜𝜀ଵ(𝜔), 𝑚𝑒𝑡𝑎𝑙𝜀ଶ, 𝑑𝑖𝑒𝑙𝑒𝑐  𝑍௦ି ଵ = 𝑣(𝜔) ൝𝑠ସସ(ଵ)(𝜔), 𝑚𝑒𝑡𝑎.𝑠ସସ(ଶ), 𝑐𝑜𝑛𝑣𝑒𝑛.  

Wave impedance 𝑍௦ =− 𝜏ଵଷ 𝑣ଷ⁄ , elastic surface 
waves 

As a result, the analytical formulas for all field variables analyzed in this paper, such 
as mechanical displacement 𝑢ଷ(𝑥ଶ) , shear stresses 𝜏ଶଷ(𝑥ଶ), 𝜏ଵଷ(𝑥ଶ) , transverse wave-
numbers 𝑞ଵ, 𝑞ଶ, wavenumber 𝑘(𝜔), phase velocity 𝑣(𝜔), group velocity 𝑣(𝜔), penetra-
tion depths δଵ(ω), δଶ(ω), net active power flows 𝑃ଵ(ଵ)(𝜔), 𝑃ଵ(ଶ)(𝜔), average reactive power 
flows 𝑃ଶ(ଵ)(𝜔), 𝑃ଶ(ଶ)(𝜔), as well as the dispersion relation can be readily transferred to the 
SPP domain by a simple substitution of the corresponding symbols. 

In particular, Equations (10)–(37) developed in this paper in Sections 3.1–3.8 are valid 
also (after simple replacement of the corresponding symbols) in the domain of SPP elec-
tromagnetic waves. 

For example, phase velocity 𝑣(𝜔) of the SPP electromagnetic waves (see row 9 in 
Table 1) is expressed by the same formula as phase velocity 𝑣(𝜔) of the new SH elastic 
surface waves, providing that 𝑠ସସ(ଵ)(𝜔) and 𝑠ସସ(ଶ) are substituted by 𝜀ଵ(𝜔) and 𝜀ଶ, respec-
tively. The symbol 𝑣ଶ corresponds to phase velocity of bulk SH waves in the conventional 

elastic material (𝑣ଶ = 1 ට𝑠ସସ(ଶ)𝜌ଶൗ ) and to bulk transverse electromagnetic waves in the die-
lectric (𝑣ଶ = 1 √𝜀ଶ𝜇ଶ⁄ ). 

Interestingly, the crucial step in development of the quantitative model of the elastic 
metamaterial with a Drude-like elastic compliance (see Section 2.3) was the reverse trans-
fer of an analytical equation developed in the electromagnetic domain (Equation B.2.5 in 
[20]) into the domain of the SH elastic waves (see Equation (7) in Section 2.3.3 and the 
accompanying discussion). 

5. Numerical Results 
5.1. Dispersion Curves 

Figure 9 presents the dispersion curves of the new surface acoustic wave. Using 
Equation (22), one can show that if 𝜔 → 0, then 𝑘(𝜔) → 0. On the other hand, when 𝜔 →𝜔௦ then the wavenumber 𝑘(𝜔) → ∞, (see Figure 9). 

 
Figure 9. Normalized angular frequency 𝜔 𝜔௦⁄   versus normalized wavenumber 𝑘(𝜔) 𝑘ଶ⁄  , for 𝑟 = 𝜌ଵ 𝜌ଶ⁄  as a parameter (𝑠ସସ(ଶ) 𝑠ൗ = 1). 

5.2. Phase Velocity 
Equation (25) shows that if 𝜔 → 0, then 𝑣(𝜔) → 𝑣ଶ. On the other hand, when 𝜔 →𝜔௦, then the phase velocity 𝑣(𝜔) → 0, (see Figure 10). 
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Figure 10. Normalized phase velocity 𝑣(𝜔) 𝑣ଶ⁄  versus normalized angular frequency 𝜔 𝜔௦⁄ , for 𝑟 = 𝜌ଵ 𝜌ଶ⁄  as a parameter (𝑠ସସ(ଶ) 𝑠ൗ = 1). 

