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ABSTRACT

This paper aims to thoroughly discuss the impact of artificial intelligence (AI) on clinical 

practice in interventional cardiology (IC) with special recognition of its most recent 

advancements. Thus, recent years have been exceptionally abundant in advancements in 

computational tools, including the development of AI. The application of AI development is 

currently in its early stages, nevertheless new technologies have proven to be a promising 

concept, particularly considering IC showing great impact on patient safety, risk stratification 

and outcomes during the whole therapeutic process. The primary goal is to achieve the 

integration of multiple cardiac imaging modalities, establish online decision support systems 

and platforms based on augmented and/or virtual realities, and finally to create automatic 

medical systems, providing electronic health data on patients. In a simplified way, two main 

areas of AI utilization in IC may be distinguished, namely, virtual and physical. 
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Consequently, numerous studies have provided data regarding AI utilization in terms of 

automated interpretation and analysis from various cardiac modalities, including 

electrocardiogram, echocardiography, angiography, cardiac magnetic resonance imaging, and 

computed tomography as well as data collected during robotic-assisted percutaneous 

coronary intervention procedures. Thus, this paper aims to thoroughly discuss the impact of 

AI on clinical practice in IC with special recognition of its most recent advancements.

Keywords: artificial intelligence (AI), interventional cardiology (IC), cardiac modalities,

augmented and/or virtual realities, automatic medical systems

Introduction

Artificial intelligence (AI), and in particular machine learning (ML), allows for the 

processing and analysis of huge amounts of medical data in real time, and will prove to be 

revolutionary for healthcare systems. AI is developing very fast particularly in the field of 

cardiology, ranging from electrocardiography (ECG) interpretation to clinical decision 

support systems for cardiac interventional procedures [1, 2]. According to recent updates of 

medical devices approved by the United States Food and Drug Administration (FDA) for 

general use, the majority of AI/ML-enabled devices are authorized in radiology, followed by 

the cardiovascular area. The latter is most prominently represented by interventional 

cardiology (IC), which is a subspecialty of cardiology that provides catheter-based treatment 

of structural heart diseases. The steady growth in the number of FDA-approved devices 

highlights the potential of embedding them into routine clinical practice. AI/ML-based 

devices empower cardiologists to implement a complex approach to heart diseases in 

numerous ways such as earlier establishment of diagnosis, patient risk stratification before 

targeted interventions, and general improvement in quality of care. The potential use of AI in 

IC may cover each step of the therapeutic process, including in-hospital first-line assessment 

of chest pain [3] and/or cardiogenic shock, periprocedural planning the intervention’s strategy

for better navigation and guidance as well as predicting periprocedural risks [4], and potential

patient outcomes. The specific nature of IC provides clinicians with many imaging 

modalities, including both anatomic and functional assessment of structural heart diseases. 

Therefore, AI is considered a promising technological tool expected to have a significant 

impact on imaging reconstruction, analysis, and interpretation, leading to an increase in the 

2



availability and quality of healthcare data and further progress in analytic techniques in the 

future. The utilization of AI in clinical practice has been proven to be valuable, particularly 

regarding echocardiography examination [5], angiographic assessment of coronary artery 

stenoses [6], including lesion characteristics [7], assessment of cardiac perfusion via single 

photon emission computed tomography imaging [8], and in cardiac magnetic resonance 

(CMR) imaging [9]. The aforementioned studies suggest that in the future AI may be capable 

of providing both clinicians and patients with automated diagnosis based on the interpretation

of imaging examination independent of an imaging specialist.

The potential of AI application in the IC field is presented in the Central illustration. 

For example, in the international research project CEREBRIA-1 (Machine Learning vs 

Expert Human Opinion to Determine Physiologically Optimized Coronary Revascularization 

Strategies) it was established that in the case of the treatment of patients with stable coronary 

artery disease, ML-based algorithms gave similar indications to those of an international team

of medical doctors. Thus, when during specialized treatment the medical unit does not always

have specialist knowledge that allows it to effectively interpret the ECG data, AI algorithms 

such as the AI-based triage algorithm (DELTAnet) [10] can be an effective support tool. In IC

progress has also been made. Here, one can distinguish two main lines of research and 

potential applications of AI: virtual (medical image processing, decision making), and 

physical, such as robotic interventional procedures [11]. AI gives opportunities for 

improvements in the field of computer vision and image processing that can be applied to 

robotic interventions [12]. However, autonomous robotic vascular procedures remain a 

challenge [11]. On the other hand, in [13] an AI-supported approach in ultrasound-guided 

cardiac interventions to identify, localize and track the critical structures and lesions and 

validate the algorithm’s performance was proposed. It turned out that the proposed model for 

identifying and locating heart structures successfully exceeded the abilities of experts 

(medical doctors). 

The majority of imaging modalities in IC such as echocardiography, CMR, 

angiography, and computed tomography (CT) provide two-dimensional (2D) data that can be 

easily converted using various three-dimensional (3D) modeling techniques into physical 

objects with accurate representations of the heart and correct anatomical features [14]. 

Consequently, multi-modality image integration in cardiology contributes to a better 

understanding of structural cardiac anatomy, leading to a precise patient-tailored approach for

interventional procedures. Indeed, here lies another promising potential combination of AI 
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and other new technologies for example 3D modeling enhanced by immersive technologies. 

Immersive technologies, such as virtual reality, augmented reality, and mixed reality, have 

revolutionized the way we interact with digital environments. These technologies create 

highly engaging and interactive experiences by blending virtual components with the real 

world or by completely immersing the user in a virtual environment. AI plays a crucial role in

enhancing these immersive experiences. By integrating AI, immersive technologies can 

become more interactive and responsive to user actions and behaviors immersive 

technologies and AI, the potential fusion of these technologies may contribute to a more 

thorough understanding of different aspects of cardiac anatomy during procedures [15]. They 

may also influence the selection of the appropriate device and procedural technique, due to 

better preprocedural planning and real-time intraprocedural visualization for complex 

anatomical and geometrical relations [16]. 

However, AI is a very general term. Also, the AI application field is wild. This paper 

concentrates on the algorithms taking into account the type of neural networks that have been

applied in interventional cardiology in particular. It presents and discusses the neural 

networks and learning algorithms that have been used in the analysis of medical data and 

shows further directions of development of the AI-driven approach.

Review methodology 

The methodology of this systematic review is based on the PRISMA Statement [17]. 

Recent publications, reports, protocols, and review papers from Scopus and Web of Science 

databases have been considered. The keywords ‘Artificial Intelligence, Machine Learning, 

Extended Reality, Mixed Reality, Virtual Reality, Metaverse, cardiology, interventional 

cardiology, segmentation, segmentation algorithms, classification algorithms, ethics, AI 

ethics, and their variations were identified. In the first step, features of the material such as 

title and abstract were evaluated taking into account exclusion criteria (for example criterion 

1, PhD thesis and materials not related to cardiology, was removed from the procedure 

whereas criterion 2, full-text papers in English, including electronic publications before 

printing, was considered). Subsequently, articles and technical reports meeting the criteria 

were retrieved and analyzed. The documents used in this study were selected based on the 

procedure presented in Figure 1. Finally, 100 documents were taken into account. 
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Application of artificial intelligence

Various neuronal networks have been used in the field of medicine. They differ not 

only in architecture but above all in the type of neuron model applied. And consequently, the 

number of parameters that need to be optimized. Also, depending on the type of neural 

network, different training algorithms may provide obtaining higher accuracies of the 

predicted results.

Artificial Neural Networks (ANNs)

The first type of AI solution in cardiology is based on Artificial Neural Networks 

(ANNs). These are an interconnected group of nodes (artificial neurons) that model 

connections of biological neurons as weights between nodes. ANNs find applications in 

interventional cardiology, including echocardiography and cardiac CT, contributing to the 

automation and improvement of the assessment of cardiovascular diseases as well as 

significantly enhancing the diagnosis and treatment of cardiovascular diseases [18]. These 

neural networks provide a computational tool that can automate the analysis of 

echocardiography and cardiac CT images, increase accuracy, and reduce the detection time of

heart conditions such as vessel constrictions or congenital defects [19]. ANNs also aid in the 

identification of important cardiac structures in medical images, making the work of doctors 

and radiologists easier [20]. One of the key advantages of ANNs is their ability to learn from 

vast amounts of data, predicting outcomes based on patterns. Another advantage is 

automation. They can automatically extract features and process data, which is extremely 

valuable in medical image analysis, imaging studies, and ECG data analysis. This automation

can significantly expedite and simplify diagnostic and research work. Neural networks adjust 

weights and model parameters to minimize prediction errors based on training data. This 

allows the model to extrapolate its capabilities and is also known for its ability to detect 

subtle patterns and relationships in data. This can help identify the risk of heart diseases and 

other conditions at an earlier stage, improving healthcare quality and reducing diagnosis time.

However, it’s important to note that ANNs also have limitations. Their complex architecture 

and operation require a large amount of training data to achieve high accuracy. There is also a

risk of overfitting, where the model may learn irrelevant noise in the data (a model learns the 

training data too well, including its noise and random fluctuations, this issue leads to a model 

that performs exceptionally on the training data but poorly on new, unseen data). 

Additionally, interpreting results obtained through neural networks can be challenging due to 

their intricate structure [21]. ANNs have been successfully applied for the automatic 
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measurement of ejection fraction and left ventricular longitudinal strain based on biplanar 

images of the left ventricle with high accuracy, as much as 98% [22]. ANNs have also been 

used to automatically differentiate hypertrophic cardiomyopathy from physiological cardiac 

hypertrophy in athletes [23]. In addition to echocardiography, ANNs have played a role in 

analyzing ECG data for the detection of electrolyte imbalances. Notably, ANNs have been 

effective in identifying moderate to severe hypokalemia and hyperkalemia based on ECG 

patterns. These AI-based systems can contribute to the early diagnosis of electrolyte 

disturbances, which can lead to various cardiac complications. 

Recurrent Neural Networks (RNNs)

The second type of neural network that can be applied in cardiology includes 

Recurrent Neural Networks (RNNs). These allow for the managing and interpreting of data 

that have a naturally sequential character, such as natural language or time series. Their 

structure enables the “remembering” and integration of information from previous stages of 

the sequence, making them especially useful in analyzing complex medical data such as ECG

recordings, echocardiogram data, or continuous monitoring of a patient’s health condition [5].

