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Spectral analysis for elastica dynamics in a shear flow
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We present the spectral analysis of three-dimensional dynamics of an elastic filament in a
shear flow of a viscous fluid at a low Reynolds number in the absence of Brownian motion.
The elastica model is used. The fiber initially is almost straight at an arbitrary orientation,
with small perpendicular perturbations in the shear plane and out-of-plane. To analyze the
stability of both perturbations, equations for the eigenvalues and eigenfunctions are derived
and solved by the Chebyshev spectral collocation method. It is shown that their crucial
features are the same as in the case of the two-dimensional elastica dynamics in shear flow
[Becker and Shelley, Phys. Rev. Lett. 87, 198301 (2001)] and the three-dimensional elas-
tica dynamics in the compressional flow [Chakrabarti et al., Nat. Phys. 16, 689 (2020)]. We
find a similar dependence of the buckled shapes on the ratio of bending to hydrodynamic
forces as in the simulations for elastic fibers of a nonzero thickness [Słowicka et al., New
J. Phys. 24, 013013 (2022)].

DOI: 10.1103/PhysRevFluids.9.014101

I. INTRODUCTION

Dynamics of flexible micro and nanoobjects in fluid flows have been recently widely investi-
gated theoretically, numerically, and experimentally [1–26]. The interest is motivated by potential
applications to microorganisms (e.g., diatoms [27], bacteria [15], cells [19], or actin [18,25]), and
to artificially produced micro and nanofibers [17,20].

For elastic filaments, typical time-dependent shape deformations and orientations have been
analyzed for different values of the bending stiffness and aspect ratio. Various theoretical approaches
have been used [2], including the bead models [21,28,29]. Buckling of elastic filaments has been
studied in various fluid flows: extensional [15,22,26], cellular [12,14,23,24], stagnation point [16],
corner [30], shear [4,5,10], and unidirectional [31].

Many articles have focused on flexible filaments in shear flows [18,19,25,27,29,32–38]. The
buckling instability of slender fibers located in the shear plane has been derived from the two-
dimensional spectral analysis of the elastica [10]. The eigenvalues have been evaluated for a wide
range of values of the elastoviscous number [10].

The goal of this work is to analyze the stability of elastica (i.e., infinitely thin elastic fiber
described by a local slender body theory) in a shear flow by solving a three-dimensional spec-
tral problem: not only for in-plane but also for out-of-plane perturbations. Using the Chebyshev
collocation method [39], we evaluate the eigenvalues and eigenfunctions and discuss the results.
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FIG. 1. A schematic of a slender particle in a shear flow.

II. SYSTEM AND THEORETICAL MODEL

A slender elastic filament is immersed in a shear flow Ũ = (γ̇ y, 0, 0) of a fluid with the dynamic
viscosity μ. The ratio of the radius R of the particle cross-section to its length L is much smaller
than unity, i.e., R/L � 1. The filament is assumed to be inextensible, and its length L is used
as the unit of length. The dimensionless position of the filament centerline is denoted as x(s, t ),
where s ∈ [−1/2, 1/2] is the arclength coordinate of a filament segment and t is time. Owing to the
filament inexensibility, xs · xs = 1. Here we ignore gravitational effects, Brownian forces, and fluid
inertia; only elastic and viscous forces are considered to result in the filament dynamics following
from the incompressible Stokes equations.

For the elastic forces, we apply the inextensible Euler-Bernoulli beam model [40]. For the
dynamics, we use the local simple beam model of the slender-body theory [1,41–43]. In this simple
local model, the long-range hydrodynamic interactions of fiber segments and the effects of the fiber
thickness are not taken into account, and the dynamics of fibers aligned with the flow cannot be
determined. Nevertheless, the advantage of this model is its simplicity, which allows us to analyze
theoretically the fiber stability.

