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SUMMARY
Single-cell gene expression is inherently variable, but how this variability is controlled in response to stimu-
lation remains unclear. Here, we use single-cell RNA-seq and single-molecule mRNA counting (smFISH) to
study inducible gene expression in the immune toll-like receptor system. We show that mRNA counts of tu-
mor necrosis factor a conform to a standard stochastic switch model, while transcription of interleukin-1b
involves an additional regulatory step resulting in increased heterogeneity. Despite different modes of regu-
lation, systematic analysis of single-cell data for a range of genes demonstrates that the variability in tran-
script count is linearly constrained by the mean response over a range of conditions. Mathematical modeling
of smFISH counts and experimental perturbation of chromatin state demonstrates that linear constraints
emerge through modulation of transcriptional bursting along with gene-specific relationships. Overall, our
analyses demonstrate that the variability of the inducible single-cell mRNA response is constrained by tran-
scriptional bursting.
INTRODUCTION

Transcription of almost all mammalian genes is regulated by

transitions in their association with active RNA polymerase

complexes. This often results in brief periods of transcriptional

activity and stochastic bursts of mRNA output characterized by

their size and frequency (Raj et al., 2006; Raj and van Oude-

naarden, 2008; Suter et al., 2011). Specific gene responses

may exhibit different levels of heterogeneity, arising from varia-

tions in genome architecture (Dar et al., 2012; Dey et al., 2015;

Nicolas et al., 2018; Zoller et al., 2015) in concert with regulatory

signaling events (Larson et al., 2013; Megaridis et al., 2018;

Wong et al., 2018), through "intrinsic noise" in the stochastic

process as well as extrinsic differences between cells (Elowitz

et al., 2002; Hilfinger and Paulsson, 2011; Sherman et al.,

2015). A recent study (Larsson et al., 2019) demonstrated that

while core promoter elements control burst sizes, regulation

of bursting frequency via enhancer elements defines cell-

type-specific expression variability. Similarly, histone acetyla-

tion can control burst frequency, but not burst size, to regulate
300 Cell Systems 11, 300–314, September 23, 2020 ª 2020 The Auth
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the circadian gene output (Nicolas et al., 2018). It is generally

assumed that single-cell, and thus, population-level responses

to stimulation must be tightly controlled (Paszek et al., 2010;

Stelling et al., 2004), although how this is achieved in the pres-

ence of the inherent noise is not fully understood. Analyses of

gene expression from reporter cells suggest a paradigm where

the noise of gene expression is inversely proportional to the

mean expression level (Dar et al., 2012, 2016). However, these

analyses rarely involve systematic perturbation of the same

gene output and have not been performed on a genome-wide

scale. Consequently, there is currently no clear understanding

of how the variability of specific mRNAs change as a function

of themagnitude of the response to acute stimulation or general

perturbation.

In order to investigate the control of cellular variability, we used

the well characterized toll-like receptor signaling (TLR) system

(Medzhitov, 2007). TLR represents an acute innate defense

mechanism against evolutionary-conserved pathogen-associ-

ated molecular patterns and involves a coordinated production

of hundreds of genes, including pro-inflammatory cytokines
or(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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and chemokines (Bryant et al., 2015). The TLR effector response

requires a fine balance between rapid yet robust immune activa-

tion while preventing out-of-control inflammation driving disease

states (Bradley, 2008; Dinarello, 2011). Population-level studies

suggest a highly constrained model, where the target gene

response is subjected to a tight epigenetic and transcriptional

regulation (Adamik et al., 2013; Escoubet-Lozach et al., 2011;

Hao and Baltimore, 2009; Martin et al., 2020; Meissner et al.,

2013; Oda and Kitano, 2006; Ramirez-Carrozzi et al., 2009;

Tong et al., 2016). In contrast, at the single-cell level, TLR-

dependent gene-expression responses exhibit high variability

(Avraham et al., 2015; Lu et al., 2015; Shalek et al., 2013, 2014;

Xue et al., 2015). This variability is thought to reflect complex

transcriptional regulation, involving dynamic transcription factor

(TF) signaling (Bagnall et al., 2018; Selimkhanov et al., 2014;

Sung et al., 2014) as well as diverse genomic architecture (Hagai

et al., 2018) and quorum licensing (Muldoon et al., 2020). For

example, interferon (IFN) and tumor necrosis factor alpha

(TNF-a)-mediated paracrine signals, which alter the repertoire

of TF activation have been shown to regulate the heterogeneity

of TLR responses (Shalek et al., 2014). However, the mecha-

nisms by which the TLR system controls transcriptional bursting

in order to regulate the heterogeneity of the target gene expres-

sion is not fully understood.

In this study, in order to uncover mechanisms that control

gene-expression variability in the TLR system, we used single-

molecule mRNA and single-cell RNA-seq (scRNA-seq) data ob-

tained via systematic perturbation of individual gene outputs

across immune-relevant conditions (Figure 1A). We specifically

measured and mathematically modeled mRNA count distribu-

tions of TLR-dependent interleukin-1b (IL-1b) and TNF-a. We

demonstrated that in response to 14 different TLR conditions

the variability of the individual mRNA response can be empiri-

cally described by a linear function of the mean. These linear re-

lationships are also present in 204 TLR-regulated genes in the

scRNA-seq dataset from bone marrow dendritic cells (BMDCs)

(Shalek et al., 2014). In the context of the stochastic telegraph

model, we determined the ways in which the linear relationships

constrain the underlying bursting characteristics. Theoretical

predictions were subsequently validated by the analysis of

TNF-a and IL-1b smFISH counts, including additional experi-

mental perturbation of the chromatin state.

RESULTS

Expression of IL-1b and TNF-a mRNAs Exhibit Different
Levels of Cellular Heterogeneity
To obtain insights into the control of cellular variability in the TLR

system, we first characterized gene-expression patterns in

innate immunemacrophages by single-cell transcriptomics (Fig-

ure 1A). We generated single-cell RNA-seq libraries using the C1

Auto Prep System (FluidigmC1) using an established RAW264.7

macrophage cell line (Bagnall et al., 2018; Cheng et al., 2015;

Sung et al., 2014) stimulated with lipid A for 3 h (the main cyto-

toxic component of TLR4 agonist lipopolysaccharides [LPS];

Raetz et al., 2007). After mapping and normalization (Figure S1),

high-confidence genes (171 genes with higher expression and,

hence, lower technical variance; Figure S1F), which were found

to be regulated by lipid A in a previous population-level study
(Bagnall et al., 2015), were clustered using an unsupervised affin-

ity propagation method (Frey and Dueck, 2007). The analysis

yielded 7 distinct major gene clusters and 3 uniform cell clusters

(Figures 1B, S2A, and S2B; Table S1). For example, cluster XVII

comprised 18 most abundant genes, including the effector cyto-

kine TNF-a in addition to chemokines Ccl9 and Cxcl2. Notably,

we found a set of 10 genes that failed to cluster (referred herein

as the ‘‘unclustered gene set’’; Figure 1C). These included the

pro-inflammatory inflammasome-associated cytokines IL-1a

and IL-1b (Martinon et al., 2002) in addition to IL-1rn (inter-

leukin-1 receptor antagonist), which are co-located in mouse

and human genomes (Smith et al., 2004; Taylor et al., 2002).

Other unclustered genes encoded chemokines: Cxcl10, Ccl2,

and Ccl5 and a pro-survival colony-stimulating factor Csf3, a

ligand Jag1 (Jagged1) (Hu et al., 2008), protein kinase (Plk2), a

regulator of TNF-a secretion (Schwarz et al., 2014), and a

membrane DC-stamp protein involved in cell fusion (Yagi

et al., 2005).

Unclustered genes exhibited more variability than genes

belonging to major clusters, while housekeeping genes were

the most homogeneous (Figure S2C). Higher variation was not

solely associated with technical noise as some major cluster

genes have a higher number of mapped reads than the house-

keeping genes (for example, clusters XVII and VII; Figure S2D).

Similarly, unclustered genes do not have appreciably lower

numbers of mapped reads than other genes and, indeed, have

more in many cases. Expression heterogeneity may be related

to physical gene properties (Hagai et al., 2018; Larsson et al.,

2019), for instance, levels of transcriptional bursting have been

linked to the presence of TATA boxes within gene promoters

(Zoller et al., 2015). Indeed, we observe that unclustered genes

exhibit significant enrichment of TATA sites in the promoter re-

gions as well as a strong association between the transcript syn-

thesis rate and variation (Figure S3).

We used quantitative smFISH to validate and accurately

quantify expression patterns of TNF-a, IL-1a, and IL-1b

mRNA in single cells (Figures 1D, 1E, and S4A–S4D). The

average expression of IL-1b (± standard deviation, SD) was

215 ± 230 mRNA molecules for count data combined across

all replicates. 50% of RAW 264.7 cells expressed more than

100 IL-1b mRNA molecules (with some expressing up to

1,000 molecules), while 20% of cells expressed <10 mRNA

molecules (see Figure 1D for the cumulative probability function

and Figure S4B for a histogram of smFISH counts). TNF-a, a

cytokine that plays fundamental but distinct roles during infec-

tion (Adamik et al., 2013; Falvo et al., 2010), exhibited a similar

level of expression on an average (255 ±144 mRNA molecules),

but 90% of cells expressed more than 100 mRNA molecules

(evident of reduced variability). We confirmed that the hetero-

geneous IL-1b expression patterns were seen in primary

bone-marrow-derived macrophages (BMDM) (Figures 1E,

S4C, and S4D), with correlated protein expression (Figures

S4E–S4H) as well as in LPS-stimulated dendritic cells (Shalek

et al., 2014) (Figure S5). There was also a good agreement be-

tween smFISH counts and our scRNA-seq study displaying

similar levels of noise (Figure 1F). Overall, these analyses

demonstrate conserved variability in the TLR system across

cell types and suggest that IL-1b and TNF-a expression may

have different modes of regulation.
Cell Systems 11, 300–314, September 23, 2020 301
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Figure 1. TLR4-Induced Effector Response Exhibit Differential Heterogeneity

(A) Schematic representation of the data analysis pipeline: gene-by-gene single-cell expression data are systematically analyzed across a range of immune-

relevant conditions to understand the modulation of transcriptional bursting characteristics and control of cellular heterogeneity.