In interventional cardiology, RNNs can be applied to analysis of the patterns and trends in the

patient’s medical data. As a consequence, RNNs can predict potential outcomes of 

interventions, assisting in planning more effective treatment plans, for example, predicting 

the prognosis of patients with adult congenital heart disease, and pulmonary hypertension 

[24]. One interesting solution based on RNNs is that of DeepHeart [25]. This employs semi-

supervised sequence learning based on data from popular wearable devices (Fitbit, Apple 

Watch, or Android Wear) to predict cardiovascular risk more effectively than traditional 

biomarkers. RNNs also play an important role in the automatic selection of myocardial 

inversion time, a key factor in assessing heart conditions. This automation streamlines the 

diagnostic process, making it more efficient and accurate [26]. Moreover, the adaptability of 

RNNs allows them to process data from various sensors to predict conditions such as 

diabetes, high cholesterol, high blood pressure, and sleep apnea [27]. 

Convolutional Neural Networks (CNNs)

Another solution that has emerged as a transformative force in the field of 

interventional cardiology, a branch of medicine focused on the catheter-based treatment of 

heart diseases regards Convolutional Neural Networks (CNNs). These enable the processing 

and interpreting of complex cardiovascular images, significantly enhancing the accuracy of 
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diagnoses and the effectiveness of treatments [28]. Convolutional Layers, serving as the 

foundation of CNNs, are instrumental in extracting features from input images, such as 

angiograms or echocardiograms. By utilizing a diverse array of filters, these layers efficiently

identify patterns and features that are key indicators of heart diseases. This identification and 

analysis process is crucial in diagnosing and understanding various cardiac conditions. 

Pooling Layers also play a vital role in reducing the complexity of the data processed by 

convolutional layers. This process involves retaining only the most essential features, thereby

streamlining the data while preserving the critical diagnostic information. The ability to 

simplify image data without losing important details is a significant advantage in the precise 

analysis of cardiac images. Fully Connected Layers are responsible for the critical tasks of 

classification or regression, based on the features extracted by the convolutional and pooling 

layers. In the context of interventional cardiology, this means accurately identifying specific 

cardiac conditions, predicting patient outcomes, and providing valuable insights for 

procedural planning. Thus, CNNs improve both diagnostic accuracy and the effectiveness of 

treatment strategies [29]. As CNNs continue to evolve, their impact on interventional 

cardiology is expected to grow, paving the way for more sophisticated and personalized 

patient care [30]. For example, CNNs can be successfully applied to the analysis of aortic 

valves during transcatheter aortic valve implantation procedures [1]. It has been found that 

the proposed approach ensured a higher degree of accuracy, thereby increasing the likelihood 

of successful outcomes. In this paper [31] employed CNNs to classify views in transthoracic 

echocardiograms. This AI-based solution ensured a more precise interpretation of cardiac 

imaging, which is essential for administering the correct treatment to patients. A significant 

advancement has also been made in the segmentation of heart chambers [32]. Moreover, an 

important element in interventional surgery also comprises the education of future medical 

staff. Indeed, [33] describes the application of CNNs to a system enabling the identification 

of operators’ activities.

Spiking Neural Networks (SNNs)

Recently, more complex, brain-inspired neural networks such as Spiking Neural 

Networks (SNNs) are beginning to be used in medicine (34), his approach provides a good 

computational tool to analyze dynamic data and time-dependent information and offers a 

highly useful solution for applications such as temporal sequences or patterns. In 

interventional cardiology, SNNs have found an application that could expand in the future in 

the analysis of ECG signals. ECG signals are inherently temporal and contain complex 
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patterns that describe various cardiac conditions. SNNs are a good choice for this task 

because they can analyze these signals with a high degree of precision, identifying subtle 

anomalies that might be overlooked by more traditional methods. This capability is crucial 

for the early detection and classification of arrhythmias, which can assist in rapid intervention

and better outcomes for patients (35). In turn, (36) applied SNNs to the classification of 

various cardiac arrhythmias. This solution allows for more targeted and effective treatment 

strategies for different types of arrhythmias. Similarly, (37) emphasizes the precision of 

SNNs in cardiac analysis, particularly in their ability to classify heartbeats with high 

accuracy. Their work is especially significant in identifying conditions such as Ventricular 

Ectopic Beats, a type of arrhythmia that can be challenging to detect. This highlights the 

adaptability of SNNs to a wide range of cardiac data, proving their versatility and 

effectiveness in various clinical contexts. Moreover, the research o (38) expanded this scope 

by classifying ECG signals for a broad range of heart-related conditions. 

Deep Neural Networks (DNNs)

All these networks can be considered as Deep Neural Networks (DNNs), namely 

networks that have multiple layers between input and output layers. They are exceptionally 

effective in deciphering complicated patterns contained in extensive data sets, making them 

indispensable tools in modern medical analysis and decision-making processes [39]. By 

processing vast amounts of medical data, including diagnostic images and patient records, 

DNNs can uncover subtle patterns and indicators that might be missed by traditional analysis 

methods [40]. The most significant advantages of DNNs include their ability to model 

complex relationships thanks to their structural depth, enabling efficient pattern and feature 

recognition in data. The flexibility of DNNs allows for their application in a wide range of 

uses, from computer vision and image analysis to natural language processing, and even 

robotics and automation. Automatic feature extraction from data is another notable 

advantage, eliminating the need for manual feature determination and selection, particularly 

beneficial in complex or multi-dimensional data sets. Another DNN type that is applied in 

dimensionality reduction and unsupervised learning is the autoencoder, which can effectively 

encode input data into a smaller dimension form, aiding in data compression or multi-

dimensional data visualization. For example, based on DNNs, (Fully Connected Neural 

Networks [FNN]), a comprehensive method for representing entire raw Electronic Health 

Records (EHR) of patients using the Fast Healthcare Interoperability Resources (FHIR) 

format has been developed [41]. This approach enables accurate prediction of multiple 
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medical events across various centers without the need for site-specific data harmonization. 

In the field of interventional cardiology, FNNs have been applied to assess the severity of 

coronary artery stenoses [42]. Then, [43] showed how a DNN model successfully reclassified

hemodynamically insignificant stenosis, showing performance comparable to computational 

fluid dynamics-based CT-fractional flow reserve methods. Additionally, the combination of 

Fuzzy C-Means Clustering with DNN has been applied to the diagnosis of coronary artery 

disease using CMR imaging data [44]. Other important and interesting DNN applications in 

interventional cardiology include the development of autoencoder for effectively 

reconstructing output data from input datasets, thus creating a 3D segmentation of the heart, 

which serves as a data source for a supervised noise-reducing autoencoder [45]. On the other 

hand, Generative Adversarial Networks (GANs) find applications in generating new data 

similar to training data. They consist of a generator (learning part) and a discriminator (the 

part that learns how to distinguish the generator’s fake data from real data). GANs are 

particularly valued for generating realistic images, applicable in computer graphics, 

augmented reality, and other fields requiring synthetic yet realistically appearing data [46]. 

GANs were utilized to transform low-dose cardiac CT images into standard-dose images, 

contributing to improved diagnostic quality [47]. Moreover, GANs have been applied to 

reduce noise in coronary CT angiography images, showcasing the multifunctionality of 

DNNs in enhancing cardiac imaging techniques and diagnostic efficiency in interventional 

cardiology [48]. 

Summary

Table 1 summarizes a comparison of the neural networks that are applied in 

interventional cardiology [24, 28, 31, 36–38, 42–44, 49–78]. Thus, all types of neural 

networks suffer from the overfitting issue that appears when the network loses its 

generalization. In this context, it is extremely important to prepare a good quality and 

appropriate quantity of data sets.

Ethical implications of ai in interventional cardiology

It is trivially true that all human systems are important for well-being, but the heart 

and circulatory function are clearly of prime significance. Any use of AI in cardiac 

interventions must thus be subjected to rigorous ethical scrutiny to ensure that it is in 

9



conformity with correct practice on at least two levels. The first is the set of institutional 

ethical norms established on the central level by international bodies and national government

and on the local level by clinical institutions such as hospitals. The second concerns the 

detailed sets of ethical practices that need to be taken into account when AI is being 

implemented, such as ethical risk points [79]. Naturally, many aspects of ethical challenges, 

norms, and practices will be common across all areas of medicine. On the level of practical 

ethics, these include the collection and categorization of data, the data journey (as data are 

transferred, interpreted, and potentially adapted between systems and departments [80] and 

the ownership of and access to data. 

However, there are certain specific characteristics of cardiological intervention that 

set it apart when it comes to the application of artificial technology, and each has its own 

ethical dimension. Notably, cardiological interventions are often made when the patient is at 

serious risk of dying. In that case, ethical decisions may have to be made concerning when or 

whether to attempt resuscitation. Legal implications need to be taken into account as well as 

the views of relatives, especially if they are holders of powers of attorney. It has already been 

pointed out that physicians may be reluctant to take certain actions because of this 

background [81]. AI now adds another layer of complication especially where the system 

makes recommendations as to courses of action: questions arise such as where the liability 

lies [82]. Indeed, just as a cardiac event may occur quickly, so too should treatment be given 

immediately. Emerging digital twin technology based on AI promises to be able to analyze 

complex datasets quickly, build cardiac models, and suggest treatment pathways. As 

described by Coorey et al. [83] a digital twin in cardiology is a digital representation of the 

physical system that is updated in real-time as the system changes. The ambition would be to 

create a perfect model with two interfaces: the first between the physical and its digital 

model, and the second between the nexus and the social plane (including, at least, physicians,

the patient, caregivers, and others). Indeed, AI is increasingly being deployed in cardiology in

terms of real-time data exchange, detection of conditions, severity assessment, and disease 

prognosis [84]. Then, Monzelum et al. (2022) [85] developed a cardiac arrest risk prediction 

score in an innovative clinical predictive model called The Cardiac Arrest Cardio-Oncology 

Score (CACOS), with the intention of providing early predictions and improving resource 

allocation and health outcomes. Aqel et al. [86] has also pointed out that AI will be 

particularly useful in predicting and managing sudden cardiac arrest, thus leading to better 

patient outcomes. The question next arises as to the relationship between a person and their 
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digital twin: many issues of ownership, control, and decision-making arise [87]. For example,

will the individual (now a patient) own the digital twin and be able to make decisions in 

advance as to its use? Will those decisions be linked to covenants in a life insurance policy? 

Whereas these can be discussed over a long time period with some diseases, at a moment of 

cardiac arrest it is difficult to see how these can be considered fully on the spot without 

specific easily accessible ethical protocols previously put in place to cater to the interaction 

with AI.