With the length unit L, the time unit γ̇ −1 and U = Ũ/(γ̇ L), the dimensionless elastica three-
dimensional (3D) governing equation is [1,10,16,44,45],

η(2I − xsxs) · [xt − U (x)] = [T (s, t )xs]s − xssss, (1)

where T (s, t ) represents the tension in the filament at point s and time t , I in a unit 3 × 3 matrix,
and η denotes the elastoviscous number,

η = 2πμγ̇ L4

EJ ln(L/R)
, (2)

defined as the ratio of the viscous drag to the elastic restoring forces [16], with Young’s modulus E
of the filament, and its area moment of inertia J = πR4/4.

In this work, we assume that the particle is slightly deformed from a straight shape at a certain
orientation, described by the azimuthal and polar angles, φ(t ) and θ (t ), as shown in Fig. 1. The
azimuthal angle deals with the projection onto the shear plane (x, y), i.e., the plane spanned by the
directions of the flow and the flow gradient. Owing to symmetries, we can restrict to 0 � φ � π

and 0 � θ � π/2 without loss of generality.
The position vector x(s, t ) can be described by

x = sλ + uλi + vλo, (3)
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where u(s, t ) and v(s, t ) are, respectively, the in-plane and out-of-plane deflections relative to a
straight rod with the orientation (shown as a dashed line in Fig. 1) determined by the unit vector

λ = (cos φ sin θ, sin φ sin θ, cos θ ). (4)

In Eq. (3), the in-plane (x, y) and out-of-plane unit vectors perpendicular to λ are λi =
(− sin φ, cos φ, 0) and λo= (− cos φ cos θ,− sin φ cos θ, sin θ ), respectively.

The motivation of the assumption (3) is the following. If an elastic fiber is straight in elastic
equilibrium, it seems realistic to expect that in some experiments the fibers would be initially straight
(assuming that the shear flow is switched on at a certain time). For example, such a situation took
place in the experiments in Refs. [29,37]. Therefore, it makes sense to consider small perturbations
(caused by the shear flow) from a straight elastic fiber.

III. ELASTICA EQUATIONS FOR SMALL 3D PERTURBATIONS
FROM AN ARBITRARY ORIENTATION

We assume that both perturbations, u and v, are small and of the same order. Then, we insert the
expression (3) into Eq. (1) and perform a formal expansion of Eq. (1) in powers of u and v, up to
the first order. We obtain a set of linearized equations. In this section, we present the zero-order and
first-order equations.

Expanding the governing elastica equation (1), for u = v = 0 one obtains the following zero-
order equations:

φ̇ = − sin2 φ, (5)

θ̇ = 1
4 sin(2φ) sin(2θ ), (6)

T = −η

4
sin2 θ sin(2φ)

(
s2 − 1

4

)
, (7)

with the assumed boundary condition T = 0 at the ends of the filament, i.e., for s = ±1/2. By
solving Eq. (5), one obtains

cot φ(t ) = t + B, (8)

and by combining Eq. (6) with Eq. (5), one gets θ (t ) = 0 or π , and otherwise

tan θ (t ) = C

sin φ(t )
, (9)

where B and C are constants dependent on the initial conditions. The zero-order motion of elastica
corresponds to the Jeffery orbit [46] in the limit of an infinitely thin rigid rod (the aspect ratio
� → ∞). In this limit, the time to approach (or leave) φ = 0 or π is infinite, and therefore an elastica
does not tumble, and as such, it can approximate dynamics of a fiber with a nonzero thickness only
for the angle φ not very close to zero or π [29,35]1. However, Jeffery trajectories θ (φ) of the elastica
zero-order motion and of a rigid rod with a sufficiently large aspect ratio, e.g., � � 100, are very
close to each other, as illustrated in Fig. 2.

Further, the first-order equations are derived from Eq. (1). The in-plane perturbation u satisfies
the following equation:

ussss + 2ηut + η sin(2φ)u + η sin(2φ) sin2 θsus + η

4
sin(2φ) sin2 θ

(
s2 − 1

4

)
uss = 0. (10)

1To include the effects of the fiber thickness, the expansion can be performed to higher orders in the
slenderness parameter 2R/L [47,48].
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FIG. 2. Jeffery orbits θ (φ) in a shear flow for spheroids with the aspect ratios � = 10 (dashed line) and
� = 30 (dash-dotted line) [46] and for the zero-order elastica, Eq. (9) (solid line). The corresponding values of
C as indicated.