5.3. Group Velocity 
A closer look at Equation (26) reveals that if 𝜔 → 0, then 𝑣(𝜔) → 𝑣ଶ (see Figure 10. 

On the other hand, when 𝜔 → 𝜔௦ , then 𝑣(𝜔) → 0 . Thus, phase 𝑣(𝜔)  and group 𝑣(𝜔) velocities tend to the same limiting values for 𝜔 → 0 and 𝜔 → 𝜔௦, (see Figures 10 
and 11). 

 
Figure 11. Normalized group velocity 𝑣(𝜔) 𝑣ଶ⁄  versus normalized angular frequency 𝜔 𝜔௦⁄ , for 𝑟 = 𝜌ଵ 𝜌ଶ⁄  as a parameter (𝑠ସସ(ଶ) 𝑠ൗ = 1). 

5.4. Penetration Depths in Both Half-Spaces 
Equation (27) shows that If the angular frequency 𝜔 → 0 then the normalized pene-

tration depth in the metamaterial half-space δଵ(ω) λ → 0⁄ . On the other hand, when 𝜔 →𝜔௦ then δଵ(ω) λ → 1 2π⁄⁄ . Thus, the normalized penetration depth δଵ(ω) λ⁄  in the met-
amaterial half-space is always subwavelength, i.e., δଵ(ω) λ <⁄ 1 2π⁄ , (see Figure 12). 
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Figure 12. Normalized penetration depth 𝛿ଵ(𝜔) 𝜆⁄  in the metamaterial half-space, versus normal-
ized angular frequency 𝜔 𝜔௦⁄ , for 𝑟 = 𝜌ଵ 𝜌ଶ⁄  as a parameter (𝑠ସସ(ଶ) 𝑠ൗ = 1). 

On the other hand (see Equation (28)), the normalized penetration depth in the con-
ventional elastic half-space δଶ(ω) λ → ∞⁄  , if angular frequency 𝜔 → 0 . Similarly, when 𝜔 → 𝜔௦ then δଶ(ω) λ → 1 2π⁄⁄ . As a result, the normalized penetration depth δଶ(ω) λ⁄  
is higher than “1” (see dotted horizontal line in Figure 13) for low frequencies and sub-
wavelength for high frequencies approaching the cut-off frequency 𝜔௦, (see Figure 13). 

 
Figure 13. Normalized penetration depth 𝛿ଶ(𝜔) 𝜆⁄  in the conventional elastic half-space, versus 
normalized angular frequency 𝜔 𝜔௦⁄ , for 𝑟 = 𝜌ଵ 𝜌ଶ⁄  as a parameter (𝑠ସସ(ଶ) 𝑠ൗ = 1). 

5.5. Net Active Power Flow in the Direction of Propagation 𝑥ଵ 
Using Equation (33) in conjunction with Equations (27) and (28), one can demonstrate 

that if 𝜔 → 0  then 𝑃ଵ(ଵ)(𝜔) 𝑃ଵ(ଶ)(𝜔)ൗ → 0 . On the other hand, if 𝜔 → 𝜔௦ , then 𝑃ଵ(ଵ)(𝜔) 𝑃ଵ(ଶ)(𝜔)ൗ → −1, (see Figure 14). 
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Figure 14. The ratio of net active power flows −𝑃ଵ(ଵ)(𝜔) 𝑃ଵ(ଶ)(𝜔)ൗ , in the direction of propagation 𝑥ଵ, 
versus normalized angular frequency 𝜔 𝜔௦⁄ , for 𝑠 = 𝑠ସସ(ଶ) 𝑠ൗ  as a parameter. 𝜌ଵ and 𝜌ଶ are arbi-
trary. 