In addition, good regulation of AI is clearly needed regarding health care, with special

reference to significant practices such as interventional cardiology. However, the regulatory 

landscape is in its infancy at present. All stakeholders need to be able to interpret and explain 

AI and trust it: Explainable AI (XAI) and Trustworthy AI (TAI) are needed [88]. Regulation 

is being developed on the national and international level, although it is partial in extent and 

overlap [89]. The European Union has formulated a tool called the Assessment List for 

Trustworthy Artificial Intelligence (ALTAI) [90] and is working on extensive legislation [91].

Further suggestions have been made for rules and an assessment list for TAI by Floridi [92]. 

However, the general challenge for regulators in AI is to keep up with developments in a 

technological field that is developing extremely rapidly [93]. 

Future approach: Application of extended reality and 3D visualization supported by AI 

Integrating AI into immersive technologies is crucial for handling the complexity of 

medical data, especially when combining multiple data modalities and if its possible 3D 

representation of these data. AI’s ability to process and analyze complex, multi-layered data 

efficiently makes it essential for real-time processing in digital immersive environments, 

ensuring seamless user experiences. With increasing quality and resolution in medical 

imaging, 3D reconstruction of organs comes within clinical reach [94]. Medical imaging 

provides many 1D (ECG) and 2D views of the 3D heart (CT/MRI/ECHO DICOM), leaving 

the 3D interpretation to medical experts. Recent developments enable the 3D reconstruction 

of organs with many available segmentation tools [95]. Although segmentation software 

provides such capabilities, for clinical practice and education these are too complex to be 

used [96]. To train medical students and staff to deal with these advanced medical imaging-

based reconstructions, an easy-to-use tool accompanied by educational material needs to be 

developed and tied to the clinical educational field of IC [97].
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Complex cardiac procedures, such as implantation of the aortic valve (transcatheter 

aortic valve implantation procedures), complex ablation cases, patent foramen ovale, and 

surgical procedures on hearts with genetic defects, require advanced (functional) imaging and

combination with anatomical and electrical behavior. 3D visualization in these anatomical 

complex examples is very difficult, whereas present research results create the opportunity to 

obtain a digital 3D view.

Recent developments enable the 3D reconstruction of organs with many available 

segmentation tools. Although segmentation software provides these capabilities, for clinical 

practice and education such tools are too complex to be used. An easy-to-use tool and 

educational material need to be developed to educate medical students and staff to effectively

use these advanced medical imaging-based reconstructions. These 3D reconstructions provide

many advantages in clinical evaluation, diagnosis, and preprocedural planning [15]. 

However, there are no standard clinical tools available to provide 3D segmentation alongside 

medical imaging. Such an approach brings 3D segmentation a step closer to the clinical 

workflow and thus improves clinical diagnostic, prognostic, and procedural planning.

The teaching of the latest technological development in cardiac treatment combining 

imaging data with 3D segmentation needs to be improved. The 3D educational medical 

imaging tool aims to provide a 3-D viewing tool that is easy to use by many students and 

professionals to promote the teaching of complex cardiac patient treatment. To ensure the 

embedding of the software in the clinical curriculum, the project will also build up 

educational clinical cases in which this educational tool will play an important role.

One of the primary benefits of using computer-generated 3D models extended by 

immersive technologies in cardiac anatomy is the ability to provide educators with a highly 

realistic and interactive learning experience. In particular, the visualization of something you 

cannot see, the electrical processes of the heart, is educationally powerful and challenging. 

Incorporating the outcomes of the spatial relationship of cardiac structures with educational 

content will provide a new dimension in the future of clinical cardiac education.

All strategy connecting with multimodality cardiac imaging refers to non-invasive 

imaging of the heart using ultrasound, magnetic resonance imaging, CT, or other imaging 

methods as well as ECGs. These cardiac techniques are referred to for everyday practice in 

preprocedural planning and educational approaches [98]. The teaching of these applications is
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brought to a higher level through the use of 3D visualization with the incorporation of non-

invasive imaging of ECG output enhanced by immersive technologies in terms of a new 

digital educational tool with a multimodality approach and can be enriched with the use of 

artificial intelligence for the segmentation process. 

AI facilitates personalization by analyzing user behavior, enhancing engagement in 

various applications. It plays a key role in integrating diverse data streams like visual, sensor, 

and user input data, ensuring a coherent and functional environment. AI also enables more 

intuitive interactions through technologies like natural language processing and gesture 

recognition. As digital applications expand, AI ensures scalability and adaptability to new 

data types and volumes. Additionally, AI contributes to error reduction and quality assurance, 

critical in precision-dependent applications. In summary, AI’s role in immersive technologies 

is not just beneficial but fundamental to the development and enhancement of them. 

Discussion and Conclusions 

Artificial intelligence application in medicine, in particular in IC represents a 

significant advancement in the field, offering potential improvements in patient care, 

diagnosis, treatment, and procedural outcomes [99]. AI has to be taken into account in the 

process of integration into everyday practice regarding key ways and approaches such as 

enhanced diagnostic accuracy [100]. AI can analyze raw medical data and images with high 

precision, aiding in the detection and assessment of cardiovascular diseases. It can give a 

chance to identify patterns and anomalies that might be missed by the human eye. AI can 

process large datasets to predict the outcome of cardiac interventions, such as the likelihood 

of complications or success of a procedure. Moreover, one of the big developments for use in 

interventional cardiology concerns AI-driven robotic systems that can aid in performing 

precise movements during procedures such as coronary angioplasty, potentially improving 

outcomes and reducing physician fatigue. Indeed, such systems can give decision support, 

offering recommendations based on patient data, which may help in choosing the most 

appropriate interventional strategies. Based on patient datasets and clinical information, AI 

can assist in remote patient monitoring, analyzing data from wearable devices to detect signs 

of heart failure and arrhythmias. It can also improve post-procedural care, ensuring patients 

adhere to medications and lifestyle changes. AI gives a wide spectrum of opportunities, but 

its limitations also need to be considered, especially data dependency. AI systems require 
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large amounts of data for training. The quality and quantity of this data are crucial. Poor or 

biased data can lead to inaccurate or biased outcomes. Another very important issue is lack of

transparency, which can be a significant issue. AI, especially with its deep learning models, 

often operates as a “black box”, making it difficult for non-specialists to understand how it 

arrives at certain conclusions or decisions in fields that require trust and explain ability. 

To summarize, the combination of AI and IC has great promise to increase the 

efficiency and accuracy of cardiovascular imaging technologies combined with reducing 

costs of the whole process. However, their full integration and clinical application is still a 

challenge. In Table 1 the comparison of the neural networks that are applied in IC is shown. It

turns out that the most commonly used neural networks in IC are CNNs that enable the 

processing of ECG output to classify heart diseases with high accuracy. However, 

calculations using traditional neural networks, including CNNs, are very time and energy-

consuming. Yet AI, inspired by the structure of the brain, in its deployment of particular 

SNNs, is becoming a promising, energy-saving alternative to traditional ANNs. Furthermore, 

the difference in the performance of ANNs compared to SNNs translates into the application 

potential of SNNs. To fully exploit the potential of SNNs, including the ability to detect 

abnormalities in biomedical signals and design more specialized neural networks, their 

learning mechanisms need to be improved. Another important issue is connected with the fact

that the majority of researchers have so far used ready-made AI solutions in the field of 

medicine, without going into the principles of their operation. In other words, they have 

treated them as the contents of a black box, whereas, in order to be better understood and 

used, the application of AI-based methods requires clarification of their structures and 

principles of operations. AI-based algorithms can be adapted to fit data, in the hope that the 

used data is a good representation of the population it is meant for and, that the resulting 

algorithm can classify new data correctly. A major problem is still how the algorithm came to 

its conclusion, at best it can identify the parts of the input data that were used to come to that 

conclusion, but it will not be able to explain underlying mechanisms. Considering that AI is 

applied in such an important field as human health and life, it is necessary to ensure that 

operators who are using AI know the principles on which the results are obtained. 

Additionally, this knowledge will help in their correct interpretation, which is especially of 

huge importance in the context of efficient disease treatment. Another issue is connected with

the quality and availability of datasets, namely, access to electronic health records (EHRs). 

This is also connected with the risk of biases in medical data. Also, the internet segmentation 
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of medical data may include errors. On the other hand, taking into account ethical 

considerations and the regulatory landscape, AI raises numerous ethical concerns, including 

the inextricable connection of ethical risk points to technical risk points. Indeed, any future 

AI-based system must meet the ethical, technical, and legislative issues raised. Thus, the first 

apparent in this field has been done by formulating guidelines for AI-based systems. 

Additionally, in some countries, patients must give informed consent to sharing their medical 

data with AI algorithms and the AI-assisted diagnosis process, which is good practice.

In the future, AI-driven simulations will be utilized for training interventional 

cardiologists, providing them with a safe environment to practice complex procedures and 

enhance their skills. These simulations will allow cardiologists to engage in intricate medical 

procedures in a controlled setting. This scientific advancement will highlight the role of AI in 

augmenting the education and training of medical professionals, focusing on skill 

enhancement and proficiency in complex cardiac interventions. Integrating AI into immersive

technologies is crucial for transforming cardiology, simplifying complex 3D medical data 

analysis, and enhancing education and clinical practice with personalized, interactive, and 

efficient solutions. Additionally, novel approaches will involve the use of immersive 

technologies such as mixed reality or virtual reality, integrated with AI, for conducting 

remote multidisciplinary heart team meetings. AI will play a crucial role in facilitating these 

remote consultations and diagnostics, effectively bridging geographical gaps. This will enable

advanced IC care and expert consultations to be accessible remotely. The integration of AI 

and these cutting-edge technologies will be transformative, significantly improving 

healthcare delivery by gathering interdisciplinary teams from various locations, thereby 

expanding the reach and quality of cardiac care.

Artificial intelligence’s transformative role in IC, enhances diagnostic accuracy, 

procedural outcomes, remote monitoring, and education, while acknowledging the need for 

ethical considerations and a deeper understanding of AI mechanisms in healthcare is 

evidence-based on presented PRISMA Statement methodology.

Funding

This study was partially supported and financed by the National Center for Research 

and Development under Grant Lider No. LIDER/17/0064/L-11/19/NCBR/2020.

Acknowledgments

15



This study was supported and financed by the National Center for Research and 

Development under Grant Lider No. LIDER/17/0064/L-11/19/NCBR/2020. Research was 

also partially supported by the National Center for Research and Development (research grant

Infostrateg I/0042/2021-00) and Jagiellonian University Medical College research grants 

N41/DBS/000846. 

Conflict of interest: None declared

References

1. Langlais ÉL, Thériault-Lauzier P, Marquis-Gravel G, et al. Novel artificial 
intelligence applications in cardiology: current landscape, limitations, and the road to 
real-world applications. J Cardiovasc Transl Res. 2023; 16(3): 513–525, doi: 
10.1007/s12265-022-10260-x, indexed in Pubmed: 35460017.