The equation for the out-of-plane perturbation v has the form

vssss + 2ηvt − η sin(2φ) cos2 θv + 2η cos(2φ) cos(θ )u

+η sin(2φ) sin2 θsvs + η

4
sin(2φ) sin2 θ

(
s2 − 1

4

)
vss = 0. (11)

In the considered system, there are no external torques exerted on the filament ends

uss = vss = 0 at s = ± 1
2 , (12)

and external forces on the filament ends vanish

usss = vsss = 0 at s = ± 1
2 . (13)

We remind that the slender body theory used in the above equations neglects the end contribution
at the leading order in slenderness considered. This property and a possible generalization are
discussed, e.g., in Sec. 4.2 of Ref. [36].

In principle, evolution equations for the perturbations u and v could be solved numerically, with
the initial condition u = v = 0. However, in this work we do not do it. Instead, we consider the
spectral problem that gives information about the stability of the perturbations, as described in the
next sections.

IV. EIGENPROBLEM AND STABILITY OF SMALL 3D PERTURBATIONS
FROM AN ARBITRARY ORIENTATION

To estimate the stability of the in-plane (u) and out-of-plane (v) perturbations, we consider
the following eigenproblem, which is a 3D generalization of the in-plane study [10], and in the
next section will be solved by the Chebyshev spectral collocation method [39,49], also applied in
Refs. [10,26]. We follow the standard assumption that

{u, v} = {�u(s) exp(σ t ),�v (s) exp(σ t )}, (14)

where �u and �v are shapes of the in- and out-of-plane perturbations and σ is the complex
growth rate. It is important to stress that, for the stability analysis, we consider �u(s) and �v (s)
as functions of s only, independent of time t . Therefore, for the stability analysis, we consider
arbitrary orientation angles θ and φ in Eq. (3), regardless the zeroth-order equations from the
previous section.
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The expression (14) is inserted into Eqs. (10) and (11), which results in the following spectral
problem:

2η

(
σ + sin(2φ)

2

)
�u = L[�u], (15)

2η(σ − sin(2φ)

2
cos2 θ )�v = L[�v] − 2η cos(2φ) cos θ�u, (16)

where L denotes the differential operator

L=− ∂4

∂s4
− η

4

(
s2 − 1

4

)
sin(2φ) sin2θ

∂2

∂s2
− ηs sin(2φ) sin2θ

∂

∂s
, (17)

and the boundary conditions follow from Eqs (12) and (13).

V. SPECTRUM AND EIGENFUNCTIONS FOR SMALL PERTURBATIONS
FROM THE SHEAR PLANE

In this section, we consider the eigenproblem for the in-plane and out-of-plane perturbations
when

θ = π/2. (18)

In this case, the last term in Eq. (16) vanishes, which means that there is no coupling between �u

and �v . Therefore, we now assume

{u, v} = {�u(s) exp(σut ),�v (s) exp(σvt )}, (19)

with, in general, different exponents σu and σv for the in-plane and out-of-plane perturbations,
respectively.

The spectral problem for the in-plane perturbations at θ = π/2 was solved by Becker and
Shelley [10] who were interested in this special case because, for an almost straight elastic filament
performing a Jeffery orbit in the plane of shear, i.e., at θ = π/2, the hydrodynamic forces exerted
on it by the fluid are the largest.

Here we extend the results from Ref. [10] by taking into account not only in-plane, but also
out-of-plane perturbations �u and �v , respectively. In the case of θ = π/2, with the ansatz (19),
the first-order Eqs (15) to (17) for the exponentially growing perturbations (14) are replaced by

2η

(
σu + sin(2φ)

2

)
�u = L̃[�u], (20)

2ησv�v = L̃[�v], (21)

with

L̃ = − ∂4

∂s4
− η sin(2φ)

4

(
s2 − 1

4

)
∂2

∂s2
− η sin(2φ)s

∂

∂s
. (22)

Equations (20) and (21) for the in-plane and out-of-plane perturbations are decoupled from
each other. The eigenfunction �u belonging to an eigenvalue σu is identical to the eigenfunction
�v belonging to the shifted eigenvalue σu + sin(2φ)/2. Therefore, we focus on the solutions to
Eqs. (20) and (22). The generalization for the out-of-plane perturbations is straightforward.