(B) scRNA-seq analysis of inducible TLR gene expression in RAW 264.7 cells stimulated with 500 ng/mL of lipid A for 3 h. Heatmap displaying normalized

transcript levels of high confidence genes upregulated in response to lipid A stimulation. Major gene clusters are shown in roman numerals, cell clusters depicted

with Arabic numerals. Arrowheads highlight specific unclustered genes as well as TNF-a.

(C) Heatmap of unclustered gene set from (B). Also shown is the heatmap of TNF-a expression.

(D) smFISH analysis of the cumulative probability distribution of IL-1a, IL-1b, and TNF-amRNA expression in RAW264.7 cells stimulated with 500 ng/mL of lipid A

for 3 h. Count data expressed as log10(mRNA+1) from 447, 718, and 356 cells, pooled across at least three experimental replicates, respectively.

(E) Cumulative probability distribution ofmRNA counts in BMDMs (stimulated as in D). Shown is the analysis of 447, 732, and 322 cells for IL-1a, IL-1b, and TNF-a,

pooled across at least three experimental replicates, respectively.

(F) Variability of IL-1a, IL-1b, and TNF-a expression in scRNA-seq and smFISH data. Shown is the coefficient of variation (CV) calculated for respective genes

across datasets, with SDs between biological replicates (when available).
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Mathematical Modeling of mRNA Count Data
Distinguishes Regulatory Modes
The heterogeneity of gene expression has typically been charac-

terized in terms of transcriptional bursting, i.e., the process of

intermittent gene activation (So et al., 2011). The characteristics

of the transcriptional burst process, such as burst size and burst

frequency, are defined as the average number of mRNA pro-

duced per gene activation event and the frequency of gene acti-

vation events, respectively (Nicolas et al., 2017). We first used

the sample variance s2 and the mean m of the mRNA distribution
302 Cell Systems 11, 300–314, September 23, 2020
to compute an approximate burst size bm=s
2/m (i.e., the Fano

factor) and burst frequency fm=m/(bm�1) (Nicolas et al., 2017;

Raj et al., 2006; Suter et al., 2011) in order to understand the dif-

ference in TNF-a and IL-1b regulation. In general, these quanti-

ties (referred to here as ‘‘moment estimators’’) are often used

to describe ‘‘burstiness’’ by quantitatively capturing departures

from ‘‘non-bursty’’ (Poissonian) mRNA production (for which

bm = 1 and fm = N) (Nicolas et al., 2017; So et al., 2011; Wong

et al., 2018) (see Figure S6 for general applicability of the

moment estimators). Analysis of the noise level (CV = s/m), burst
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Figure 2. Mathematical Modeling Reveals Differential Control of TNF-a and IL-1b Transcription

(A) Differential expression of IL-1b and TNF-amRNA. Shown is the cumulative distribution function of mRNA counts in RAW 264.7 macrophages stimulated with

500 ng/mL of lipid A for 3 h. A total of 718 cells were measured for IL1b, and 356 for TNF-a, and pooled across at least three smFISH experiments, respectively,

and expressed as log10(mRNA+1).

(B) Characteristics of single-cell mRNA expression. Shown is the CV, burst size (bm), and frequency (fm) calculated based on moments of the mRNA count data

from (A) (expressed as mean ± SD from experimental replicates). ‘‘*’’ denotes a result of a two-sample Mann-Whitney U test between groups (p < 0.01).

(C) Distribution of transcription sites is gene dependent. (Left) de-convolved wide-field microscopy image of cells with TNF-a and IL-1b smFISH, revealing Tx

through an aggregation ofmultiplemRNAmolecules in the nucleus (insert). Scale bar represents 5 mm. (Middle) the fraction of cells with 0–4 Tx calculated from (A).

‘‘*’’ denotes a result of the Fisher exact test (p < 0.05) for difference in the Tx site distributions. (Right) the number of nascent mRNA per Tx. Shown are individual Tx

site data, together with the mean and SD of the pooled distribution. ‘‘*’’ denotes a result of a two-sample Mann-Whitney U test between groups (p < 0.01).

(legend continued on next page)
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size (bm), and burst frequency (fm) based on the moments of the

smFISH count distribution (Figure 2A) showed that IL-1b exhibits

more burstiness, i.e., larger relative burst sizes and lower fre-

quency compared with that of the more homogeneous TNF-a

(Figure 2B). On-going IL-1b transcription, visualized via bright

nuclear spots of fluorescence in the smFISH images (Femino

et al., 1998; Skinner et al., 2016; Zenklusen et al., 2008), was

evident in only 20% of cells (Figure 2C). In contrast, up to 75%

of cells possessed at least one TNF-a transcription site (Tx).

There was even an indication of TNF-a transcription immediately

prior to cell division by the presence of >2 Tx sites in a subset of

cells. We also observed more nascent mRNA associated with Tx

sites for IL-1b than TNF-a. This is consistent with more infre-

quent but larger mRNA bursts in comparison to TNF-a. These

characteristics were conserved across different doses of lipid

A stimulation (including in BMDMs; Figures S7 and S8) as well

as time (Figure S9), confirming that IL-1b and TNF-a exhibited

distinct modes of transcriptional bursting.

The classical mathematical description of mRNA production

involves a one-step stochastic telegraph model, where gene ac-

tivity switches randomly between ‘‘off’’ and ‘‘on’’ states, with

only the latter being permissive for mRNA transcription (Raj

et al., 2006; Skinner et al., 2016; Suter et al., 2011; Zenklusen

et al., 2008). The associated kinetic parameters include gene

activation switching ‘‘on’’ and ‘‘off’’ rates (kon and koff, respec-

tively) as well as rates of mRNA transcription and degradation

(kt and kd, respectively); Figure 2D. In this case, bursting param-

eters are directly related to the kinetic parameters of transcrip-

tion (Nicolas et al., 2018). The steady-state burst size is defined

as bk = kt/koff, while bursting frequency is given by fk = 2konkoff/

(kon+koff)/kd (these are referred herein as ‘‘kinetic estimators’’;

Figure S6). In order to apply these stochastic models, we first

investigated the sources of the variability in smFISH count

data, which could either involve intrinsic stochastic fluctuations

(i.e., on-off switching) or extrinsic cell-to-cell differences (Elowitz

et al., 2002; Hilfinger and Paulsson, 2011; Sherman et al., 2015).

We previously found a correlation between the cell size and

mRNA level consistent with an extrinsic noise component (Bag-

nall et al., 2018), but this relationship did not affect mRNA distri-

butions (when compared with cell size-normalized distributions)

and only explained up to 7% of the data (as assessed by a cor-

relation coefficient of a linear fit; Figure S10). Furthermore,

smFISH counts exhibited a key intrinsic noise property, where

noise decreased monotonically (Taniguchi et al., 2010) with

mean expression, rather than approaching a plateau (Fig-

ure S11A). A formal noise decomposition of the TNF-a and IL-

1b dose-response count data (Rhee et al., 2014) showed a domi-

nant contribution from the intrinsic noise with an extrinsic noise

component (Figure S11B). The latter is consistent with the

extrinsic variability due to shared TLR signaling machinery, for

example, signaling dynamics (Muldoon et al., 2020; Wong

et al., 2018, 2019).
(D) TNF-a transcription conforms to a one-step stochasticmodel. The comparison

lipid A treatment. In black: a Kaplan-Meier estimator of the measured cumulative d

of 50 models fitted to the data. Fitted parameter values (means ± SD) listed on t

(E) IL-1b transcription conforms to a two-step stochastic model. The comparison

lipid A treatment for the depicted model. In black: Kaplan-Meier estimator of meas

to the data. Fitted parameter values (means ± SD) listed on the right.
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Given the dominant role of intrinsic noise, we, therefore, used

a genetic algorithm to fit a family of one-step models (resulting in

50 kinetic parameter sets) to smFISH count distributions using

biological constraints on parameter values (see STAR Methods).

We found that the one-step model was able to recapitulate the

measured TNF-a mRNA distribution in RAW 264.7 cells with an

average gene switching ‘‘on’’ rate of kon = 0.02 min�1 (i.e., equiv-

alent to 50 min ‘‘off’’ time, 1/kon) and a switching ‘‘off’’ rate of

koff = 0.12 min�1 (i.e., equivalent to 8.3 min ‘‘on’’ time, 1/koff; Fig-

ure 2D). The average transcription rate of 16.8 ± 2 mRNA/min

was consistent with the range previously reported for other high-

ly inducible mammalian gene products (Molina et al., 2013;

Schwanh€ausser et al., 2011; Skinner et al., 2016; Suter et al.,

2011) and was inversely correlated with the degradation rate

(Figure S11C). We then used the one-step model to fit the distri-

bution of IL-1b mRNA counts (Figure S11D), assuming a longer

half-life in comparison to TNF-a (Hao and Baltimore, 2009). We

found that the model failed to recapitulate the smFISH distribu-

tion, especially for mRNA counts below 100 molecules. We,

therefore, considered more complex model structures that

incorporate an additional constitutive initiation event, or addi-

tional regulatory step (equivalent to promoter cycling; Harper

et al., 2011; Zoller et al., 2015), consistent with either chromatin

remodeling or combinatorial TF binding driving a single tran-

scription rate (Figure S11D models 2 and 3). These models

were also unable to fit the observed data. Analysis of combined

architectures suggested a model (Figures 2E and S11E) in which

sequential activation and two transcription rates were required

to recapitulate the entire range of mRNA counts. The first step

was characterized by a small gene switching ‘‘on’’ rate ton =

0.008 min�1 (equivalent of 125 min ‘‘off’’ time) and a low tran-

scription output (k0 = 3 ±1.5 mRNA/min); in contrast, the second

step was rapid kon = 0.09 min�1 (11 min ‘‘off’’ time) resulting in a

high transcriptional output (kt = 11.7 ± 4.1 mRNA/min) (see Fig-

ure S11F for the comparison between individual on-off and tran-

scription rates in the fitted family of models). During transcrip-

tional activation, the first slow step is permissive for a second

activation event resulting in a larger burst size and lower bursting

frequency in the model, as compared with those for TNF-a (see

Figure S11G for the estimates of the burst size and frequency

from the models and Figure S11H for sensitivity analyses of

model structures).