2. Jaltotage B, Ihdayhid AR, Lan NSR, et al. Artificial intelligence in cardiology: 
an australian perspective. Heart Lung Circ. 2023; 32(8): 894–904, doi: 
10.1016/j.hlc.2023.06.703, indexed in Pubmed: 37507275.

3. Lindholm D, Holzmann M. Machine learning for improved detection of myocardial 
infarction in patients presenting with chest pain in the emergency department. J Am 
Coll Cardiol. 2018; 71(11, Supl): A225, doi: 10.1016/s0735-1097(18)30766-6.

4. Azzalini L, Vilca LM, Lombardo F, et al. Incidence of contrast-induced acute kidney 
injury in a large cohort of all-comers undergoing percutaneous coronary intervention: 
Comparison of five contrast media. Int J Cardiol. 2018; 273: 69–73, doi: 
10.1016/j.ijcard.2018.08.097, indexed in Pubmed: 30196995.

5. Nakamura T, Sasano T. Artificial intelligence and cardiology: Current status and 
perspective. J Cardiol. 2022; 79(3): 326–333, doi: 10.1016/j.jjcc.2021.11.017, indexed
in Pubmed: 34895982.

6. Fearon WF, Achenbach S, Engstrom T, et al. Accuracy of fractional flow reserve 
derived from coronary angiography. Circulation. 2019; 139(4): 477–484, doi: 
10.1161/CIRCULATIONAHA.118.037350, indexed in Pubmed: 30586699.

7. Du T, Xie L, Zhang H, et al. Training and validation of a deep learning architecture 
for the automatic analysis of coronary angiography. EuroIntervention. 2021; 17(1): 
32–40, doi: 10.4244/EIJ-D-20-00570, indexed in Pubmed: 32830647.

8. Garcia EV, Klein JL, Moncayo V, et al. Diagnostic performance of an artificial 
intelligence-driven cardiac-structured reporting system for myocardial perfusion 
SPECT imaging. J Nucl Cardiol. 2020; 27(5): 1652–1664, doi: 10.1007/s12350-018-
1432-3, indexed in Pubmed: 30209754.

9. Zhang Q, Burrage MK, Lukaschuk E, et al. Toward replacing late gadolinium 
enhancement with artificial intelligence virtual native enhancement for gadolinium-
free cardiovascular magnetic resonance tissue characterization in hypertrophic 
cardiomyopathy. Circulation. 2021; 144(8): 589–599, doi: 
10.1161/CIRCULATIONAHA.121.054432, indexed in Pubmed: 34229451.

10. van de Leur RR, van Sleuwen MT, Zwetsloot PP, et al. Automatic triage of twelve-
lead electrocardiograms using deep convolutional neural networks: a first 
implementation study. Eur Heart J - Digital Health. 2023, doi: 10.1093/ehjdh/ztad070.

16

http://dx.doi.org/10.1007/s12265-022-10260-x
http://dx.doi.org/10.1093/ehjdh/ztad070
https://www.ncbi.nlm.nih.gov/pubmed/34229451
http://dx.doi.org/10.1161/CIRCULATIONAHA.121.054432
https://www.ncbi.nlm.nih.gov/pubmed/30209754
http://dx.doi.org/10.1007/s12350-018-1432-3
http://dx.doi.org/10.1007/s12350-018-1432-3
https://www.ncbi.nlm.nih.gov/pubmed/32830647
http://dx.doi.org/10.4244/EIJ-D-20-00570
https://www.ncbi.nlm.nih.gov/pubmed/30586699
http://dx.doi.org/10.1161/CIRCULATIONAHA.118.037350
https://www.ncbi.nlm.nih.gov/pubmed/34895982
http://dx.doi.org/10.1016/j.jjcc.2021.11.017
https://www.ncbi.nlm.nih.gov/pubmed/30196995
http://dx.doi.org/10.1016/j.ijcard.2018.08.097
http://dx.doi.org/10.1016/s0735-1097(18)30766-6
https://www.ncbi.nlm.nih.gov/pubmed/37507275
http://dx.doi.org/10.1016/j.hlc.2023.06.703
https://www.ncbi.nlm.nih.gov/pubmed/35460017


11. Sardar P, Abbott JD, Kundu A, et al. Impact of artificial intelligence on interventional 
cardiology: from decision-making aid to advanced interventional procedure 
assistance. JACC Cardiovasc Interv. 2019; 12(14): 1293–1303, doi: 
10.1016/j.jcin.2019.04.048, indexed in Pubmed: 31320024.

12. Hashimoto D, Rosman G, Rus D, et al. Artificial intelligence in surgery: promises and
perils. Ann Surg. 2018; 268(1): 70–76, doi: 10.1097/sla.0000000000002693.

13. Liu Z, Li W, Li H, et al. Automated deep neural network-based identification, 
localization, and tracking of cardiac structures for ultrasound-guided interventional 
surgery. J Thorac Dis. 2023; 15(4): 2129–2140, doi: 10.21037/jtd-23-470, indexed in 
Pubmed: 37197521.

14. Giannis K, Thon C, Yang G, et al. Predicting 3D particles shapes based on 2D images 
by using convolutional neural network. Pow Tech. 2024; 432: 119122, doi: 
10.1016/j.powtec.2023.119122.

15. Proniewska K, Khokhar AA, Dudek D. Advanced imaging in interventional 
cardiology: mixed reality to optimize preprocedural planning and intraprocedural 
monitoring. Kardiol Pol. 2021; 79(3): 331–335, doi: 10.33963/KP.15814, indexed in 
Pubmed: 33599454.

16. Boopathiraja S, Punitha V, Kalavathi P, et al. Computational 2D and 3D medical 
image data compression models. Arch Comput Methods Eng. 2022; 29(2): 975–1007, 
doi: 10.1007/s11831-021-09602-w, indexed in Pubmed: 35342283.

17. PRISMA transparent reporting of systematic reviews and meta-analyses. 
http://www.prisma-statement.org/PRISMAStatement/PRISMAStatement?
AspxAutoDetectCookieSupport=1.

18. Yoneyama H, Nakajima K, Taki J, et al. Ability of artificial intelligence to diagnose 
coronary artery stenosis using hybrid images of coronary computed tomography 
angiography and myocardial perfusion SPECT. Eur J Hybrid Imaging. 2019; 3(1): 4, 
doi: 10.1186/s41824-019-0052-8, indexed in Pubmed: 34191159.

19. Kumar N, Kumar D. Machine learning based heart disease diagnosis using non-
invasive methods: a review. J Physics: Conference Series. 2021; 1950(1): 012081, 
doi: 10.1088/1742-6596/1950/1/012081.

20. Koulaouzidis G, Jadczyk T, Iakovidis DK, et al. Artificial intelligence in cardiology-a 
narrative review of current status. J Clin Med. 2022; 11(13), doi: 
10.3390/jcm11133910, indexed in Pubmed: 35807195.

21. Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network 
(ANN) modeling and its application in pharmaceutical research. J Pharm Biomed 
Anal. 2000; 22(5): 717–727, doi: 10.1016/s0731-7085(99)00272-1, indexed in 
Pubmed: 10815714.

22. Knackstedt C, Bekkers SC, Schummers G, et al. Fully automated versus standard 
tracking of left ventricular ejection fraction and longitudinal strain: The FAST-EFs 
multicenter study. J Am Coll Cardiol. 2015; 66(13): 1456–1466, doi: 
10.1016/j.jacc.2015.07.052, indexed in Pubmed: 26403342.

23. Narula S, Shameer K, Salem Omar AM, et al. Machine-learning algorithms to 
automate morphological and functional assessments in 2D echocardiography. J Am 
Coll Cardiol. 2016; 68(21): 2287–2295, doi: 10.1016/j.jacc.2016.08.062, indexed in 
Pubmed: 27884247.

24. Diller GP, Kempny A, Babu-Narayan SV, et al. Machine learning algorithms 
estimating prognosis and guiding therapy in adult congenital heart disease: data from 
a single tertiary centre including 10 019 patients. Eur Heart J. 2019; 40(13): 1069–
1077, doi: 10.1093/eurheartj/ehy915, indexed in Pubmed: 30689812.

17

https://www.ncbi.nlm.nih.gov/pubmed/30689812
http://dx.doi.org/10.1093/eurheartj/ehy915
https://www.ncbi.nlm.nih.gov/pubmed/27884247
http://dx.doi.org/10.1016/j.jacc.2016.08.062
https://www.ncbi.nlm.nih.gov/pubmed/26403342
http://dx.doi.org/10.1016/j.jacc.2015.07.052
https://www.ncbi.nlm.nih.gov/pubmed/10815714
http://dx.doi.org/10.1016/s0731-7085(99)00272-1
https://www.ncbi.nlm.nih.gov/pubmed/35807195
http://dx.doi.org/10.3390/jcm11133910
http://dx.doi.org/10.1088/1742-6596/1950/1/012081
https://www.ncbi.nlm.nih.gov/pubmed/34191159
http://dx.doi.org/10.1186/s41824-019-0052-8
http://www.prisma-statement.org/PRISMAStatement/PRISMAStatement?AspxAutoDetectCookieSupport=1
http://www.prisma-statement.org/PRISMAStatement/PRISMAStatement?AspxAutoDetectCookieSupport=1
https://www.ncbi.nlm.nih.gov/pubmed/35342283
http://dx.doi.org/10.1007/s11831-021-09602-w
https://www.ncbi.nlm.nih.gov/pubmed/33599454
http://dx.doi.org/10.33963/KP.15814
http://dx.doi.org/10.1016/j.powtec.2023.119122
https://www.ncbi.nlm.nih.gov/pubmed/37197521
http://dx.doi.org/10.21037/jtd-23-470
http://dx.doi.org/10.1097/sla.0000000000002693
https://www.ncbi.nlm.nih.gov/pubmed/31320024
http://dx.doi.org/10.1016/j.jcin.2019.04.048


25. Ballinger B, Hsieh J, Singh A, et al. DeepHeart: semi-supervised sequence learning 
for cardiovascular risk prediction. Proceedings of the AAAI Conference on Artificial 
Intelligence. 2018; 32(1), doi: 10.1609/aaai.v32i1.11891.

26. Bahrami N, Retson T, Blansit K, et al. Automated selection of myocardial inversion 
time with a convolutional neural network: Spatial temporal ensemble myocardium 
inversion network (STEMI-NET). Magn Reson Med. 2019; 81(5): 3283–3291, doi: 
10.1002/mrm.27680, indexed in Pubmed: 30714197.