5.6. Average Reactive Power Flow in the Transverse Direction 𝑥ଶ 

From Equation (36), we can conclude that if 𝜔 → 0  then 𝑃ଶ(ଵ)(𝜔) /𝑃ଶ(ଶ)(𝜔)  tends to 
zero. On the other hand, if 𝜔 → 𝜔௦, then 𝑃ଶ(ଵ)(𝜔) 𝑃ଶ(ଶ)(𝜔)ൗ → 1, (see Figure 15). 

 
Figure 15. Ratio of average reactive power flows 𝑃ଶ(ଵ)(𝜔) 𝑃ଶ(ଶ)(𝜔)ൗ , in the transverse direction 𝑥ଶ, 
versus normalized angular frequency 𝜔 𝜔௦⁄ , for 𝑠 = 𝑠ସସ(ଶ) 𝑠ൗ  as a parameter. 𝜌ଵ and 𝜌ଶ are arbi-
trary. 

6. Discussion 
Elastic surface waves propagating in metamaterial waveguides were subject of a 

number of papers that analyzed the Rayleigh surface waves at the solid-vacuum interface 
[24], Scholte interfacial waves at the solid-liquid interface [25], shear horizontal waves on 
a semi-infinite half-space loaded with a metasurface [26,27] or Love surface waves in 
waveguides loaded with a resonant metasurface [28]. 
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The possibility of the existence of elastic SH waves propagating at the interface of 
two elastic half-spaces, one of which is an elastic metamaterial, was briefly announced in 
one of the author’s previous works [29]. However, the present paper differs significantly 
from the former paper presented in [29]. In particular, in the present study: 
(1) A general theory of the new SH elastic surface waves propagating at an elastic inter-

face has been developed from first physical principles; 
(2) All considered field variables are normalized, e.g., we use the normalized angular fre-

quency 𝜔 𝜔௦⁄ , normalized wavenumber 𝑘(𝜔) 𝑘ଶ⁄  etc.; 
(3) The influence of the density of both half-spaces on the characteristics of the new elastic 

SH wave is taken into consideration; 
(4) New analytical formulas for the penetration depths 𝛿ଵ(𝜔) 𝜆⁄  and 𝛿ଶ(𝜔) 𝜆⁄  were es-

tablished. The newly developed formulas can be of significant practical importance in 
design of devices in the domain of SPP and in the domain of new SH elastic surface 
waves; 

(5) A new quantitative model of the elastic metamaterial with a Drude-like elastic com-
pliance 𝑠ସସ(ଵ)(𝜔) has been developed. 
It should be emphasized that all the five developments mentioned above have been 

included in the present paper and were not yet published elsewhere. 
Our former research [30] on elastic surface waves propagating in conventional elastic 

waveguides showed that SH surface waves, such as Love surface waves [31], share many 
common properties with waves in other domains of physics, such as TM (Transverse Mag-
netic) modes in optical planar waveguides or wave function of quantum particles in a 
potential well. However, the present paper was mostly influenced by recent developments 
in the domain of elastic metamaterials and SPP electromagnetic surface waves propagat-
ing at the metal-dielectric interface [32]. 

In this paper, we demonstrated that the ultrasonic analogue of SPP electromagnetic 
waves can exist in elastic waveguides consisting of two elastic half-spaces, providing that 
one of the elastic half-spaces is an elastic metamaterial with a negative elastic compliance 𝑠ସସ(ଵ)(𝜔)  that corresponds to the dielectric function 𝜀(𝜔)  in Drude’s model of metals. 
These two types of waves are described by formally identical mathematical models and, 
therefore, have similar (1) distribution field variables and (2) dispersion equation. 

The dispersion curves of the new SH elastic surface wave, shown in Figure 9, have 
the characteristic property that the wavenumber 𝑘(𝜔) tends to infinity 𝑘(𝜔) → ∞, when 
the wave angular frequency 𝜔  approaches the cuff-of frequency 𝜔௦ . Since 𝜆 = 2𝜋 𝑘⁄  , 
the wavelength 𝜆 of the new SH elastic surface wave tends to zero 𝜆 → 0 when 𝜔 → 𝜔௦. 
This phenomenon can be exploited in the subwavelength near field ultrasonic imaging. 