Transcriptional Heterogeneity Is Constrained by Gene-
Specific Linear Trends
While our analyses demonstrate different levels of single-cell

gene-expression heterogeneity in the TLR system, a funda-

mental question remains whether, and how, this heterogeneity

is altered in response to stimulation or perturbation (Dar et al.,

2012, 2016). In order to address this question, we systematically

analyzed all smFISH datasets (Figure 3A) comprising the dose-

and time-dependent responses in RAW 264.7 cells and BMDMs
betweenmeasured and fitted TNF-amRNA distributions at 3 h after 500 ng/mL

istribution functions (CDF) (with 95% confidence intervals); and in red: a family

he right.

between measured and fitted IL-1bmRNA distributions at 3 h after 500 ng/mL

ured CDF (with 95% confidence intervals); and in red: family of 50models fitted
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Figure 3. Single-Cell Expression is Constrained by Gene-Specific Linear Trends

(A) Analysis of single-cell variability in TNF-a and IL-1bmRNA expression across 14 smFISH measurements; dose response in RAW 264.7 and BMDM cells; time

course in RAW 264.7 as well as DMOG and IFNg co-stimulation in RAW 264.7 cells.

(B) Mean-variance relationship obtained for smFISH data for IL-1b and TNF-a. Shown is the fitted regression line (with 95% confidence intervals in broken lines),

together with individual data points. Coefficient of determination depicted with R2 and color coded. Fitted equations displayed on the graph.

(C) Visualization of samples across data in (B). Individual data points colored and labeled: green- RAW 264.7 dose-response data; light green, RAW 264.7 time

course data; open circles, RAW 264.7, DMOG, and IFNg co-stimulation data; and brown, BMDM dose-response.

(D) Inference of mean-variance relationships from the scRNA-seq data from (Shalek et al., 2014). BMDCs either untreated or stimulated with TLR2, 3, and 4

ligands for 1, 2, 4, or 6 h. For each TLR-dependent gene in the dataset, mean and variance of read count expression across all conditions are fitted using robust

linear regression.

(E) Analysis of mean-variance relationships in selected TLR-induced genes. Shown are the fitted linear regression lines (with 95% confidence intervals) for

highlighted genes from (Shalek et al., 2014). Different TLR treatments color coded as in (D) (open circles, untreated controls). Coefficient of determination de-

picted with R2.

(F) Linear mean-variance regression trends for 204 high-confidence genes inferred from (Shalek et al., 2014). Highlighted genes depicted in black, trends for IL-1b

and TNF-a in blue and red, respectively.

(G) Distribution of fitted regression slopes from (F) (in log10). Slopes for IL-1b and TN-Fa regression fits highlighted in blue and red lines, respectively.
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to lipid A stimulation (Figures S7–S9) as well as additional immu-

nologically relevant conditions (Figure S12). We used a 24-h

interferon g (IFNg) pretreatment before lipid A stimulation, to

mimic Signal Transducer and Activator of Transcription 1

(STAT1)-dependent inflammatory signaling (Bryant et al.,

2015), which reduced IL-1b and increased TNF-amRNAproduc-

tion (in comparison to stimulation with lipid A alone; Figures

S12A and S12B). In turn, pretreatment with prolyl hydroxylase in-
hibitor dimethyloxalylglycine (DMOG), a pharmacological mimic

of Hypoxia Inducible Factor 1a (HIF1a)-dependent hypoxia (Bag-

nall et al., 2014), resulted in an elevated expression of both IL-1b

and TNF-a mRNA. When all smFISH datasets were examined

collectively, we found that the gene-expression variability (repre-

sented as the variance of smFISH counts) across experimental

conditions was constrained by the corresponding mean of the

mRNA counts (Figure 3B). The larger heterogeneity in IL-1b
Cell Systems 11, 300–314, September 23, 2020 305
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expression was reflected in a significant increase in the gradient

of themean-variance relationship (defined as a slope of the fitted

regression line) than that of TNF-a (p value 0.00019). While some

individual conditions showed departures from the fitted linear re-

lationships (arguably more for TNF-a than IL-1b; Figure 3C), both

fits were characterized by a high coefficient of determination (R2

= 0.97 and 0.83, for IL-1b and TNF-a, respectively). The fitted re-

lationships appear to have positive intercepts, which is perhaps

indicative of the limited sample size and might reflect measure-

ment noise, therefore, we treat those as empirical relationships.

In order to establish this relationship in diverse cell types and in

more genes, we took advantage of published single-cell tran-

scriptomics data from BMDCs (Shalek et al., 2014); Figure 3D.

These data included 15 scRNA-seq (each with up to 96 individual

cells) time course measurements (at 0, 1, 2, 4, and 6 h) of acute

responses to PAM (synthetic mimic of bacterial lipopeptides up-

stream of TLR2), PIC (viral-like double-stranded RNA for TLR3),

and LPS ( a component of Gram-negative bacteria upstream of

TLR4), referred herein as the core TLR dataset. TLR pathways

share common regulatory mechanisms, yet, induce distinct

gene-expression patterns (Medzhitov, 2007). For example, the

expression of TNF-a is maintained in response to PAMbut is tran-

sient in response to PIC over the 6-h period (Figures S13A and

S13B). However, in agreement with our smFISH data, we found

that the mean and variance of TNF-a read counts exhibit a close

linear relationship (Figure S13C; coefficient of determination R2 =

0.91). Subsequently, we considered 290 genes that were robustly

induced by LPS stimulation in the dataset, revealing 204 genes

that are described by linear trends with high confidence (as

defined byR2 >0.75; see Figure 3E for examples of specific genes

and Figure 3F for the fitted relationships; Table S3 for all gene-by-

gene fits). The previously observed trends in IL-1b and TNF-a

expression were also present in the BMDC dataset (Figure 3F).

These analyses demonstrate that (1) the variability of mRNA

expression can be empirically described by a linear function of

the mean response; (2) the gene-specific variability can be

defined by the slope of the regression line, constituting a spec-

trum at the genome level (Figure 3G). High variability genes

include chemokines and cytokines, such as CCL17, CCL3, as

well as IL-1a and b, while others, such as TNF-a (and NFKBIA,

an inhibitor of NF-kB signaling) exhibit more homogeneous re-

sponses; (3) response patterns were shared among different

TLR ligands and no difference between treatment-specific

trends were found; (4) linear relationships were generally main-

tained under signaling perturbation involving Golgi inhibition

and in Interferon-alpha receptr chain alpha (INFAR1), Tumour

necrosis factor receptor 1 (TNFR), and STAT1 knockout cells

(Shalek et al., 2014) (see Table S4 for gene-by-gene fits). Howev-

er, the regression fit was altered in a subset of genes (as as-

sessed by the analysis of regression slopes in the core TLR

and perturbation datasets; Figures S13D–S13F), which suggests

that these relationships can be regulated.

Linear Constraints Define Properties of Transcriptional
Bursting
Previous studies suggest a paradigm where transcriptional

bursting constrains stochastic gene-expression programs (Dar

et al., 2016; Sanchez and Golding, 2013). The existence of an

empirical linear relationship between the mean and variance of
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the single-cell mRNA response (Figure 3) provides insight into

the regulation of transcriptional bursting. We used the steady-

state approximation for the mRNA moments in the one-step

model (Peccoud and Ycart, 1995; Paszek, 2007; Shahrezaei

and Swain, 2008) and derived theoretical relationships between

model parameters for which the s2 =am relationship holds (Fig-

ures 4A, S14, and S15; STARMethods for derivation and discus-

sion). First, we considered the case of the ‘‘bursty’’ gene-expres-

sion regime, i.e., koff >> kon, when transcription occurs in short

and infrequent bursts. Under these conditions, we theoretically

predicted that bursting characteristics are predetermined by

the empirical mean-variance relationship: (1) burst size is neces-

sarily constant (and equal to the slope of the mean-variance line)

over the range of the mean mRNA response (i.e., burst size bk =

a-1); (2) changes of gene expression are controlled solely by fre-

quency modulation [i.e., fk = m/(a-1)]; and (3) there is a reciprocal

relationship between the burst size and frequency, as the burst

frequency is proportional to the inverse of the burst size (1/a).

Therefore, the larger the burst size, the lower the frequency of

gene expression (and vice versa) to maintain a constant mean-

variance relationship. In a general case, our derivations show

that both burst size and frequency may undergo modulation as

the mean mRNA expression varies. The relative contribution of

the burst size and frequency modulation is related to the koff
value (or koff/kon ratio; Figure S15). For a range of biologically

plausible parameter values (koff < 0.2 min�1 and kon <

0.1min�1, while kt < 30min�1), the higher the koff (or koff/kon ratio),

the smaller are the changes of the burst size in comparison to the

changes of frequency (see Figure 4A for a set of putative genes

with different levels of variability defined via slope a). For

example, for koff > 0.1 (and thus, relatively close to a bursty

regime in the considered parameter ranges), we find 2-fold

more changes of the burst frequency than that of the burst size

(and 5-fold more for highly variable genes, i.e., a < 100). In

turn, koff < 0.02 resulted in a dominant burst size modulation

(especially for low variability genes).

In order to validate our theoretical predictions, we inferred

bursting characteristics in our smFISH data across different im-

mune-relevant conditions. First, using data fromRAW264.7 cells

(to avoid cell-type differences), we fitted one-step models to

measured TNF-a distributions. Consistent with the intrinsic noise

model (Elowitz et al., 2002; Hilfinger and Paulsson, 2011; Sher-

man et al., 2015), TNF-a counts across all conditions fitted nega-

tive binomial distributions (Figure S16). Initially, we assumed a

common half-life across all conditions (using kd = 0.014

mRNA/min estimated for the high-dose 500 ng/mL lipid A treat-

ment; Figure 2), while fitting three remaining parameters (kon, koff,

and kt; Figure S17). Later, all four kinetic parameters were refitted

for a subset of conditions corresponding to lower lipid A doses

(and thus, shorter mRNA half-life; Hao and Baltimore, 2009).