27. Hasbullah S, Zahid MM, Mandala S. Detection of myocardial infarction using hybrid 
models of convolutional neural network and recurrent neural network. 
BioMedInformatics. 2023; 3(2): 478–492, doi: 10.3390/biomedinformatics3020033.

28. Du T, Xie L, Zhang H, et al. Training and validation of a deep learning architecture 
for the automatic analysis of coronary angiography. EuroIntervention. 2021; 17(1): 
32–40, doi: 10.4244/EIJ-D-20-00570, indexed in Pubmed: 32830647.

29. Masuda Y, Ishikawa R, Tanaka T, et al. CNN-based fully automatic mitral valve 
extraction using CT images and existence probability maps. Phys Med Biol. 2024; 
69(3), doi: 10.1088/1361-6560/ad162b, indexed in Pubmed: 38100829.

30. Seetharam K, Shrestha S, Sengupta PP. Cardiovascular imaging and intervention 
through the lens of artificial intelligence. Interv Cardiol. 2021; 16: e31, doi: 
10.15420/icr.2020.04, indexed in Pubmed: 34754333.

31. Madani A, Arnaout R, Mofrad M, et al. Fast and accurate view classification of 
echocardiograms using deep learning. NPJ Digit Med. 2018; 1, doi: 10.1038/s41746-
017-0013-1, indexed in Pubmed: 30828647.

32. Cuocolo R, Perillo T, De Rosa E, et al. Current applications of big data and machine 
learning in cardiology. J Geriatr Cardiol. 2019; 16(8): 601–607, doi: 
10.11909/j.issn.1671-5411.2019.08.002, indexed in Pubmed: 31555327.

33. Akinyemi T, Omisore O, Du W, et al. Interventionalist hand motion recognition with 
convolutional neural network in robot-assisted coronary interventions. IEEE Sensors 
J. 2023; 23(15): 17725–17736, doi: 10.1109/jsen.2023.3281009.

34. Maji P, Patra R, Dhibar K, et al. SNN based neuromorphic computing towards 
healthcare applications. IFIP Advances in Information and Communication 
Technology. 2023: 261–271, doi: 10.1007/978-3-031-45878-1_18.

35. Chu H, Yan Y, Gan L, et al. A neuromorphic processing system with spike-driven 
SNN processor for wearable ECG classification. IEEE Trans Biomed Circuits Syst. 
2022; 16(4): 511–523, doi: 10.1109/TBCAS.2022.3189364, indexed in Pubmed: 
35802543.

36. Corradi F, Pande S, Stuijt J, et al. ECG-based heartbeat classification in neuromorphic
hardware. 2019 International Joint Conference on Neural Networks (IJCNN). 2019, 
doi: 10.1109/ijcnn.2019.8852279.

37. Kovacs P, Samiee K. Arrhythmia detection using spiking variable projection neural 
networks. Computing in Cardiology Conference (CinC). 2022: 4–7, doi: 
10.22489/cinc.2022.049.

38. Feng Y, Geng S, Chu J, et al. Building and training a deep spiking neural network for 
ECG classification. Biomedical Signal Processing and Control. 2022; 77: 103749, 
doi: 10.1016/j.bspc.2022.103749.

39. Miikkulainen R, Liang J, Meyerson E, et al. Artificial intelligence in the age of neural 
networks and brain computing. Academic Press. 2024: 269–287, doi: 10.1016/c2021-
0-01760-0.

40. Subhan S, Malik J, Haq AUl, et al. Role of artificial intelligence and machine learning
in interventional cardiology. Curr Probl Cardiol. 2023; 48(7): 101698, doi: 
10.1016/j.cpcardiol.2023.101698, indexed in Pubmed: 36921654.

18

https://www.ncbi.nlm.nih.gov/pubmed/36921654
http://dx.doi.org/10.1016/j.cpcardiol.2023.101698
http://dx.doi.org/10.1016/c2021-0-01760-0
http://dx.doi.org/10.1016/c2021-0-01760-0
http://dx.doi.org/10.1016/j.bspc.2022.103749
http://dx.doi.org/10.22489/cinc.2022.049
http://dx.doi.org/10.1109/ijcnn.2019.8852279
https://www.ncbi.nlm.nih.gov/pubmed/35802543
http://dx.doi.org/10.1109/TBCAS.2022.3189364
http://dx.doi.org/10.1007/978-3-031-45878-1_18
http://dx.doi.org/10.1109/jsen.2023.3281009
https://www.ncbi.nlm.nih.gov/pubmed/31555327
http://dx.doi.org/10.11909/j.issn.1671-5411.2019.08.002
https://www.ncbi.nlm.nih.gov/pubmed/30828647
http://dx.doi.org/10.1038/s41746-017-0013-1
http://dx.doi.org/10.1038/s41746-017-0013-1
https://www.ncbi.nlm.nih.gov/pubmed/34754333
http://dx.doi.org/10.15420/icr.2020.04
https://www.ncbi.nlm.nih.gov/pubmed/38100829
http://dx.doi.org/10.1088/1361-6560/ad162b
https://www.ncbi.nlm.nih.gov/pubmed/32830647
http://dx.doi.org/10.4244/EIJ-D-20-00570
http://dx.doi.org/10.3390/biomedinformatics3020033
https://www.ncbi.nlm.nih.gov/pubmed/30714197
http://dx.doi.org/10.1002/mrm.27680
http://dx.doi.org/10.1609/aaai.v32i1.11891


41. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with 
electronic health records. NPJ Digit Med. 2018; 1: 18, doi: 10.1038/s41746-018-
0029-1, indexed in Pubmed: 31304302.

42. Itu L, Rapaka S, Passerini T, et al. A machine-learning approach for computation of 
fractional flow reserve from coronary computed tomography. J Appl Physiol (1985). 
2016; 121(1): 42–52, doi: 10.1152/japplphysiol.00752.2015, indexed in Pubmed: 
27079692.

43. Coenen A, Lubbers MM, Kurata A, et al. Fractional flow reserve computed from 
noninvasive CT angiography data: diagnostic performance of an on-site clinician-
operated computational fluid dynamics algorithm. Radiology. 2015; 274(3): 674–683, 
doi: 10.1148/radiol.14140992, indexed in Pubmed: 25322342.

44. Joloudari JH, Saadatfar H, GhasemiGol M, et al. FCM-DNN: diagnosing coronary 
artery disease by deep accuracy fuzzy C-means clustering model. Math Biosci Eng. 
2022; 19(4): 3609–3635, doi: 10.3934/mbe.2022167, indexed in Pubmed: 35341267.

45. Bello GA, Dawes TJW, Duan J, et al. Deep learning cardiac motion analysis for 
human survival prediction. Nat Mach Intell. 2019; 1: 95–104, doi: 10.1038/s42256-
019-0019-2, indexed in Pubmed: 30801055.

46. Ben Ali W, Pesaranghader A, Avram R, et al. Implementing machine learning in 
interventional cardiology: the benefits are worth the trouble. Front Cardiovasc Med. 
2021; 8: 711401, doi: 10.3389/fcvm.2021.711401, indexed in Pubmed: 34957230.

47. Wolterink JM, Leiner T, Viergever MA, et al. Generative adversarial networks for 
noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017; 36(12): 2536–2545, 
doi: 10.1109/TMI.2017.2708987, indexed in Pubmed: 28574346.

48. Kang E, Koo HJ, Yang DH, et al. Cycle-consistent adversarial denoising network for 
multiphase coronary CT angiography. Med Phys. 2019; 46(2): 550–562, doi: 
10.1002/mp.13284, indexed in Pubmed: 30449055.

49. Isin A, Ozdalili S. Cardiac arrhythmia detection using deep learning. Procedia 
Computer Science. 2017; 120: 268–275, doi: 10.1016/j.procs.2017.11.238.

50. Bavani B, Nirmala Sugirtha RS, Selvaraj NSR, et al. Design engineering 
classification of arrhythmia disease using enhanced RNN model. Design Engineering 
(Toronto). 2021; 2021: 4062–4072.

51. Singh S, Pandey S, Pawar U, et al. Classification of ECG Arrhythmia using Recurrent 
Neural Networks. Procedia Computer Science. 2018; 132: 1290–1297, doi: 
10.1016/j.procs.2018.05.045.

52. Sujadevi VG, Soman KP, Vinayakumar R. (editors). Real-Time Detection of Atrial 
Fibrillation from Short Time Single Lead ECG Traces Using Recurrent Neural 
Networks. Intelligent Systems Technologies and Applications. Springer International 
Publishing, Cham 2018.

53. Ohta Y, Yunaga H, Kitao S, et al. Detection and classification of myocardial delayed 
enhancement patterns on MR images with deep neural networks: a feasibility study. 
Radiol Artif Intell. 2019; 1(3): e180061, doi: 10.1148/ryai.2019180061, indexed in 
Pubmed: 33937791.

54. Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile 
dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 
2019; 25(1): 70–74, doi: 10.1038/s41591-018-0240-2, indexed in Pubmed: 30617318.

55. Zhao Y, Xiong J, Hou Y, et al. Early detection of ST-segment elevated myocardial 
infarction by artificial intelligence with 12-lead electrocardiogram. Int J Cardiol. 
2020; 317: 223–230, doi: 10.1016/j.ijcard.2020.04.089, indexed in Pubmed: 
32376417.

19

https://www.ncbi.nlm.nih.gov/pubmed/32376417
http://dx.doi.org/10.1016/j.ijcard.2020.04.089
https://www.ncbi.nlm.nih.gov/pubmed/30617318
http://dx.doi.org/10.1038/s41591-018-0240-2
https://www.ncbi.nlm.nih.gov/pubmed/33937791
http://dx.doi.org/10.1148/ryai.2019180061
http://dx.doi.org/10.1016/j.procs.2018.05.045
http://dx.doi.org/10.1016/j.procs.2017.11.238
https://www.ncbi.nlm.nih.gov/pubmed/30449055
http://dx.doi.org/10.1002/mp.13284
https://www.ncbi.nlm.nih.gov/pubmed/28574346
http://dx.doi.org/10.1109/TMI.2017.2708987
https://www.ncbi.nlm.nih.gov/pubmed/34957230
http://dx.doi.org/10.3389/fcvm.2021.711401
https://www.ncbi.nlm.nih.gov/pubmed/30801055
http://dx.doi.org/10.1038/s42256-019-0019-2
http://dx.doi.org/10.1038/s42256-019-0019-2
https://www.ncbi.nlm.nih.gov/pubmed/35341267
http://dx.doi.org/10.3934/mbe.2022167
https://www.ncbi.nlm.nih.gov/pubmed/25322342
http://dx.doi.org/10.1148/radiol.14140992
https://www.ncbi.nlm.nih.gov/pubmed/27079692
http://dx.doi.org/10.1152/japplphysiol.00752.2015
https://www.ncbi.nlm.nih.gov/pubmed/31304302
http://dx.doi.org/10.1038/s41746-018-0029-1
http://dx.doi.org/10.1038/s41746-018-0029-1


56. Shaker A, Tantawi M, Shedeed H, et al. Generalization of convolutional neural 
networks for ECG classification using generative adversarial networks. IEEE Access. 
2020; 8: 35592–35605, doi: 10.1109/access.2020.2974712.