Another very intriguing property of the new SH elastic surface waves is that their 
phase 𝑣(𝜔)  and group 𝑣(𝜔)  velocities tend to zero when the wave frequency ap-
proaches the cut-off frequency 𝜔 → 𝜔௦ (see Figures 10 and 11). This property is of key 
importance in the potential applications of the new SH elastic surface wave in ultrasonic 
sensors with extremely large mass sensitivity, which can give rise to a new generation of 
biosensors and chemosensors with unprecedented sensitivity. 

This paper contains several new original formulas which to the best of our 
knowledge were not yet published in the literature, namely: 
- Relation for the product of penetration depths 𝛿ଵ(𝜔), 𝛿ଶ(𝜔) in two half-spaces of 

the waveguide (Equation (30)); 
- Relation between net active power flows 𝑃ଵ(ଵ)(𝜔), 𝑃ଵ(ଶ)(𝜔) in the direction of propa-

gation 𝑥ଵ  and penetration depths 𝛿ଵ(𝜔) , 𝛿ଶ(𝜔)  in two half-spaces of the wave-
guide (Equation (33)); 

- Relation between average reactive power flows 𝑃ଶ(ଵ)(𝜔), 𝑃ଶ(ଶ)(𝜔) in the transverse 
direction 𝑥ଶ and penetration depths 𝛿ଵ(𝜔), 𝛿ଶ(𝜔) in two half-spaces of the wave-
guide (Equation (36)); 
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- Relation between net active power flows 𝑃ଵ(ଵ)(𝜔), 𝑃ଵ(ଶ)(𝜔) in the direction of propa-
gation 𝑥ଵ and average reactive power flows 𝑃ଶ(ଵ)(𝜔), 𝑃ଶ(ଶ)(𝜔) in the transverse di-
rection 𝑥ଶ of the waveguide (Equation (37)). 
All new equations mentioned above, which were developed in the elastic domain, 

can be directly transferred into the domain of SPP electromagnetic surface waves, using 
to this end Table 1 presented in Section 4. In particular, the relation between the penetra-
tion depths 𝛿ଵ(𝜔), 𝛿ଶ(𝜔) in two half-spaces of the waveguide (Equation (30)) can be use-
ful for designers of SPP electromagnetic sensors, in selection of proper wave frequency 
providing high subwavelength concentration of energy in the dielectric material of the 
waveguide leading to long range propagation of SPP waves. 

Similarly, the new relations between the power flows and the penetration depths in 
two half-spaces of the waveguide (Equations (33) and (36)) indicate that the proper control 
of the net active power flow in the direction of propagation may be very important in 
achieving high sensitivity of long range SPP sensors with low losses. 

The results presented in Figures 9–15 reveal that the densities 𝜌ଵ, 𝜌ଶ, in both half-
spaces of the waveguide, have a profound impact on all parameters of the proposed new 
SH elastic surface waves. For example, if 𝜌ଵ 𝜌ଶ⁄ = 1, the penetration depth in the met-
amaterial half-space 𝛿ଵ(𝜔) is ~43 times smaller than the wavelength 𝜆 of the wave, at 𝜔 𝜔௦⁄ = 0.2  (see green curve Figure 12). By contrast, if 𝜌ଵ 𝜌ଶ⁄ = 20  the penetration 
depth 𝛿ଵ(𝜔)  decreases significantly and is ~167 times smaller than the wavelength 𝜆 
(see red curve in Figure 12). 

Therefore, since the densities 𝜌ଵ, 𝜌ଶ correspond to magnetic permeabilities 𝜇ଵ, 𝜇ଶ in 
SPP electromagnetic waveguides (see rows 6 and 7 in Table 1 in Section 4) it implies that 
we can also effectively shape the characteristics of SPP electromagnetic waves by analo-
gous adjustment of 𝜇ଵ and 𝜇ଶ. 