Models summarized in terms of the mean-variance relationship

(using fitted parameters to calculate moments; Figure 4B)

captured most of the variability present in smFISH count data

(with an exception of DMOG, which was subsequently not

considered; Figure S17). Subsequently, we calculated the burst

size and frequency changes along the fitted linear relationship

(Figure 4C). Bursting characteristics were either obtained

directly from fitted parameter values (using kinetic estimators)

or predicted from the fitted regression line based on the fitted
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Figure 4. Linear Constraints Define Properties of Transcriptional Bursting

(A) Reciprocal relationship between burst size and frequency. (Left) a set of considered hypothetical genes characterized by different mean-variance slope a

(such that s2 = am). (Middle) frequency modulation and constant burst size in the bursty regime. (Right) concurrent burst size and frequency modulation as a

function of koff. Calculations performed using Equation 6 for the biologically plausible set of gene activity switching rates, koff < 0.2 min�1 and kon < 0.1 min�1; kd =

0.014 min�1; kt < 30 min�1; and m < 500. Shown are relative frequency and burst size changes (Dbk) over the corresponding range of the mean mRNA, calculated

for each a for koff = 0.01, 0.02, 0.03, 0.05, 0.075, 0.1, 0.2 min�1, respectively. In a broken line moment estimator (i.e., bursty regime), shaded are regions cor-

responding to 1-fold, 2-fold, and 5-fold burst sizes versus frequency modulation.

(B) Variability of the TNF-a expression across data in RAW 264.7 macrophages (dose response, time course, as well as IFNg, IFNg+lipid A, and DMOG+lipid A

perturbation). Displayed is the relationship between sample mean and variance of individual smFISH count data (full red circles) and steady-state mean and

variance (open red circles) based on fitted parameter values (Figure S17). Model outputs calculated for a family of 50models fitted to each data point. Regression

lines fitted to smFISH counts (depicted in black) and steady-state mean and variance calculated for fitted model parameters (depicted in red).

(C) Burst size and frequency modulation of the TNF-a expression. Shown in red are regions calculated for the fitted s2 = 113 m-4249 relationship for biologically

plausible set of gene activity switching rates: koff < 0.2 min�1, and kon < 0.1 min�1; and kd = 0.014 min�1, and kt < 30min-1. Highlighted broken lines correspond to

burst size and frequency changes corresponding to koff = 0.01, 0.09, 0.12, 0.2 min�1. Predicted burst sizes and burst frequencies depicted in black circles (using

Equation 7 and fitted kon/koff and kd rates, from Figure S17), in open circles steady-state estimates using fitted parameter values. The broken red line shows a

(legend continued on next page)
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koff and kon rates (see STAR Methods for derivation and discus-

sion of a general case of mean-variance relationships with a non-

zero intercept). Both approaches demonstrate a concurrent

modulation of TNF-a expression via the burst size and frequency

as a function of mean mRNA expression. The burst size

increased monotonically from ~25 to ~150 molecules across

all conditions, while the burst frequency changed between 1

and 3 (with a minimum predicted for the case of a linear fit with

a non-zero intercept; Figure S15E). When considering only the

subset of conditions for the high-dose lipid A responses (mean

mRNA> 100 and kd = 0.014mRNA/min), the changes of the burst

size were limited to <2-fold. In this case, the frequency modula-

tion becomes dominant in agreement with the theoretical predic-

tion (bursty regime shown by the broken red line; Figure 4C).

Analysis of fitted parameters demonstrates that the modulation

of bursting characteristics across the mean expression was

due to an increase in the ‘‘on’’ rate, and a concurrent decrease

in the ‘‘off’’ rate (Figure S17C).

Our analyses predict a link between the level of expression vari-

ability andburstingcharacteristics, i.e., increasedvariability results

in increased burst size and lower burst frequency (Figure 4A).

Therefore, to compare gene-specific characteristics we fitted IL-

1b smFISH count data in RAW 264.7 cells using the previously

developed two-stepmodel (FigureS18).Given themultistep struc-

tureof the IL-1bmodel,we reverted tomomentestimators (Nicolas

et al., 2017; So et al., 2011). In agreement with our modeling pre-

dictions, the higher variability of IL-1b expression is associated

with quantitatively larger burst size and lower frequency (obtained

via moment estimators) than that of TNF-a (see Figure 4D for rela-

tionshipsusingfittedmodelsandsmFISHcountdata inRAW264.7

cells- Figures S19A andS19B for analysis of all smFISHcounts). In

a general case, both burst size and frequency may undergo mod-

ulation, which is evident from the analysis of the TNF-a regulation

(Figure 4C). Our analyses predict that the contribution of the burst

size modulation decreases as the system converges to the bursty

regime. IL1b transcription exhibits more ‘‘bursty’’ expression in

comparison to TNFa (Figure 2, with toff/ton ~18 for IL1b in the

permissive step and koff/kon~6 for TNFa). We find evidence for

more a dominant frequency modulation of IL1b expression when

compared with transcriptional bursting characteristics inferred

for TNFa (at least for highmRNA expression; Figure 4D). In agree-

ment, the burst size of IL-1bmRNAproduction remained constant

for a wide range of expression (except for small means; see STAR

Methods for discussion of mean-variance with a non-zero inter-

cept). Consistently, the fitted parameter values exhibit changes

in the gene activity switching ‘‘on’’ rates (corresponding to both

regulatory steps) over the whole range of IL-1b mRNA responses

(Figure S18D).
predicted behavior in the bursty regime based on the fitted regression line. Horizo

conditions (3-variable model fits; Figure S17).

(D) Burstiness of the IL-1b and TNF-a mRNA expression. Shown are moments e

model distributions (open circles, in blue and red for IL-1b and TNF-a, respectivel

TSA, IFNg, and DMOG perturbation; Figures S17 and S18). In broken red and blu

lines for fitted models for TNF-a (from B) and IL-1b (from Figure S18C), respectiv

(E) Schematic representation of the combined (core TLR and paracrine signaling

(F) Burstiness of TLR-induced genes. Shown are relationships for the variance, re

count inferred from the combined core TLR and perturbation dataset from (Shalek

frequency, and relative burst size (defined based on the coefficient of determina

regression (with semi-log transformation for relative burst size). Individual high a
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Finally, we used the scRNA-seq dataset in BMDCs (Shalek

et al., 2014) to gain insights into the modulation of bursting char-

acteristics in 323 robustly expressed TLR-dependent genes

(Figures 4E, 4F, and S19B–S19F). We did not make any assump-

tions about the transcriptional regime (since fitting models to

scRNA-seq dataset was not possible due to the lack of absolute

quantification in the sequencing protocol; Shalek et al., 2014),

but instead, we used regression analyses to infer changes of

relative burst size and frequency (described by moment estima-

tors) across gene-specific linear relationships (see Figure S19C

for inference of bursting characteristics for TNF-a; Tables S3,

S4, and S5 for gene-by-gene visualization, including a compari-

son between core TLR and perturbation datasets). Despite the

inherent variability of the scRNA-seq data (which was validated

by remapping a subset of data; Figure S20), we found quantita-

tive changes of burstiness across >130 individual genes consis-

tent with relative burst size and frequencymodulation (Figure 4F).

By comparison of independently fitted relationships, we also

found that the evidence for the predicted reciprocal bursting

characteristics, including a negative correlation between the

burst size and frequency as well as the correlations with the

slope of the fitted mean-variance relationships are present in

the dataset (Figure S19F).

Chromatin Regulates IL-1bExpression viaModulation of
Bursting Characteristics
Given the role of modulation of transcriptional bursting in the

control of the inducible single-cell gene-expression variability,

we sought to investigate the underlying mechanism. Previous

work indicated the involvement of TF signaling, including that

of the nuclear factor kB (NF-kB) in the TLR system in the context

of chromatin regulation (Larson et al., 2013; Nicolas et al., 2018;

Wong et al., 2018). We, therefore, turned our attention to IL-1b

transcription, the two-step structure of which suggests an influ-

ence of the chromatin state. We observed a highly correlated

biphasic mRNA response between IL-1b and IL-1a, whose

genes are located in a single gene cluster in the mouse and hu-

man genome (Smith et al., 2004; Taylor et al., 2002), but not TNF-

a (Figure S21A). We also observed a significant correlation be-

tween the presence of IL-1b and IL1a (but not TNF-a) active tran-

scription sites (Figure S21B). We found that the transcription of

IL-1b and IL-1a not only coincided temporally but also spatially,

as a significant number of Tx sites co-localized, Figure S21C).

Presumably, these genes sharing a local chromatin structure

show a high propensity to be transcribed within a common tran-

scription factory (Jackson, 2003).

The observed temporal and spatial coordination of IL-1b and

IL-1a expression is suggestive of epigenetic mechanisms. A
ntal dotted line marks a subset of data corresponding to the high-dose lipid A

stimates of burst size and frequency for smFISH counts (full circles) and fitted

y) for data in RAW 264.7 macrophages (dose response, time course, as well as

e lines is the predicted behavior in the bursty regime, based on the regression

ely.

perturbation) scRNA-seq datasets from (Shalek et al., 2014).

lative burst size (bm), and relative frequency (fm) as function on the mean read

et al., 2014). Displayed are 204, 180, and 132 relationships for variance, relative

tion R2 > 0.75, R2 > 0.7 and R 2> 0.5, respectively) inferred using robust linear

nd low heterogeneity gene fits color coded and labeled.
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Figure 5. Modulation of Transcriptional Bursting via Chromatin State
(A) Schematic representation of the treatment protocol: cells exposed to 10 mM TSA for 1 h before 500 ng/mL lipid A treatment.

(B) TSA alters IL-1b mRNA distribution. Cumulative probability distribution of smFISH mRNA counts in BMDMs pre-treated with TSA prior to lipid A stimulation

(+TSA; as in A), or control cells stimulated with lipid A. Shown is the IL-1b levels expressed as log10(mRNA+1) pooled across at least three replicates, from 732

(lipid A) and 305 (lipid A +TSA) cells, respectively.

(C) Characteristics of single-cell mRNA expression. Shown is the CV, bm, and fm calculated based on moments of the mRNA count data from (A) (expressed as

mean ± SD from experimental replicates). ‘‘*’’ denotes a result of a two-sample Mann-Whitney U test between groups (p < 0.05; ns, not significant).

(D) Distribution of Tx in data from (B). Shown is the fraction of cells with 0–2 Tx. ‘‘*’’ denotes a result of the Fisher exact test (p < 0.05) for the difference in the Tx site

distribution.

(E) Nascent IL-1bmRNA counts (with means and SDs) from 35 (lipid A) and 114 (lipid A +TSA) Tx from (D), respectively. ‘‘*’’ denotes a result of two-sample Mann-

Whitney U test between groups (p < 0.05).