57. Yıldırım Ö, Pławiak P, Tan RS, et al. Arrhythmia detection using deep convolutional 
neural network with long duration ECG signals. Comput Biol Med. 2018; 102: 411–
420, doi: 10.1016/j.compbiomed.2018.09.009, indexed in Pubmed: 30245122.

58. Acharya UR, Oh SL, Hagiwara Y, et al. A deep convolutional neural network model to
classify heartbeats. Comput Biol Med. 2017; 89: 389–396, doi: 
10.1016/j.compbiomed.2017.08.022, indexed in Pubmed: 28869899.

59. Mousavi S, Fotoohinasab A, Afghah F. Single-modal and multi-modal false 
arrhythmia alarm reduction using attention-based convolutional and recurrent neural 
networks. PLoS One. 2020; 15(1): e0226990, doi: 10.1371/journal.pone.0226990, 
indexed in Pubmed: 31923226.

60. Oh SL, Ng EYK, Tan RuS, et al. Automated diagnosis of arrhythmia using 
combination of CNN and LSTM techniques with variable length heart beats. Comput 
Biol Med. 2018; 102: 278–287, doi: 10.1016/j.compbiomed.2018.06.002, indexed in 
Pubmed: 29903630.

61. Liu W, Huang Q, Chang S, et al. Multiple-feature-branch convolutional neural 
network for myocardial infarction diagnosis using electrocardiogram. Biomedical 
Signal Processing and Control. 2018; 45: 22–32, doi: 10.1016/j.bspc.2018.05.013.

62. Acharya U, Fujita H, Lih O, et al. Automated detection of coronary artery disease 
using different durations of ECG segments with convolutional neural network. 
Knowledge-Based Syst. 2017; 132: 62–71, doi: 10.1016/j.knosys.2017.06.003.

63. Santini G, Latta DD, Martini N, Valvano G, Gori A, Ripoli A. An automatic deep 
learning approach for coronary artery calcium segmentation. EMBEC & NBC 2017. 
Springer, Singapore 2018.

64. Zreik M, Lessmann N, van Hamersvelt RW, et al. Deep learning analysis of the 
myocardium in coronary CT angiography for identification of patients with 
functionally significant coronary artery stenosis. Med Image Anal. 2018; 44: 72–85, 
doi: 10.1016/j.media.2017.11.008, indexed in Pubmed: 29197253.

65. Moon JH, Lee DaY, Cha WC, et al. Automatic stenosis recognition from coronary 
angiography using convolutional neural networks. Comput Methods Programs 
Biomed. 2021; 198: 105819, doi: 10.1016/j.cmpb.2020.105819, indexed in Pubmed: 
33213972.

66. Ciusdel C, Turcea A, Puiu A, et al. Deep neural networks for ECG-free cardiac phase 
and end-diastolic frame detection on coronary angiographies. Comput Med Imaging 
Graph. 2020; 84: 101749, doi: 10.1016/j.compmedimag.2020.101749, indexed in 
Pubmed: 32623295.

67. Ovalle-Magallanes E, Avina-Cervantes JG, Cruz-Aceves I, et al. Improving 
convolutional neural network learning based on a hierarchical bezier generative model
for stenosis detection in X-ray images. Comput Methods Programs Biomed. 2022; 
219: 106767, doi: 10.1016/j.cmpb.2022.106767, indexed in Pubmed: 35364481.

68. Liu X, Du T, Zhang H, et al. Detection and classification of chronic total occlusion 
lesions using deep learning. Annu Int Conf IEEE Eng Med Biol Soc. 2019; 2019: 
828–831, doi: 10.1109/EMBC.2019.8856696, indexed in Pubmed: 31946023.

69. Danilov VV, Klyshnikov KYu, Gerget OM, et al. Real-time coronary artery stenosis 
detection based on modern neural networks. Sci Rep. 2021; 11(1): 7582, doi: 
10.1038/s41598-021-87174-2, indexed in Pubmed: 33828165.

20

https://www.ncbi.nlm.nih.gov/pubmed/33828165
http://dx.doi.org/10.1038/s41598-021-87174-2
https://www.ncbi.nlm.nih.gov/pubmed/31946023
http://dx.doi.org/10.1109/EMBC.2019.8856696
https://www.ncbi.nlm.nih.gov/pubmed/35364481
http://dx.doi.org/10.1016/j.cmpb.2022.106767
https://www.ncbi.nlm.nih.gov/pubmed/32623295
http://dx.doi.org/10.1016/j.compmedimag.2020.101749
https://www.ncbi.nlm.nih.gov/pubmed/33213972
http://dx.doi.org/10.1016/j.cmpb.2020.105819
https://www.ncbi.nlm.nih.gov/pubmed/29197253
http://dx.doi.org/10.1016/j.media.2017.11.008
http://dx.doi.org/10.1016/j.knosys.2017.06.003
http://dx.doi.org/10.1016/j.bspc.2018.05.013
https://www.ncbi.nlm.nih.gov/pubmed/29903630
http://dx.doi.org/10.1016/j.compbiomed.2018.06.002
https://www.ncbi.nlm.nih.gov/pubmed/31923226
http://dx.doi.org/10.1371/journal.pone.0226990
https://www.ncbi.nlm.nih.gov/pubmed/28869899
http://dx.doi.org/10.1016/j.compbiomed.2017.08.022
https://www.ncbi.nlm.nih.gov/pubmed/30245122
http://dx.doi.org/10.1016/j.compbiomed.2018.09.009
http://dx.doi.org/10.1109/access.2020.2974712


70. Izci E, Ozdemir M, Degirmenci M, et al. Cardiac arrhythmia detection from 2D ECG 
images by using deep learning technique. 2019 Medical Technologies Congress 
(TIPTEKNO). 2019, doi: 10.1109/tiptekno.2019.8895011.

71. Kaouter K, Mohamed T, Sofiene D, et al. Full training convolutional neural network 
for ECG signals classification. AIP Conference Proceedings. 2019, doi: 
10.1063/1.5138541.

72. AL-Huseiny M, Abbas N, Sajit A. Diagnosis of arrhythmia based on ECG analysis 
using CNN. Bulletin of Electrical Engineering and Informatics. 2020; 9(3): 988–995, 
doi: 10.11591/eei.v9i3.2172.

73. Kachuee M, Fazeli S, Sarrafzadeh M. ECG heartbeat classification: a deep 
transferable representation. 2018 IEEE International Conference on Healthcare 
Informatics (ICHI). 2018, doi: 10.1109/ichi.2018.00092.

74. Kamaleswaran R, Mahajan R, Akbilgic O. A robust deep convolutional neural 
network for the classification of abnormal cardiac rhythm using single lead 
electrocardiograms of variable length. Physiol Meas. 2018; 39(3): 035006, doi: 
10.1088/1361-6579/aaaa9d, indexed in Pubmed: 29369044.

75. Baloglu U, Talo M, Yildirim O, et al. Classification of myocardial infarction with 
multi-lead ECG signals and deep CNN. Pattern Recognition Letters. 2019; 122: 23–
30, doi: 10.1016/j.patrec.2019.02.016.

76. Amirshahi A, Hashemi M. ECG Classification Algorithm Based on STDP and R-
STDP Neural Networks for Real-Time Monitoring on Ultra Low-Power Personal 
Wearable Devices. IEEE Trans Biomed Circuits Syst. 2019; 13(6): 1483–1493, doi: 
10.1109/TBCAS.2019.2948920, indexed in Pubmed: 31647445.

77. Xu SS, Mak MW, Cheung CC. Towards end-to-end ECG classification with raw 
signal extraction and deep neural networks. IEEE J Biomed Health Inform. 2019; 
23(4): 1574–1584, doi: 10.1109/JBHI.2018.2871510, indexed in Pubmed: 30235153.

78. Kwon JM, Kim KH, Jeon KiH, et al. Development and validation of deep-learning 
algorithm for electrocardiography-based heart failure identification. Korean Circ J. 
2019; 49(7): 629–639, doi: 10.4070/kcj.2018.0446, indexed in Pubmed: 31074221.

79. Pregowska Agnieszka and Perkins Mark. Artificial Intelligence in Medical Education:
Technology and Ethical Risk. Available at SSRN. https://ssrn.com/abstract=4643763 
or http://dx.doi.org/10.2139/ssrn.4643763 (November 24, 2023).

80. Leonelli S. Learning from Data Journeys. In: Leonelli S, Temini N, editors. Data 
Journeys in the Sciences. Sringer International Publishing, Cham 2020: 1–24.

81. Thirumalaikolundusubramanian P, Meenakshisundaram R, Senthilkumaran S. Ethics, 
legality, and education in the practice of cardiology. Heart Toxins. 2015: 595–623, 
doi: 10.1016/b978-0-12-416595-3.00023-2.

82. Zicari R, Brusseau J, Blomberg S, et al. On assessing trustworthy AI in healthcare. 
Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. 
Frontiers in Human Dynamics. 2021; 3, doi: 10.3389/fhumd.2021.673104.

83. Coorey G, Figtree GA, Fletcher DF, et al. The health digital twin to tackle 
cardiovascular disease-a review of an emerging interdisciplinary field. NPJ Digit 
Med. 2022; 5(1): 126, doi: 10.1038/s41746-022-00640-7, indexed in Pubmed: 
36028526.

84. Ledziński Ł, Grześk G. Artificial Intelligence as an Emerging Tool for Cardiologists. 
The 2nd International Electronic Conference on Biomedicines. Medical Sciences 
Forum. 2023; 21(1), doi: 10.3390/ecb2023-14339.