We solve the eigenvalue problem for �u, defined by Eqs. (20) and (22), by the Chebyshev
spectral collocation method [39,49]. The calculated eigenspectrum for the in-plane perturbation
�u is demonstrated in the left panel of Fig. 3. The largest eigenvalue (blue line) agrees well with
the result presented in Fig. 2 of Ref. [10]. In this work, we perform a more detailed new analysis:
we evaluate not only the single largest eigenvalue, but the eight largest consecutive eigenvalues σu

and plot them in Fig. 3.
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FIG. 3. The real part of the eigenspectrum ησ as a function of −η sin(2φ). Top: Up to eight largest
eigenvalues ησ ≡ ησu (black and blue). The largest eigenvalue, shown in blue, extends the range of the
calculations shown in Fig. 2 in Ref. [10]. Bottom: The largest eigenvalues, ησu and ησv , for the in-plane
(blue) and out-of-plane (red) perturbations �u and �v , respectively.

The modes 1 to 5 are the most unstable eigenfunctions �u for the range of the smallest positive
eigenvalues σu. These most unstable eigenvalues in this range (but not their eigenfunctions) are
shown in Fig. 2 of Ref. [10] and also in our Fig. 3. The modes 1 to 5 appear for 153.2 �
−η sin(2φ) � 104. Their shapes are presented in the top panel of Fig. 4, using colors. The eigenfunc-
tions �u are normalized in such a way that maxs[�u(s)] = 1. In the bottom panel of Fig. 4, shapes
of the most unstable eigenfunctions �u are shown for the whole range 0 � −η sin(2φ) � 6 × 104.

The eigenfunctions �u corresponding to the most unstable eigenvalues are even for modes 1, 3,
and 4, and odd for modes 2 and 5. In general, for certain values of −η sin(2φ) they are odd, as the
examples shown in the top panel of Fig. 5; for other values they are even, as the examples visible in
the bottom panel of Fig. 5. At larger values of −η sin(2φ), there appear buckling modes with larger
wavenumbers. This finding seems to agree with more buckled shapes observed in the numerical
simulations with the decreased bending stiffness, as shown in Fig. 12 of Ref. [29].

For stability analysis, the most important is the largest eigenvalue. In the bottom panel of Fig. 3,
the largest eigenvalues for the in-plane and out-of-plane perturbations are compared with each
other. The eigenspectrum for Eq. (21), i.e., for perturbations �v perpendicular to the shear plane,
corresponds to ησv = ησu + η sin(2φ)/2. Therefore, the growth rate of the most unstable out-of-
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FIG. 4. The most unstable eigenfunctions �u(s) are even (E ) or odd (O), depending on −η sin(2φ).
Colors indicate values of −1 � �u(s) � 1. Top: The most unstable modes 1 to 5 in the lowest range of
−η sin(2φ), discussed in Ref. [10]. Bottom: The overview of the most unstable eigenfunctions in a wide range
of −η sin(2φ).

plane perturbations is smaller than the growth rate of the most unstable in-plane perturbations, as
illustrated in the bottom panel of Fig. 3. The zeros of the eigenvalues σu and σv correspond to
−ηsin(2φ) = μ1 and μ2, respectively, with μ1 = 153.2 and μ2 = 221.2, as shown in the bottom
panel of Fig. 3. This means that the filament with an initial angle φ slightly smaller than π , while
moving in the shear flow and decreasing the value of φ, will first experience in-plane instability, and
later out-of-plane instability.