(F) Comparison between the measured and fitted IL-1b mRNA counts across conditions from (B). In black: Kaplan-Meier estimator of the measured CDF (with

95% confidence intervals); and in red: a family of models (50) fitted to the data. (Top) schematics of the fitted transcriptional model.

(G) TSA modulates kinetic parameter rates in the fitted IL-1bmodels. Shown are selected parameter values (with mean and SD) for families of fitted models from

(F). ‘‘*’’ denotes a result of a two-sample Mann-Whitney U test between groups (p < 0.0001, ns).

(H) TSA alters bursting characteristics of IL-1b expression. Shown are the moment estimates (mean and SD) of the burst size and frequency for fitted mRNA

distributions from F. ‘‘*’’ denotes a result of a two-sample Mann-Whitney U test between groups (p < 0.0001).
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transcriptional activator trichostatin A (TSA) was applied to

selectively inhibit the class I and II histone deacetylase (HDAC)

enzymes responsible for genome-wide chromatin accessibility

(Figure 5A) (Vanhaecke et al., 2004). BMDMs pre-treated with

TSA for 1 h prior to 3 h lipid A stimulation exhibited elevated

IL-1b expression, notably, the expression of TNF-a was

completely abolished (Figure 5B). The resulting IL-1bmRNA dis-
tribution was shifted toward higher mRNA counts (in comparison

to the lipid A control) (Figure S22 for the lipid A dose response).

TSA pretreatment significantly reduced the noise of IL-1b

expression and altered burstiness by significantly increasing

the moment estimate of bursting frequency, there was also an

indication of changes in the burst size (Figure 5C). The number

of active Tx sites was increased, consistent with more frequent
Cell Systems 11, 300–314, September 23, 2020 309
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activation of transcription following TSA treatment (Figure 5D). In

comparison with the lipid A treatment, each IL-1b Tx site was

also associated with more nascent mRNA (Figure 5E) indicative

of a larger burst size. The differences in bursting characteristics

were maintained across different lipid A doses (when co-treated

with TSA), while the corresponding mean-variance relationships

could not be statistically distinguished (Figure S22G). To quanti-

tatively understand these mRNA expression patterns, mathe-

matical modeling was applied (Figure S23). Consistent with the

previous analyses, a two-step model was required to fit IL-1b

mRNA distributions in both the control (untreated with TSA)

and TSA pre-treated cells (Figure 5F). In comparison to the lipid

A control, the TSA pretreatment was associatedwith quantitative

changes in kinetic parameter rates consistent with chromatin

regulation (Figures 5G and S23B). In the first permissive step,

the gene switching ‘‘on’’ rate was increased (from 0.007 to

0.012 min�1, equivalent of a change in ‘‘off’’ time, from 142 to

83 min, for lipid A control versus lipid A +TSA, respectively)

consistent with more frequent activation. Similarly, in the second

step, TSA treatment also resulted in the increased ‘‘on’’ rate

(from 0.05 to 0.1 min�1, the equivalent of a change in ‘‘off’’

time from 20 to 10 min). No further changes were observed in

other model parameters, although the transcription rate corre-

sponding to the permissive step was reduced following TSA

treatment (Figure S23B). Overall, these changes resulted in a sig-

nificant quantitative increase in the moment estimates of the

burst size and burst frequency following TSA treatment (Fig-

ure 5H). Overall, these suggest that regulation of the chromatin

state may allow concurrent regulation of the burst size and fre-

quency and thus modulation of the IL-1b gene-expression

output .

DISCUSSION

While single-cell responses exhibit substantial cell-to-cell vari-

ability, a fundamental question remains how this variability is

constrained. Here, we considered an endogenous TLR system

with known differential responses to a range of immune-relevant

conditions (Adamik et al., 2013; Escoubet-Lozach et al., 2011;

Hao and Baltimore, 2009; Meissner et al., 2013; Ramirez-Car-

rozzi et al., 2009; Tong et al., 2016). Using our quantitative

smFISH data as well as published scRNA-seq data (Shalek

et al., 2014), we showed that variability in the expression of

TLR-induced genes is constrained by gene-specific trends

over a large range of mRNA expression (Figure 3). This demon-

strates that the stimulation (or perturbation) merely modulates

the variability of mRNA expression as a linear function of its

mean. We further predicted that this theoretically imposes the

constraints on the underlying transcriptional bursting character-

istics in response to stimulation (Figure 4). We also demon-

strated that in the case of bursty mRNA production, the expres-

sion variability (in terms of the mean-variance relationship) is

essentially defined by the burst size, while responses to environ-

mental changes are controlled via frequency modulation. In gen-

eral, we predicted that both burst size and frequency may un-

dergo modulation, with the contribution of the former

increasing as the system departures from the bursty mRNA pro-

duction regime. We validated these predictions using our TNF-a

and IL-1b smFISHmeasurements as well as provided supporting
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evidence in a large set of TLR-regulated genes in primary im-

mune cells (Figure 4). Finally, we demonstrated that modulation

of chromatin state may account at least, in part, for the predicted

modulation of transcriptional bursting of IL-1b expression

(Figure 5).

We hypothesized that the observation that empirical mean-

variance relationships are gene-specific, linear, and maintained

over different conditions represent a fundamental property of a

gene regulatory system. Our results imply an inverse relationship

between the mean expression level and noise (Dar et al., 2016),

while providing insight into the regulation of gene expression in

response to stimulation. In agreement with previous work, we

found that higher expression is accompanied by increased

burstiness (Sanchez and Golding, 2013), while different levels

of noise are associated with distinct subsets of parameter values

(Figure S14). While not all the possible combinations of rates are

ever explored in a biological system (Hausser et al., 2019), the

fitted parameter changes (along with mean-variance trends)

are dominated by modulation of gene activity switching rates,

while modulation of transcription rates are associated with low

transcriptional output (Figures S16 and S17). Our results perhaps

reflect a related set of immune conditions used in the study (i.e.,

related ligands, dose-responses, co-stimulation, or generic

chromatin perturbation), essentially affecting a large, well-con-

nected signaling network (Oda and Kitano, 2006). As such, we

found that these signals and conditions only modulate kinetic

parameters of TNF-a and IL-1b transcription, rather than induce

substantial changes in the mode of regulation. Recent analyses

suggest that burst sizes are encoded within core promoters

(Larsson et al., 2019). In fact, promoters of highly variable cyto-

kine and chemokine genes are enriched for TATA boxes (Fig-

ure S3) and are depleted of CpG islands, in comparison to low

heterogeneity TLR-dependent genes (Hagai et al., 2018). In

turn, the frequency may be modulated via histone acetylation

(Nicolas et al., 2018) or TF signaling events (Hagai et al., 2018;

Wong et al., 2018). In the TLR system, the latter is likely related

to the levels of upstream TFs or their activation patterns. For

example, although heterogeneous, the NF-kB system activation

exhibits dose-dependent and temporal regulation (Adamson

et al., 2016; Bagnall et al., 2018; Muldoon et al., 2020; Selimkha-

nov et al., 2014; Sung et al., 2014; Wong et al., 2019), which

might enable the fine-tuning of the underlying transcription and

gene activation rates. It would be intriguing to understand

whether gene-specific trends are sensitive to therapeutic com-

pounds, or, in fact, pathogen stimulation. It would also be rele-

vant to understand the modulation of parameter changes more

broadly, i.e., in transcriptomics data, which in this work we

only analyzed in terms of relative burstiness (Figure 4F). In partic-

ular, the linear mean-variance relationships theoretically imply a

generic reciprocal relationship between the burst size and fre-

quency (Figure 4), which would require further validation using

more gene targets. While computationally feasible (Larsson

et al., 2019), the present scRNA-seq dataset (Shalek et al.,

2014) does not provide quantification of mRNA numbers, which

is required to fit models accurately.

As a key part of this study, we quantitatively characterized the

regulation of the TNF-a and IL-1 cytokines, which encode

distinct roles during inflammatory responses and pathogen

recognition (Lu et al., 2015). The expression of the short-lived
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TNF-amRNA transcript conforms to a simple one-step stochas-

tic model of transcription (Raj et al., 2006; Skinner et al., 2016;

Suter et al., 2011; Zenklusen et al., 2008), consistent with

frequent transcription initiation but limited transcriptional output

per burst (Figures 1 and 2). The transcription of IL-1b is charac-

terized by lower bursting frequency and larger burst sizes

compared with that of TNF-a. This behavior does not conform

to a one-step model, and through mathematical modeling we

showed that an intermediate regulatory step is required to

explain the observed mRNA distributions. While previously

considered complex models involved a promoter cycling step

(Harper et al., 2011; Zoller et al., 2015), in our model, the interme-

diate step is associated with a low transcriptional output. This

model structure is supported by the experimental evidence for

a permissive step due to chromatin regulation. First, we

observed biphasic patterns of IL1a and IL1b mRNA synthesis

(Figure S21, which is also evident in previously published data;

Shalek et al., 2014; Figure S5). Second, we found a marked tem-

poral and spatial correlation between on-going IL-1b and IL1a

transcription (as indicated by the co-localization of active tran-

scription sites observed with smFISH; Figure S21), which likely

underlies an association in the local chromatin structure (Iborra

et al., 1998). Third, the chromatin modulator TSA altered the

IL-1bmRNAdistribution, resulting inmore frequentmRNAbursts

consistent with the two-step model (Figure 5). While elevating IL-

1b expression, TSA treatment completely ablated the expression

of TNF-a mRNA. This suggests that chromatin regulation may

enable cytokine-specific control of the effector responses. In

general, the co-association of multiple genes within common

centers of mRNA synthesis provides an additional layer of regu-

lation for gene expression, in which the combination of genes

within an active factory might contribute synergistically to the

timing, duration, and extent of synthesis from the spatially co-

associated genes (Fanucchi et al., 2013; Li et al., 2012; Schoen-

felder et al., 2010). The specific mechanisms involved in the

regulation of the permissive chromatin states and robust IL-1b

expression are not fully understood, but both cell-specific (e.g.,

heterogeneous signaling events) or cell-extrinsic (e.g., paracrine

signaling) processes affecting TF-activation patterns (Lu et al.,

2015; Shalek et al., 2013, 2014; Xue et al., 2015) might contribute

to this. Howmany genes share complex modes of regulation, or,

in general, whether functionally related genes exhibit co-vari-

ability in their responses is unclear. IL1a and IL1b represent

one example of co-variability. It is currently unknown whether

the heterogeneity of the IL1b gene and protein expression

described here is fundamentally linked to the apparently cell-

specific inflammasome activation as a mechanism to control

cytokine levels in circulation and to minimize inflammasome-

mediated cell death (Daniels et al., 2016). Further studies will

also be required to quantitatively link the underlying TF dy-

namics, epigenetic control, and the target gene transcription,

as well as protein expression and secretion (Junkin et al.,

2016; Lee et al., 2014; Singer et al., 2014).