On the other hand, due to strong formal similarities between the new SH elastic sur-
face waves and SPP electromagnetic surface waves it may be possible in future to transfer 
many fascinating newly discovered SPP phenomena, such as cloaking [14], trapping (zero 
group velocity) [13] and topological protection [15] into the domain of elastic metamate-
rials using to this end the new SH elastic surface waves, proposed in this paper. 

As a result, the proposed new SH elastic surface waves can open new possibilities to 
control wave phenomena in elastic solids and can constitute the basis for a new generation 
of modern devices in the domain of sensors, acoustic imaging, and signal processing. 

Using recently discovered elastic hyperbolic metamaterials [33] we can achieve sub-
wavelength imaging by amplification of the evanescent waves scattered from the object, 
which contain information about fine details of the object. The evanescent waves are not 
only amplified but also are converted to propagation modes, which can be focused in a 
far zone of the hyperbolic superlens. However, the same amplification of the evanescent 
waves and subwavelength imaging can be achieved with the proposed new SH elastic 
surface waves, but in a simpler way. In fact, the elastic hyperbolic metamaterials are quite 
complicated since they require that the mass density of the hyperbolic metamaterial must 
be simultaneously anisotropic and negative [34]. By contrast, using the new SH elastic 
surface waves we can also achieve subwavelength imaging and amplification of the eva-
nescent waves but in a much simpler way. In fact, two half-spaces of the waveguide sup-
porting the new SH waves are always isotropic and only one metamaterial half-space 
must exhibit a negative Drude-like elastic compliance. 

Finally, we must address the issue of losses that will inevitably occur in waveguides 
of the proposed new SH acoustic surface waves. Interestingly, the problem of losses was 
solved in SPP devices by the introduction of a multilayer waveguide structure. For exam-
ple, a very thin layer (25 nm) of lossy metal (Au) was sandwiched between two low loss 
dielectrics (SU-8 polymer) provided a 5 mm long sensor [35]. The presence of losses may 
also affect efficiency of specific wave phenomena occurring in metamaterial waveguides, 



Sensors 2023, 23, 9879 23 of 25 
 

 

such as zero group velocity. In fact, in reference [36] it was shown that the minimal group 
velocity that can be achieved in waveguides with losses is always higher than zero. 

Moreover, the presence of losses can limit the maximum value of the wavenumber 𝑘(𝜔) of the SH surface wave propagating at the boundary of the elastic half-space and the 
metamaterial half-space with Drude-like elastic compliance. This may limit the resolution 
of Drude-type metamaterial superlenses used in near-field acoustic imaging. 

This paper is a clear example of the multidisciplinary research that can bring new 
valuable and sometimes unexpected physical insight on the physical phenomena occur-
ring in two domains of physics, i.e., theory of elasticity and electromagnetism. 

It will be advantageous in future research to extend the analysis of the new SH elastic 
surface waves on waveguides with losses as well as to design a model of a biosensor based 
on the analogy with SPP electromagnetic devices [35,37]. 

7. Conclusions 
Based on the results of research presented in this paper, we can draw the following 

detailed conclusions: 
1. The new SH elastic surface waves can be considered as an elastic analogue of the elec-

tromagnetic SPP waves, due to strong formal similarities of their mathematical mod-
els (Table 1 in Section 4); 

2. The new SH elastic surface waves can exist at the interface of two elastic half-spaces 
one of which is an elastic metamaterial with a negative compliance 𝑠ସସ(ଵ)(𝜔) ∙ 𝑠ସସ(ଶ) < 0 
(Equation (21)); 

3. The phase velocity 𝑣(𝜔) of the new SH ultrasonic surface waves is antiparallel to 
the net active power flow 𝑃ଵ(ଵ)(𝜔) in the metamaterial half-space and parallel to the 
net active power flow 𝑃ଵ(ଶ)(𝜔) in the conventional elastic half-space; 