It is very interesting to point out that Eqs. (20) to (22) are essentially the same as Eqs. (3)
and (4) in Ref. [26] for elastica in the compressional ambient flow u = (−x, y, 0), with the following
modifications: instead of μ̄, σ , �y and �z from Ref. [26], here we have −η sin(2φ), −2σ/ sin(2φ),
�u, and �v , respectively. Therefore, if we rescale our eigenvalues σu by − sin(2φ)/2, a scaled
eigenspectrum is obtained, shown in Fig. 6, which is the same as that illustrated by Chakrabarti
et al. [26] in their Fig. 3(a) for their unstable planar eigenspectrum in the compressional flow. The
eigenspectra in shear and compressional flows are the same.

When −η sin(2φ) increases from 153.2 (a critical value at which the buckling instability occurs)
to 104, there appear even, odd, even, even, and odd modes, respectively. When −η sin(2φ) increases
above 104, the most unstable mode still keeps alternating odd and even symmetries. This coupling
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FIG. 5. Examples of the most unstable eigenfunctions �u(s). Top-down: −η sin(2φ)=3000 (odd mode 2),
10 000 (odd mode 5), 30 000 and 60 000 (higher odd modes), 300 (even mode 1), 6000 (even mode 4), 15 000
and 50 000 (higher even modes).

of the even and odd most unstable modes was described and shown in Fig. 3 in Ref. [26] in the
context of the compressional flow.

The spectral analysis, based on Eq. (19) provides the growth rate of small perturbations from a
straight shape with an arbitrary in-plane orientation λ. Figure 7 illustrates how the most unstable
eigenfunctions and eigenvalues depend on the in-plane orientation, given by the angle φ, for a fixed
value of η = 104. In particular, as expected, the fastest growth of small perturbations is observed
for φ=135◦. The unstable perturbations correspond only to angles φ larger than 90.44◦. Figure 7
shows that for the same value of η, shapes and parity of the most unstable eigenfunctions are in
general different for different orientations. Within the spectral analysis, based on Eq. (19), the
perturbation amplitude is independent of time. Keeping this in mind, nevertheless, in Fig. 7 we
add time corresponding to the evolution of the orientation λ according to the zeroth order Eqs. (8)
and (9). In this way, we show how a straight fiber would deform if placed at φ(t ).
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FIG. 6. Scaled eigenspectrum σ = σu for perturbations �u within the shear plane of the shear flow.

VI. CONCLUSION

In this work, we derived Eqs. (10) and (11) for the evolution of three-dimensional perturbations
of a straight elastica at an arbitrary orientation. We performed spectral analysis of elastica in
a shear flow, investigating perturbations out of the shear plane. We analyzed the most unstable
eigenfunctions and eigenvalues.

We demonstrated that the eigenproblem for elastica in the shear flow is described by the same
equations as in the compressional flow [26]. Therefore, the important conclusion from this work is
that the basic features of flexible fiber dynamics in the compressional flow, found in Ref. [26], apply

FIG. 7. The real part of the most unstable eigenvalue σu for the in-plane perturbations (19) of an almost
straight elastica with η = 10 000 and different orientations λ(φ) at θ = π/2. The corresponding most unstable
eigenfunctions are also shown for different values of φ. The angle φ is next linked with time t according to the
zero-order Eqs. (8) with φ = 179.5◦ at t = 0. The shapes shown correspond to deformations of a straight fiber
at φ(t ).

014101-9



LIU, SZNAJDER, AND EKIEL-JEŻEWSKA

also in the shear flow. In particular, even though in the shear flow, the out-of-plane spectrum is just a
shifted in-plane spectrum, but the coupling of both in-plane and out-of-plane eigenfunctions results
in helical, 3D shapes of elastic filaments, as in the compressional flow [26]. An example of such a
helical buckled elastic filament in shear flow can be found in Fig. 9 of Ref. [29].

Based on the spectral analysis presented here, in Ref. [50] scaling law for the eigenfunction shape
has been derived and compared with the numerical simulations of flexible filaments made of beads.
In the future, it would be interesting to extend the spectral analysis presented here and in Ref. [50]
for an elastic sheet in a shear flow. Such a system was recently studied, e.g., in Refs. [51–55], with
potential applications for graphene flakes.

The eigenvalues and eigenfunctions for eight most unstable modes are openly available in
RepOD - Repository for Open Data at [56].
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