In summary, the study demonstrates that despite seemingly

noisy responses, the heterogeneity of the single-cell and popu-

lation-level TLR effector responses is defined by fundamental

functional constraints. We propose that the constrained vari-

ability of the TLR-dependent gene response might be a key

element of the antibacterial and inflammatory response and
may constitute a common feature of inducible gene-expression

systems in general.
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Material Availability
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Data and Code Availability
The sequencing data generated during this study are available at ArrayExpress under accession no E-MTAB-9219 (https://www.ebi.

ac.uk/arrayexpress/experiments/E-MTAB-9219/). MATLAB and Python codes generated during this study are available via Github

[https://github.com/ppaszek/transcriptionalBursting]. The raw smFISH data including all the image files are too large to upload to

existing public repositories, but these are available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture
RAW 264.7 male murine macrophages (obtained from ATCC) were cultured in Dulbecco’s modified eagle medium supplemented

with 10% foetal bovine serum (Gibco) and 1% non-essential amino acids as described previously (Bagnall et al., 2015). Cells

were not authenticated. Primary BMDMs were differentiated from bone marrow taken from the hind legs of adult 8-12 weeks

male or female C57BL/6 mice (not involved in other procedures). Isolated cells were disrupted and homogenized by repeating pipet-

ting until no lumps were visible. The cell suspension was then centrifuged at 200 g for 5 min and the resulting pellet re-suspended in

DMEM (supplemented with 100 units/ml penicillin, 100 ug/ml streptomycin (all from Sigma-Aldrich, UK), 10% FCS (Gibco, UK), and

30% L929 cell-conditioned media) and then plated. After 72 h the media were replaced with fresh supplemented media. Cells were

harvested (by washing with cold PBS) on day 6-8 and used for experiments within 24 h.

Reagents
Cells were stimulated with various doses of lipid A Salmonella Minnesota Re595 (VWR), 100ng/ml recombinant mouse interferon-g

(Life Technologies), 0.5mM dimethyloxalylglycine (Sigma-Aldrich) or 10mM Trichostatin A (Sigma-Aldrich). Slide mounting and nuclei

staining was performed using Vectashield mounting medium with DAPI (Vector Laboratories).

METHOD DETAILS

Single-Cell RNA-seq
Single-cell sample collection and preparation was performed using the C1 Fluidigm platform, using the manufacturer’s instruction. A

suspension of appropriately stimulated 1x106 RAW 264.7 cells per ml was prepared in serum-free media and appropriately mixed

with C1 suspension reagent. The resulting cell mixture was then loaded into C1 Single Cell AutoPrep IFCmicrofluidic chip (calibrated

for medium 10-17mm cell sizes). The microfluidic chip was then placed into the C1 Fluidigm system for processing, using the ‘mRNA

Seq: Cell Load’ script. Verification of single-cell capture was performed by wide-field microscopy. Single-cell library construction

was performed using the SMARTer Ultra Low RNA reagent kit (Takara�) for cDNA amplification, followed by the Nextera� XT

DNA Index kit for fragmentation and barcoding of samples (Illumina�). DNA sequencing was performed by paired-end sequencing

(100 + 100 cycles, plus indices) on an Illumina HiSeq2500 instrument.

Single-Molecule RNA-FISH
Custom Stellaris� FISH probes were designed against murine IL1a (NM_010554), IL1b (NM_008361) and TNFa- (NM_013693) cDNA

sequences by utilising the Stellaris� FISH Probe Designer (Biosearch Technologies, Inc., Petaluma, CA). IL1a probes were

conjugated with the Quasar-570 dye. TNFa and IL1b probes were conjugated with either the Quasar-570 dye or Quasar-670 dye

for multiplexing with IL1a probes (see Table S2 for tabulated smFISH counts and probe lists). Cells were plated into 12-well plates
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containing sterilised glass cover slips. After adherence, appropriately stimulated cells were fixed and labelled using Stellaris� pro-

tocol, following manufacturer’s instructions (including co-immunofluorescence for protein levels). Samples were imaged using a

DeltaVision (Applied Precision) wide-field microscope with a 60x/N.A.1.42 oil immersion Plan Apo N objective and Sedat Quad filter

set was used. The images were collected using a Coolsnap HQ (Photometrics) camera with a z optical spacing of 0.2 mm.

Immunofluorescence
Cells were plated onto sterile glass coverslips submerged in media, and after adherence stimulated as required. Cells were fixed by

immersion in 4% paraformaldehyde for 15 mins and then washed with PBS. Samples were incubated in the presence of 1:100 anti-

IL1b primary antibody (abcam; ab9722) for 1 h at room temperature, washed and further incubated for 30 mins in the presence of

1:500 secondary antibody (abcam; ab150077) before a final PBS wash. The glass coverslip was then mounted on to a glass slide

ready for imaging. Confocal microscopy was used to visualise anti-IL1b staining. FITC conjugates were excited using a 488 nm laser

line and emitted signal detected after passing through a 505-550 nm bandpass filter, using LSM510 photomultiplier detectors. For

quantitative comparison of fluorescence, all images were taken together using the same detector settings. Fluorescence levels were

quantified using Cell Tracker Version 0.6 (Shen et al., 2006).

Experimental Design
smFISH data are representative of at least 2 biological replicates, scRNA-seq analysis of lipid A stimulated RAW 264.7 cells were

performed using 1 replicate. Data were not randomized, stratified, or blinded for any of the analyses performed in this paper.

Stochastic Modelling of Transcription
CME Description

Temporal mRNA distributions for considered models of transcription are obtained using the Chemical Master Equation (CME)

following approach by (Gómez-Schiavon et al., 2017). In brief, an infinite set of ordinary differential equations (ODEs) describes

the flow of the probability in the biochemical system being in a particular state x and time t, P(x,t) over all possible biochemical re-

actions k into and out of x:

dPðx; tÞ
dt

=
X
k

½akðx� vkÞPðx� vk ; tÞ� akðxÞPðx; tÞ�

akvt denotes the probability that a biochemical reaction kwill occur in the infinitesimal time interval vt, given that the system is in the

state x, vk is a stochiometric vector of reaction k that describes how the system changes when reaction k occurs. In general, CME is

written in the matrix form as

dPðX; tÞ
dt

= RðqÞPðX; tÞ;

where X = ½x1; x2;.xN�T is a vector of all possible cell states, PðX; tÞ= ½Pðx1; tÞ;Pðx2; tÞ;.PðxN; tÞ�T andRðqÞ is a transition ratema-

trix given by:

RijðqÞ=
8<
:

�
X
k

akðxiÞ if i = j

akðxjÞ cj such that xj = xi � vk

0 otherwise:

Time evolution of the probability distribution PðX; tÞ is given by

PðX; tÞ = exp½RðqÞt�P0ðXÞ;
where P0ðXÞ is specified by initial data that should satisfy

P
XP0ðXÞ = 1. PðX; tÞ is calculated using a fast matrix exponential func-

tion implemented in MATLAB by (Al-Mohy and Higham, 2011). All simulations begin with initial data in which no mRNA are present

and both gene alleles in the ‘off’ state. For practical purposes, the total number of mRNA molecules in the system—and hence the

total number of states in the stochastic process—is truncated at M =2000.

In general, RðqÞ depends on both the model structure and the parameters. In this work, we considered a family of four transcrip-

tional models of increasing complexity (as highlighted in Figure S11D). In the simplest model—often called the telegraph model—we

assume two independent alleles for each gene, the activity of which switches randomly between ‘off’ and ‘on’ states, with only the

latter being permissive for mRNA transcription (Raj et al., 2006; Skinner et al., 2016; Suter et al., 2011; Zenklusen et al., 2008). The

associated kinetic parameters include switching ‘on’ and ‘off’ rates (kon and koff, respectively) as well as rates of mRNA transcription

and degradation (kt and kd, respectively). The state of the cell in the telegraph model x ˛ [s, m]T is defined by the number of active

alleles, s and number of mRNA molecules, m. The total number of states is N = 3(M +1), subject to the constrains on the number of

mRNAmoleculesM. A considered variant of the model includes an additional constitutive transcription rate k0, which is incorporated

into the transition matrix (see Figure S11D model 2).

We also consider an extension to the telegraph model that includes an additional regulatory step, which may be considered as a

chromatin opening step that is required for full transcriptional activity. In the extendedmodels, each allele exists in one of three states:
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an inactive ‘off’ state, an intermediate ‘I’ state or an active ‘on’ state. Reversible stochastic transitions (with appropriate rates) occur

between the inactive and intermediate as well as the intermediate and active states (but not directly between inactive and active

states). We further assume that transcription occurs only in the active state (Figure S11D model 3) or in both the intermediate and

active states (i.e. IL1bmodel, Figure S11D model 4). Given the upper bound on the number of mRNA moleculesM, the total number

of states in the extended models is N = 6(M +1).

Model Fitting and Analysis
In order to investigate different regulatory scenarios (Figure S11B), we calculated exact temporal mRNA distributions using the CME

approach as sketched above. A genetic algorithm (GA) was implemented using the ga function in MATLAB and employed to estimate

model parameters, minimising the integrated absolute distance between the theoretical (CME) and measured cumulative distribution

functions (CDFs). CDFswere fitted using fitdist function (with anEpanechnikov kernel function). The best 50model fits from independent

GA runs for each condition (using a population size of 200, elite count of 2, crossover factor of 0.6, and the tournament selection func-

tion). Gene activation rateswere constrained to lie below 0.2min-1, while the degradation rate for TNFa transcriptswas constrained to lie

between 0.006 and 0.07 min (half-life between 10 and 115 mins), while the degradation rate for IL1b transcripts was constrained to lie

between 0.002 and 0.006min (half-life between 115 and ~350mins). This is in an agreement with a short TNFamRNA half-life (up to 1.5

h) in comparison to that of IL1b (stable at the time-scale of a 6 h experiment) measured in macrophages (Hao and Baltimore, 2009). We

assumed two independent alleles per genewith the transcription rate constrained by 30mRNAmin-1 per allele. Rates as high as 2 to 10

mRNA min-1 have been reported for specific genes (Molina et al., 2013; Schwanh€ausser et al., 2011; Skinner et al., 2016; Suter et al.,

2011). In our dataset 10%ofRAW264.7 cells produced in excess of 200mRNA h-1 (and 1% in excess of 400mRNA h-1), which is equiv-

alent to a transcription rate between 1.67 to 3.33mRNAmin-1 per allele assumingconstant production and nodecay.Note that these are

underestimates, as they assume steady production, while our transcription site data indicates intermittent transcriptional initiation.