85. Monlezun DJ, Sinyavskiy O, Peters N, et al. Artificial intelligence-augmented 
propensity score, cost effectiveness and computational ethical analysis of cardiac 

21

http://dx.doi.org/10.3390/ecb2023-14339
https://www.ncbi.nlm.nih.gov/pubmed/36028526
http://dx.doi.org/10.1038/s41746-022-00640-7
http://dx.doi.org/10.3389/fhumd.2021.673104
http://dx.doi.org/10.1016/b978-0-12-416595-3.00023-2
https://ssrn.com/abstract=4643763%20or%20http:/dx.doi.org/10.2139/ssrn.4643763
https://ssrn.com/abstract=4643763%20or%20http:/dx.doi.org/10.2139/ssrn.4643763
https://www.ncbi.nlm.nih.gov/pubmed/31074221
http://dx.doi.org/10.4070/kcj.2018.0446
https://www.ncbi.nlm.nih.gov/pubmed/30235153
http://dx.doi.org/10.1109/JBHI.2018.2871510
https://www.ncbi.nlm.nih.gov/pubmed/31647445
http://dx.doi.org/10.1109/TBCAS.2019.2948920
http://dx.doi.org/10.1016/j.patrec.2019.02.016
https://www.ncbi.nlm.nih.gov/pubmed/29369044
http://dx.doi.org/10.1088/1361-6579/aaaa9d
http://dx.doi.org/10.1109/ichi.2018.00092
http://dx.doi.org/10.11591/eei.v9i3.2172
http://dx.doi.org/10.1063/1.5138541
http://dx.doi.org/10.1109/tiptekno.2019.8895011


arrest and active cancer with novel mortality predictive score. Medicina (Kaunas). 
2022; 58(8), doi: 10.3390/medicina58081039, indexed in Pubmed: 36013506.

86. Aqel S, Syaj S, Al-Bzour A, et al. Artificial intelligence and machine learning 
applications in sudden cardiac arrest prediction and management: a comprehensive 
review. Curr Cardiol Rep. 2023; 25(11): 1391–1396, doi: 10.1007/s11886-023-01964-
w, indexed in Pubmed: 37792134.

87. Braun M. Represent me: please! Towards an ethics of digital twins in medicine. J Med
Ethics. 2021 [Epub ahead of print], doi: 10.1136/medethics-2020-106134, indexed in 
Pubmed: 33722986.

88. Chamola V, Hassija V, Sulthana A, et al. A review of trustworthy and explainable 
artificial intelligence (XAI). IEEE Access. 2023; 11: 78994–79015, doi: 
10.1109/access.2023.3294569.

89. Rachovitsa A, Johann N. The human rights implications of the use of AI in the digital 
welfare state: lessons learned from the Dutch SyRI Case. Human Rights Law Review.
2022; 22(2): 1–15, doi: 10.1093/hrlr/ngac010.

90. Assessment List for Trustworthy Artificial Intelligence (ALTAI) for self-assessment. 
91. Artificial intelligence ac. 
92. Floridi L. Establishing the rules for building trustworthy AI. Nature Machine 

Intelligence. 2019; 1(6): 261–262, doi: 10.1038/s42256-019-0055-y.
93. The three challenges of AI regulation. https://www.brookings.edu/articles/the-three-

challenges-of-ai-regulation.
94. Zhang K, Gao Y, Lv J, et al. Artificial intelligence-based spiral CT 3D reconstruction 

in transcatheter aortic valve implantation. Comput Math Methods Med. 2022; 2022: 
5794681, doi: 10.1155/2022/5794681, indexed in Pubmed: 35572825.

95. Banerjee A, Camps J, Zacur E, et al. A completely automated pipeline for 3D 
reconstruction of human heart from 2D cine magnetic resonance slices. Philos Trans A
Math Phys Eng Sci. 2021; 379(2212): 20200257, doi: 10.1098/rsta.2020.0257, 
indexed in Pubmed: 34689630.

96. Baur C, Milletari F, Belagiannis V, et al. Automatic 3D reconstruction of 
electrophysiology catheters from two-view monoplane C-arm image sequences. Int J 
Comput Assist Radiol Surg. 2016; 11(7): 1319–1328, doi: 10.1007/s11548-015-1325-
8, indexed in Pubmed: 26615429.

97. Mørup SD, Stowe J, Precht H, et al. Design of a 3D printed coronary artery model for 
CT optimization. Radiography (Lond). 2022; 28(2): 426–432, doi: 
10.1016/j.radi.2021.09.001, indexed in Pubmed: 34556417.

98. Jiang B, Guo N, Ge Y, et al. Development and application of artificial intelligence in 
cardiac imaging. Br J Radiol. 2020; 93(1113): 20190812, doi: 10.1259/bjr.20190812, 
indexed in Pubmed: 32017605.

99. Yasmin F, Shah SM, Naeem A, et al. Artificial intelligence in the diagnosis and 
detection of heart failure: the past, present, and future. Rev Cardiovasc Med. 2021; 
22(4): 1095–1113, doi: 10.31083/j.rcm2204121, indexed in Pubmed: 34957756.

100. Kanjee Z, Crowe B, Rodman A. Accuracy of a generative artificial intelligence
model in a complex diagnostic challenge. JAMA. 2023; 330(1): 78–80, doi: 
10.1001/jama.2023.8288, indexed in Pubmed: 37318797.

22

https://www.ncbi.nlm.nih.gov/pubmed/37318797
http://dx.doi.org/10.1001/jama.2023.8288
https://www.ncbi.nlm.nih.gov/pubmed/34957756
http://dx.doi.org/10.31083/j.rcm2204121
https://www.ncbi.nlm.nih.gov/pubmed/32017605
http://dx.doi.org/10.1259/bjr.20190812
https://www.ncbi.nlm.nih.gov/pubmed/34556417
http://dx.doi.org/10.1016/j.radi.2021.09.001
https://www.ncbi.nlm.nih.gov/pubmed/26615429
http://dx.doi.org/10.1007/s11548-015-1325-8
http://dx.doi.org/10.1007/s11548-015-1325-8
https://www.ncbi.nlm.nih.gov/pubmed/34689630
http://dx.doi.org/10.1098/rsta.2020.0257
https://www.ncbi.nlm.nih.gov/pubmed/35572825
http://dx.doi.org/10.1155/2022/5794681
https://www.brookings.edu/articles/the-three-challenges-of-ai-regulation
https://www.brookings.edu/articles/the-three-challenges-of-ai-regulation
http://dx.doi.org/10.1038/s42256-019-0055-y
http://dx.doi.org/10.1093/hrlr/ngac010
http://dx.doi.org/10.1109/access.2023.3294569
https://www.ncbi.nlm.nih.gov/pubmed/33722986
http://dx.doi.org/10.1136/medethics-2020-106134
https://www.ncbi.nlm.nih.gov/pubmed/37792134
http://dx.doi.org/10.1007/s11886-023-01964-w
http://dx.doi.org/10.1007/s11886-023-01964-w
https://www.ncbi.nlm.nih.gov/pubmed/36013506
http://dx.doi.org/10.3390/medicina58081039


Table 1. A comparison of the neural networks that are applied in interventional cardiology.

Netwo
rk type

Type of evaluation 
metrics

Application field Data sets — 
training/testing/valida
tion sets [%] or 
training/testing sets 
[%]

Input 
parameters

Out 
parameters

References

ANN Accuracy

92.00%

Automatic 
detection of 
arrhythmia on 
ECG

MIT-BIH arrhythmia 
database, ECG 
recording

50/50

ECG records Classification 
of three 
different 
cardiac 
conditions 
(normal, 
RBBB, and 
paced beats)

Isin, 
Ozdalili, 
2017 [49]

RNN Diagnosis, accuracy 
97.00%

Patient presentation 
at a MDT 90.20%

Estimating 
prognosis and 
guiding therapy 
in ACHD and 
pulmonary 
hypertension

Dataset, which consists 
of 10,019 adult patients 
under follow-up at the 
Royal Brompton 
Hospital London, from 
2000 to 2018

The division of data 
into training, testing, or
validation sets is not 
specified

Clinical and 
demographic data,
ECG parameters, 
cardiopulmonary 
exercise testing, 
and selected 
laboratory 
markers

Categorization 
of diagnostic 
group, disease 
complexity, 
NYHA class, 
need for 
discussion at 
MDT meetings

Diller at al., 
2019 [24]

RNN Accuracy 91.00% Classification of 
arrhythmia-based
ECG records

The heart disease 
dataset collected from 
Kaggle consists of 303 
records 

The division of data 
into training, testing, or
validation sets is not 
specified

ECG signals Classification 
of heart 
arrhythmias 

Bavani, 
2021 [50]

RNN Accuracy 85.40% Classification of 
arrhythmia based 
on ECG 
recordings

MIT-BIH Arrhythmia 
Database, ECG 
recordings

The division of data 
into training, testing, or
validation sets is not 
specified

ECG signals Classification 
of ECG 
arrhythmia 

Singh et al., 
2018 [51]

RNN Accuracy 95.00% Real-time 
detection of AF 
from short-time 
single lead ECG 
traces

MIT-BIH AFDB and 
MIT-BIH NSRDB

The division of data 
into training, testing, or
validation sets is not 
specified

ECG signals Classification 
of ECG traces 
NSR and AF 

Sujadevi et 
al., 2018 
[52]

CNN Accuracy 91.70% Recognition of 
different standard
echocardiographi
c views

A total of 834,267 
images from 15 views 

80/10/10

Echocardiographi
c images from 
various 
echocardiographic
views, including 
parasternal long 
axis, RV inflow, 
basal short axis, 
etc.