4. The net active power flows 𝑃ଵ(ଵ)(𝜔), 𝑃ଵ(ଶ)(𝜔) of the new SH elastic surface waves, in 
both half-spaces, are antiparallel along the direction of propagation 𝑥ଵ, (Equations 
(31) and (32)); 

5. An average reactive power flows 𝑃ଶ(ଵ)(𝜔), 𝑃ଶ(ଶ)(𝜔), in the transverse direction 𝑥ଶ, have 
the same sign (+) corresponding to the inductive type of the reactive power, oscillating 
between two half-spaces of the waveguide (Equations (34) and (35)); 

6. The penetration depth 𝛿ଵ(𝜔) of the new SH elastic surface waves in the metamaterial 
half-space is always smaller than that in the conventional elastic half-space 𝛿ଶ(𝜔), i.e., 𝛿ଵ(𝜔) < 𝛿ଶ(𝜔) (Figures 12 and 13); 

7. The ratio of the net active power flows 𝑃ଵ(ଵ)(𝜔) 𝑃ଵ(ଶ)(𝜔)ൗ  and the corresponding ratio 
of the average reactive power flows 𝑃ଶ(ଵ)(𝜔) 𝑃ଶ(ଶ)(𝜔)ൗ  are intimately related to the ra-
tio of the penetration depths 𝛿ଵ(𝜔)/𝛿ଶ(𝜔)  in both half-spaces of the waveguide 
(Equations (33) and (36) and Figures 14 and 15); 

8. The ratio of the net active power flows 𝑃ଵ(ଵ)(𝜔) 𝑃ଵ(ଶ)(𝜔)ൗ  and the corresponding ratio 
of the average reactive power flows 𝑃ଶ(ଵ)(𝜔) 𝑃ଶ(ଶ)(𝜔)ൗ  are not independent since they 
are related via Equation (37); 

9. The penetration depth (see Figures 12 and 13) in both elastic half-spaces of the wave-
guide is deeply subwavelength. Therefore, the new SH elastic surface waves can find 
applications in sensors of extremely high mass sensitivity, superlensing, and in near 
field acoustic microscopy with a subwavelength resolution and imaging. These are 
very exciting applications of the newly discovered SH ultrasonic waves; 

10. Several new formulas (Equations (30), (33), (36), and (37)) developed in this paper may 
also be useful in the design of long range SPP waveguides with low propagation 
losses; 

11. The densities 𝜌ଵ, 𝜌ଶ, in both half-spaces of the waveguide, have a profound impact on 
all parameters of the proposed new elastic surface waves (Figures 9–15). Therefore, 
by virtue of Table 1 in Section 4, we can also effectively shape the characteristics of 
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SPP electromagnetic waves by analogous adjustment of the corresponding magnetic 
permeabilities 𝜇ଵ and 𝜇ଶ; 

12. Newly discovered SPP phenomena, such as cloaking, trapping (zero group velocity), 
and topological protection can be transferred into the domain of elastic metamaterials 
using to this end the new SH elastic surface waves, proposed in this paper. This may 
open new fascinating possibilities to control wave phenomena in the domain of elas-
todynamics. 
It should be emphasized that due to their close similarity with the electromagnetic 

SPP waves the proposed new SH elastic surface waves are characterized by a large con-
finement of acoustic energy near the surface. For this reason, the proposed new SH elastic 
surface waves can constitute a basis of a new generation of ultrasonic sensors with a giant 
mass sensitivity. For example, the new SH elastic surface waves can find applications in: 
- ultrasonic sensors with extremely high mass sensitivity; 
- biosensors and chemosensors; 
- sub-wavelength ultrasonic microscopy and imaging. 

Because of its interdisciplinary character, the present paper can be of interest for a 
broad spectrum of researchers and engineers working in different domains of science and 
technology, such as acoustics, optics, elastic metamaterials, ultrasonic sensors, biosensors, 
and chemosensors. 
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