The CME approach was also used to calculate sensitivity indexes corresponding to 10% parameter changes of the noise level [1-

s10/m10/(s0/m0)], where s0 and m0 correspond to nominal parameter values. Sensitivity indexes were calculated for distributions ob-

tained at 180 mins after stimulation for one-step model for TNFa (Figure 2D), two-step IL1bmodel (Figure 2E) or one-step model re-

fitted to recapitulate heterogeneity of IL1b expression (Figure S11F).

Noise Quantification in Count Data
Single-cell heterogeneity may emerge due to intrinsic stochastic fluctuations (i.e., random on-off switching) and extrinsic differences

between cells (Elowitz et al., 2002; Hilfinger and Paulsson, 2011; Sherman et al., 2015). Therefore, in order to apply stochastic models

of transcription (which assume intrinsic noise), we investigated the sources of the variability in the smFISH count data. Overall, these

analyses suggest that intrinsic noise is a dominant factor in our datasets. In agreement, we show that one-step telegraph models

explain all, but ~ 30% variability in data for TNFa smFISH counts (Figure 4B), while two-step model capture most of the variability

in the IL1b data (Figure S18C).

(1) We demonstrate that count data exhibit intrinsic noise properties:
e4
(i) Noise decreases monotonically with mean m in smFISH data (Figure S11A) as well as in our (Figure S3C) and published

scRNA-seq (Figure S20E).

(ii) In the limit of high m, noise decreases sharply (Figure S11A), rather than approaching a plateau (Taniguchi et al., 2010).

(iii) TNFa smFISH counts (Figure S16) as well as a majority of the scRNA-seq distributions (Figure S20A) fit negative binomial

distributions. Of note, IL1b smFISH counts do not follow negative binomial distribution (Figure S16), since they represent a

more complex model of regulation.

(2) A formal noise decomposition of the TNFa and IL1b dose-response count data (Rhee et al., 2014) shows that contribution of

the intrinsic noise is dominant (across most condition), albeit also highlighted an extrinsic noise component (Figure S11B). To

analyse potential sources of extrinsic noise, we show that

(i) The percentage of variance of TNFa and IL1b smFISH counts explained by cell size (R2 of the linear fit) is <7% (Figure S10B).

(ii) The percentage of variance explained by regressing TNFa against IL1b counts is <20%, but ~41% for IL1a against IL1b

(Figure S21). The former is consistent with extrinsic variability due to shared TLR signalling machinery, for example signal-

ling dynamics (Wong et al., 2018, 2019), while the latter highlight the shared chromatin regulatory step.

(3) Currently, our smFISH datasets include between 102 and 103 individual cells per conditions (up to 18 conditions per probe) and

up to 96 cells in scRNA-seq. In general, larger sample sizes might allow obtaining more accurate estimates of the underlying

probability distribution function and their moments.
QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of scRNA-seq Data
Demultiplexing of the output data (allowing one mismatch) and BCL-to-Fastq conversion was performed with CASAVA 1.8.3. Reads

were mapped to themus musculus genome (assembly GRCm38.p3, downloaded from Ensembl) using Tophat version 2.011 (Trap-

nell et al., 2009) and assigned to genomic features in the corresponding gtf file using featureCounts in the Subread package (version
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1-4.6). Counts for each gene were normalized to the median counts per cell (Figures S1A and S1B), data is presented as log2(nor-

malised counts+1) following analyses by (Shalek et al., 2013). 61 cells were included in the analysis with more than 2 million counts. A

PCA plot of the normalized counts reveals a relatively uniform distribution of cells with no outliers or apparent overriding trends in the

projection (Figure S1C). Comparison of normalized gene expression counts between two representative single cells shows a rela-

tively strong correlation as observed in Figure S1D. Expression of housekeeping genes displays an almost linear correlation between

these two cells (Spearman rank correlation of 0.94). In contrast, genes whose expression was regulated in response to lipid A, display

far greater variation (Spearman rank correlation of 0.71). Themean of the transcript levels from the single cells were then compared to

previously published population-level data performed under the same experimental conditions (Bagnall et al., 2015). These data were

downloaded, re-mapped and re-normalised (as described here) to ensure parity between the datasets. A strong correlation between

the population-level and single-cell data (r=0.85) was observed, confirming that library preparation preserved overall gene expres-

sion patterns (Figure S1E). As in Shalek et al (Shalek et al., 2013) we analysed the correlation between mean normalized counts

(across all 61 cells) and the variability of these counts. We observe an inverse relationship between the normalized mean counts

and the coefficient of variation (Figure S1F). All the housekeeping genes exhibit extremely low variability across the cells, while

the lipid A responsive genes show far greater variability at comparable expression levels. Subsequently, a stringent cut-off was en-

forced to remove genes with high technical variability, leaving 1941 high-confidence genes. Data was clustered using the affinity

propagation algorithm (Frey and Dueck, 2007); an unsupervised non-parametric method, which provides automated determination

of numbers of clusters. Derived p-values were corrected for multiple testing using the method described by Benjamini and Hochberg

(see Table S1 for normalised read counts and clustering analyses).

Generic Properties of the TLR4 Response
Eukaryotic promotor database (EPD) was used to determine TATA-box enrichment in the clusters displayed in Figure 1B.We observe

significant enrichment of TATA sites in the promoter regions of the highly variable genes that failed to cluster (8 out of 10 genes have

TATA boxes in their promoter regions, Figure S3A). In contrast, we do not find enrichment for TATA boxes in the promotor regions of

the housekeeping genes examined. When comparing the variability in transcript levels of all genes within the (HC) single-cell dataset

with and without TATA boxes, we find there is no statistical difference between the two sets (Figure S3B). In part this may be deter-

mined by the cut-off in transcript levels of high confidence genes, i.e. the HC is by definition less variable. Previously correlation has

been found between variability in transcript level andmRNA half-life in a single cell study examining a variety of rat andmouse tissues

(Dueck et al., 2015). A plot of the variability in expression levels of genes within this dataset and previously publishedmRNA half-lives

(Schwanh€ausser et al., 2011) reveals a limited negative correlation between half-life and heterogeneity, perhaps due to the fact that all

recorded half-lives are large (e.g., >4 h, Figure S3B). Yet, there is a strong association between mRNA abundance (and transcript

synthesis rate) and variation, indicative of a generic relationship between abundance and noise.

smFISH Quantification
Raw images were deconvolved using the SoftWoRx 7.0 software (GE Healthcare). Spot counting for mature and nascent mRNA was

performed with FISH-Quant v2d (Mueller et al., 2013). The total cell area was calculated by extracting the number of pixels and pixel

size in each drawn cell boundary. The nuclear area was calculated by applying the MATLAB function ‘greythresh’ to the maximum

projection of the deconvolved DAPI signal. Pixel areas for each nuclear mask were extracted and scaled to the actual pixel sizes. For

cell size normalisation, each individual mRNA count was scaled via the ratio of the average nuclear area of the population and nuclear

area of the cell (Figure S10).

Point Estimators of Transcriptional Bursting
Transcriptional burst size and burst frequency are defined as the average number of mRNA produced per gene activation event, and

the frequency of gene activation events, respectively (Nicolas et al., 2017). In the case of the one-step telegraph model, these are

directly related to the kinetic parameters of transcription (Nicolas et al., 2018). When accounting for two independent alleles of a

gene, in the steady-state burst size is defined as bk=kt/koff, while bursting frequency is given by fk=2konkoff/(kon+koff)/kd (we refer to

these as kinetic estimators). Alternatively, estimators based on the sample variance s2 and the mean m of the mRNA distribution

(referred to here as moment estimators) such that the burst size (bm=s
2/m) and burst frequency [fm=m/(bm-1)] are sometimes used

(Nicolas et al., 2017; Raj et al., 2006; Suter et al., 2011; Wong et al., 2018). In general, moment estimators are used to describe bursti-

ness, i.e. quantitative departure from a non-bursty (Poissonian) mRNA production (where bm=1 and fm=N) (Nicolas et al., 2017; So

et al., 2011; Wong et al., 2018). To evaluate the difference between estimators we define an error function:

Error =
kinetic parameters estimate�moment estimate

kinetic parameters estimate

Given expressions for the steady-state mRNA moments in the telegraph model (Peccoud and Ycart, 1995; Paszek, 2007; Shah-

rezaei and Swain, 2008), when accounting for two alleles we have that

m =
2konkt

kdðkoff + konÞ (Equation 1)
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s2 =
m

2

2 koff

kon

�
1+ ðkoff + konÞ

kd

� (Equation 2)

In this work, we usemoment estimators calculated either for smFISH and scRNA-seq data or for theoretical mRNA distributions (at

any arbitrary time) obtained from the CME. For application of the one-step telegraph model we utilise kinetic parameter estimators.

Therefore, errors in the steady-state may be expressed as

berror = 1� koff
2

kdðkoff + konÞ+ ðkoff + konÞ2
� koff

kt
; (Equation 3)
ferror = 1� ðkoff + kon + kdÞðkoff + konÞ
koff

2
: (Equation 4)

In general, the error associated with moment estimators depends on specific parameter values and the error in the bursting

frequency is independent from the transcription rate kt. As already well established in the literature (Nicolas et al., 2017), in the

‘bursting’ regime, corresponding to short and infrequent activation events, i.e. koff>>kon and kd>>koff, errors resulting from moment

estimators are negligible (given that in general kt>>koff), Equations 3 and 4. In this case both errors converge to 0, and thus

moment estimators are as accurate as kinetic parameter estimators. In order to understand the generic suitability of moment es-

timators, we calculated errors associated across a wide range of parameter values using the fitted TNFa model (Figure S6). In the

physiological parameter range, i.e. kon<0.1 min�1 and koff <0.2 min-1, and assuming kt<30 mRNA/min-1, both errors are con-

strained (ferror<1 and berror<1) for koff>kon (Figure S6A). In the case of TNFa, where koff/kon is equal to 6, the errors due to approx-

imation via moment estimators are ~30% (see also Figure S11G). These errors substantially increase when koff/kon ~1, but are in-

dependent of transcription rate (at least above 5 mRNA/min, Figure S6B). Both errors also depend on the mRNA half-life, but

within the physiological range, i.e. kd<0.01 min-1 the corresponding changes are limited (for koff/kon >3). While kinetic estimators

define bursting characteristics only at the steady-state, the moment estimators can be calculated at any time (Figure S6C). Tem-

poral relationships (calculated based on theoretical distribution at 1, 3 and 6h) converge to the steady-state approximation

(Figure S6A).

Modulation of Transcriptional Bursting
We theoretically calculated relationships between parameters of the telegraph model that satisfy empirically observed linear mean-

variance relationships. We assume that the sample mean and variance of the gene expression distribution follows a general

linear trend,

s2 = am+ s0: (Equation 5)

Under steady-state assumption, i.e. by using Equations 1 and 2, with s0=0, this relationship corresponds to

kt = ða� 1Þðkoff + kon + kdÞ
�
1 +

kon
koff

�
; (Equation 6)

whereas in general (a0s0):

koff konk
2
t

kdðkd + koff + konÞðkoff + konÞ2
+ ð1�aÞ konkt

kdðkoff + konÞ �
s0

2
= 0: (Equation 7)

The above equations define the relationship between kinetic parameters that satisfy linear constraints. Equation 6 describes a sur-

face in the three-dimensional (koff ;kon;kt) parameter space on which the s2 =am relationship holds. We plot this surface, as well as

bursting characteristics on the surface for a=100 and a=10 (corresponding to genes with different level of variability) for biologically

plausible set of parameters, i.e. koff<0.2 min-1 and kon<0.1 min-1, while assuming kd =0.014 min-1 (i.e., fitted TNFa degradation rate)

and kt<30 min-1 (Figures S14A–S14C).

To maintain a linear mean-variance relationship the system can move freely between different (koff ; kon; kt) parameter

values, which results in modulation of both burst size and frequency. In the case of bursty expression regime, i.e. koff>>kon
(for koff>>kd) it follows from Equation 6 that bk=a-1 and fk=m/(a-1). Therefore, burst size is necessarily constant (and equal to

the slope of the mean-variance line for large a) over the range of mean mRNA response, while changes of gene expression

are controlled solely by frequency modulation. If the system is not in the bursty regime, the extent of burst size and fre-

quency modulation is related to the activation rate koff (or in general koff/kon ratio, Figure S15). Based on the (koff, kon, kt)

parameter surfaces, the relationship between bursting frequency and relative change of the burst size was calculated for

a range of regression slopes from a=10 to 200, (Figures S15A and S15B). We find that the larger koff, the smaller are

changes of the burst size, and in turn the larger are changes of the bursting frequency over the corresponding change

of mean mRNA expression (Figure 4A).
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When the systemapproaches a bursty regime, i.e. koff>>kon the changes of burst size become negligible (Figure S15C). In this case,

moment estimators provide an accurate description of the bursting characteristics for the one-step telegraph model (i.e., for a>>1

moment and kinetic estimators are the same).

The generic case of non-zero intercept, i.e. s2= am+s0 is considered in Equation 7, where parameter regions consist of two roots of

the quadratic equation (see Figures S14D andS14E). One of these roots overlaps with the solution of Equation 6 (the case of non-zero

intercept), while the second, associatedwith a small transcription rate (Figure S14E) disappears as s0/0. In the bursty regime, Equa-

tion 7 can be re-arranged as

fkb
2
k + ð1�aÞfb� s0 = 0:

Given that m=fb, we have that

bk = ða� 1Þ+ s0

m

fk =
m

bk

:
(Equation 8)

Equation 8 show that for s0s0 the burst size is a non-monotonic function of the mean m that diverges as m tends to zero. When

m>>0 the burst size tends asymptotically to the constant value bk = ða � 1Þ, so that the description is equivalent to using moment

estimators, in the sense that the burst size is predetermined by the slope of the mean-variance line. Of note, for s0>0 burst size rela-

tionship has a minimum for m=s0/(a-1)] and burst size monotonically increase (and vice versa for s0<0, Figures 4C and 4D). In this

case, the description is equivalent to using moment estimators, such that the burst size is predetermined by the slope of the

mean-variance line, and constant in the case of the zero intercept, i.e. bm=s
2/m=a +s0/m, while for a>>1, bm= bk. In addition, the fre-

quency undergoes modulation as a function of the mean, i.e. fm=m/(bm-1)=m/[(a-1)+s0/m=fk ].

The comparison betweenmoment (and kinetic estimators) is depicted in Figure 4C (in the case of a non-zero intercept for the fitted

TNF-a smFISH data). The burst and frequency relationships are predicted based on coefficients of the linear mean-variance relation-

ships (Figure 4B). In the case of IL1b (where the complexity of the model prevents analytical solutions), we use moment estimators

based on the fitted smFISH dataset (Figure S18C). We find that while frequency changes are predicted accurately, the burst size is

predicted accurately only for large means (Figure 4D). We find that specifically in the case of positive intercept (e.g., in the case of

IL1b) the simple relationship does not reproduce the non-constant behavior at lowmRNA levels. For the analyses of scRNA-seq data-

sets (Figures 4F and S19) we therefore fitted individual relationships separately (i.e. mean-variance, mean- burst-size, mean-fre-

quency, etc.), rather than compare data with relationships predicted by the mean-variance line [Equation 8]. However, we then

demonstrate that characteristics predicted by the theory are present in the fitted data, specifically there is a reciprocal relationship

between burst size and frequency across considered genes (Figure S19F).

Intuitively, mean-variance relationships are expected to have zero intercepts. However, in both smFISH and scRNA-seq datasets

we find evidence for both negative and positive intercepts. In the case of TNFa (negative intercept, Figure 4C), theoretical predictions

of burst size and frequency based on the regression fit are consistent with fitted data and indeed predict a minimum in frequency

changes. We find that in RAW 264.7 cells, there is always a basal (and substantial) expression of TNFamRNA in unstimulated cells,

which perhaps contributes to this behaviour (i.e. no true zero in the system). In general, fitted intercepts have relatively small values

(comparing to the overall variance) and tend to be positive. This suggests elevated level of variance consistent with measurement

noise (especially for small means). We accept that only a limited amount of data is available to be fitted per condition, thus individual

fitsmay be affected by specific values of individual or groups of points.We consider thesemean-variance relationships are empirical,

and treat them as such in the manuscript.

Burstiness in Genomics Data
Inference of mean-variance relationship was performed using a dataset from BMDCs incorporating 29 scRNA-seq experiments

(each corresponding to a single Fluidigm C1 experiment with up to 96 cells) on the response time-course (at 0, 1, 2, 3 and 6 h) as

well as additional perturbations such as treatment with IFNb, inhibition of paracrine secretion (chemical or physical on chip) or

cell knockout for IFNR1 in and STAT1 expression (Shalek et al., 2014). We considered 812 genes that were induced by at least

two-fold (compared to unstimulated cells) at the population level at any time point during the LPS stimulation [as identified in (Shalek

et al., 2014)]. Visual inspection of the data revealed outliers in the linear regression fit, therefore, outlier removal method with Maha-

lanobis distance was used (with 0.05 threshold for outlier detection) (Finch, 2012). After removing low abundant genes (maximum

mean expression <100 read counts) this resulted in 290 genes for the core TLR dataset (time-course) and 323 for the combined data-

set (including perturbations). Bursting characteristics (based onmoment estimators) for individual data points were fitted using linear

regression and power functions (in semi log scale) when appropriate and presented as smooth curves. Robust regression (excluding

data points with corresponding fitted residuals > 1.5,sresiduals) was used to either remove noisy data (as expected in the scRNA-seq

measurement) or individual datapoints that did not affect the overall trend. Equations, fitted parameters, corresponding correlation

coefficients and highlighted outliers are included in the Tables S3, S4, and S5. Fitting protocols were implemented in Python using R

kernel, individual gene graphs were produced in MATLAB R2014a.

In order to validate estimates from scRNA-seq data, raw BAM dataset from Shalek et al. corresponding to LPS stimulation at 4h

was downloaded and re-mapped using Picard Tools to remove duplicate reads (http://broadinstitute.github.io/picard/). Mapped
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data was normalised to read counts per million and compared with the original dataset (Figure S20). Specifically, for the set of LPS-

dependent genes characterised by linear mean-variance relationships, mean and variance, as well as relative burst size and fre-

quency (based on moment estimators) were calculated. In addition, chi-squared goodness-of-fit tests was performed to determine

whether count data (in each dataset) follow negative binomial distribution. p-values were adjusted using Benjamini-Hochberg pro-

cedure for false discovery rate, genes with <10 non-zero reads (out of 95 captured cells) were not considered.

Statistical Analyses
Data are described by the sample mean and standard deviation (SD). Sample size are provided ion figure legends. All statistical an-

alyses were performed in GraphPad Prism 8 or MATLAB. Data were checked for normality with the D’Agostino-Pearson omnibus

test. When normal, parametric tests were performed (t-test, standard one-way ANOVA); otherwise, non-parametric tests are used

(Mann-Whitney, Kruskal-Wallis ANOVA). Tukey’s or Dunn’s correction for multiple comparisons was applied, respectively. Contin-

gency tables were assed with Fisher exact tests. MATLAB’s chi2gof chi-squared goodness-of-fit test was performed between count

distributions and respective negative binomial distributions with parameters estimated from the data (using fitdist function). Benja-

mini and Hochberg method was used for multiple comparison adjustment in genomics data. Significance was defined for p-value

(and adjusted p value, when relevant) <0.05. Details of all statistical tests are provided in the corresponding figure legends.
e8 Cell Systems 11, 300–314.e1–e8, September 23, 2020
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