Multi-category 
classification of
15 
echocardiograp
hic views

Madani et 
al., 2018 
[31]
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CNN Accuracy

AlexNet: 78.90% 

GoogLeNet: 79.50%

ResNet-152: 82.10%

Detection and 
classification of 
MDE patterns on 
MRI 

1995 MDE images from
200 patients

The division of data 
into training, testing, or
validation sets is not 
specified

MDE images 
classified into 7 
categories

Classification 
of MDE 
patterns

Otha et al., 
2019 [53]

CNN Accuracy 85.70% Identifying 
asymptomatic LV
systolic 
dysfunction using
ECG recordings

Patients at the Mayo 
Clinic 625,326 patients 
screened

40/10/50

12-lead ECG data 
paired with TTE 
data

Classification 
of EF as ≤ 35% 
or > 35%

Attia et al., 
2019 [54]

CCNN

{CNN 
?} 

Accuracy 99.01% Automatic 
detection of 
STEMI using 
ECG recordings

Dataset of 667 STEMI 
ECGs and 7571 control 
ECGs training set (5697
ECGs) 

70/30

12-lead ECG data 
with 
preprocessing and
data-expanding 
techniques

STEMI 
detection and 
classification

Zhao et al., 
2020 [55]

CNN 
combi
ned 
with 
GAN 

Accuracy 98.30% Classific 
arrhythmia using 
ECG recordings

ECG recordings from 
the MIT-BIH 
arrhythmia dataset 

The division of data 
into training, testing, or
validation sets is not 
specified

Single lead ECG 
recordings

Classification 
of ECG 
heartbeats into 
15 different 
arrhythmia 
classes

Shaker et 
al., 2020 
[56]

CNN Accuracy 91.33% Detection of 
cardiac 
arrhythmias 
based on ECG 
signal analysis

1,000 ECG signal from 
the MIT-BIH 
arrhythmia database 

The division of data 
into training, testing, or
validation sets is not 
specified

Long-duration 
raw ECG signals, 
specifically 10-
second signal 
fragments, 
without QRS 
detection and 
segmentation

Classification 
of the ECG 
signals into 17 
different 
cardiac 
arrhythmia 
disorders

Yıldırım et 
al., 2018 
[57]

CNN Accuracy 94.03% Classification of 
heartbeats in 
different 
categories in 
ECG signals

The study used 109,449
single lead/beat ECG 
signals from 47 
subjects. The signals 
are from the 
PhysioBank MIT-BIH 
arrhythmia database

The division of data 
into training, testing, or
validation sets is not 
specified

Single lead ECG 
signals

Classification 
of heartbeats 
into 5 AAMI 
classes: non-
ectopic, 
supraventricula
r ectopic, 
ventricular 
ectopic, fusion, 
and unknown 
beats

Acharya, 
2017 [58]

CNN-
attenti
on-
LSTM

Accuracy 93.75% Reduction of 
false arrhythmia 
alarms in ICUs 
using single-lead 
ECG segments

The study used a 
training set of 750 
recordings from the 
PhysioNet computing in
cardiology challenge 
2015

The division of data 
into training, testing, or
validation sets is not 
specified

Single-lead ECG 
segments, along 
with other 
biosignals like 
photoplethysmogr
am and arterial 
blood pressure 
waveform

Classification 
of ICU alarms 
into 'true' or 
'false' 
categories, 
specifically 
targeting 5 
types of life-
threatening 
arrhythmia 
alarms

Mousavi et 
al., 2020 
[59]

CNN-
LSTM

Accuracy 98.10% Automated 
diagnosis of 
arrhythmia using 

The study used 16,499 
ECG segments from the
MIT-BIH arrhythmia 

Modified limb 
lead II ECG 
signals, 

Classification 
of ECG 
segments into 5

Oh et al., 
2018 [60]
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ECG signals database 

The division of data 
into training, testing, or
validation sets is not 
specified

segmented with 
99 samples to the 
left of the first R 
peak and 160 
samples to the 
right of the last 
identified 
uninterrupted R 
peak

arrhythmia 
classes (normal,
LBBB, RBBB, 
APB, PVC)

CNN Accuracy 96.00% MI detection via 
ECGs

The study used actual 
ECG datasets from the 
PTB diagnostic 
database, with a focus 
on generalized anterior 
MI

The division of data 
into training, testing, or
validation sets is not 
specified

Multilead ECG 
data, with 
preprocessing 
involving fuzzy 
information 
granulation and 
beat segmentation

Detection of MI Liu et al., 
2018 [61]

CNN Accuracy 

Class-based MI 
detection: 99.95%

Patient-specific MI 
detection: 98.79%

MI detection and 
localization using
12-lead ECG

The study used 12-lead 
ECG signals from the 
PTB diagnostic ECG 
database, from 290 
subjects

The division of data 
into training, testing, or
validation sets is not 
specified

12-lead ECG 
signals, including 
5 types of MI and 
healthy controls, 
sampled at 1 kHz 
with 16-bit 
resolution

Automated 
detection and 
localization of 
MI using ECG 
data

Liu et al., 
2018 [61]

CNN Accuracy 95.11% Automated 
detection of CAD
using ECG 
signals

ECG signals from the 
Fantasia database (for 
Normal) and St.-
Petersburg Institute of 
Cardiology Technics 
12-lead arrhythmia 
database (for CAD), 
sampled at 257 Hz

The division of data 
into training, testing, or
validation sets is not 
specified

Two and five-
second durations 
of ECG signal 
segments, 
preprocessed 
using discrete 
wavelet transform
and Z score 
normalization

Diagnosis of 
CAD using 
ECG signal

Acharya et 
al., 2017 
[62]

CNN Sensitivity of 
91.24%

Specificity of 95.37

PPV of 90.5% 

Pearson coefficient 
of 0.983 

Automatic 
quantification of 
calcium score in 
ECG-triggered 
non-contrast 
enhanced cardiac 
CT images

The study included 152 
exams from a screening
study 

40/15/45

Non-contrast 
enhanced CT 
images with slice 
thickness of 3.0 
mm, acquired 
with various in-
plane resolutions

Segmentation 
and 
classification of
candidate 
lesions as 
coronary or 
non-coronary, 
and 
quantification 
of calcium 
score

Santini et 
al., 2017 
[63]

CNN Sensitivity of 97.2%
for coronary 
calcification 
detection, and an 
accuracy of 84.4% 
for risk category 
assignment

Automatic 
detection and 
quantification of 
CAC in low-dose
chest CT scans of
heavy smokers

The study included 
1028 heavy smokers 
aged between 50 and 
75, scanned between 
2004 and 2006 at 3 
medical centers

The division of data 
into training, testing, or
validation sets is not 

Low-dose chest 
CT scans without 
contrast 
enhancement, 
acquired using 
different CT 
scanners

Identification of
CAC and 
subsequent 
cardiovascular 
risk 
categorization 
based on 
Agatston scores

Lessmann 
N, Išgum I, 
Setio AA, et 
al., 2016
[64] 
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specified

CNN AUC of 0.74 ± 0.02

Specificity at 
sensitivity levels of 
0.60, 0.70, and 0.80 
was 0.77, 0.71, and 
0.59, respectively

Identification of 
patients with 
functionally 
significant 
coronary artery 
stenosis using 
deep learning 
analysis of the 
LV myocardium 
in CCTA scans

Retrospectively 
collected CCTA scans 
of 166 patients (59.2 ± 
9.5 years, 128 males) 
from 2012 to 2016

20 images were used to 
train the LV 
myocardium encoder, 
and classification was 
evaluated in the 
remaining 126 CCTA 
scans with 50 10-fold 
cross-validation 
experiments

CCTA scans, 
segmented LV 
myocardium, 
divided into 
spatially 
connected clusters

Classification 
of patients 
according to the
presence of 
functionally 
significant 
coronary artery 
stenosis

Zreik et al., 
2018 [64]

CNN Frame-wise AUC: 
0.971

Frame-wise 
Accuracy: 0.934

Clip-wise Accuracy:
0.965

External validation 
frame-wise AUC: 
0.925 (single 
model), 0.956 
(ensemble model)

Lesion detection, 
localization, and 
classification in 
coronary 
angiography

452 right coronary 
artery angiography 
movie clips

The division of data 
into training, testing, or
validation sets is not 
specified

Key frames 
extracted from 
coronary 
angiography 
movie clips

Classification 
of areas 
narrowed by 
over 50%, 
visualization of 
stenotic 
locations

Moon et al., 
2021 [65]

CNN Cardiac phase 
detection accuracy 
98.80%, sensitivity 
was 99.30%, and 
specificity was 
97.60%

End-diastolic frame 
prediction had a 
precision of 98.40% 
and a recall of 
97.90%

End-diastolic 
frame detection 
in coronary 
angiographies

The networks were 
trained on 56,655 
coronary angiographies 
from 6820 patients and 
evaluated on 20,780 
coronary angiographies 
from 6261 patients

The division of data 
into training, testing, or
validation sets is not 
specified

Coronary 
angiography 
images

Cardiac phase 
labels for each 
frame and 
detection of 
end-diastolic 
frames

Ciusdel et 
al., 2020 
[66]

CNN Accuracy 95.00% Lesion detection 
in X-ray coronary
angiography

The study used a 
synthetic dataset of 
10,000 images 

80/20

X-ray coronary 
angiography 
images

Detection and 
classification of
coronary artery 
stenosis

Ovalle-
Magallanes 
et al., 2020 
[67]

CNN Recall of CTO 
detection: 89.3%

Sensitivity and 
specificity of CTO 
classification: 94.5%
and 89.1%, 
respectively

F1 Score: 0.89

Area under the 
curve: 0.98

Lesion detection, 
localization, and 
classification in 
coronary 
angiography 
images

A total of 2059 cases 
(326 cases in blunt and 
1732 cases in tapered 
morphology), with data 
augmentation 
techniques applied

The division of data 
into training, testing, or
validation sets is not 
specified

Coronary 
angiography 
images

Detection and 
classification of
CTO lesions

Liu et al., 
2019 [68]

CNN F1 Score: 0.96 Detection and 
localization of 

The study used clinical 
angiography data of 100

Stenoses Detection and 
localization of 

Danilov et 
al., 2021 

26



Mean average 
precision: 0.95 
(Faster-RCNN 
Inception ResNet 
V2), 0.83 (SSD 
MobileNet V2), 0.94
(RFCN ResNet-101 
V2)

coronary artery patients

The division of data 
into training, testing, or
validation sets is not 
specified

Coronary 
angiography 
images

coronary artery 
stenoses

[69]

CNN For segment 
prediction, the 
recognition accuracy
98.40%, and the 
recognition 
sensitivity 85.20%

For detecting lesion 
morphologies, the 
F1-scores ranged 
from 0.80 to 0.85

Lesion detection, 
localization, and 
classification in 
coronary 
angiography 
images

The study used 20,612 
angiograms from 
10,073 patients

65/35

Angiograms in 
DICOM format 
with various 
angiographic 
views

Identification of
coronary artery 
segments and 
recognition of 
lesion 
morphology 
including 
stenotic lesion, 
total occlusion, 
calcification, 
thrombosis, and
dissection

Du et al., 
2020 [28]

CNN Accuracy  97.42% ECG signal 
processing and 
arrhythmia 
classification

ECG signals from MIT-
BIH arrhythmia 
database

50/50

Two-dimensional 
grayscale images 
of segmented 
ECG heartbeats

Classification 
of 5 different 
arrhythmia 
types

Izci et al., 
2019 [70]

CNN Accuracy 93.75% ECG signal 
classification for 
heart conditions

ECG signals from 
MITDB (47 subjects), 
NSRDB (18 subjects), 
BIDMC congestive HF 
database (15 subjects) 
162 recordings used 
from PhysioNet 
databases

The division of data 
into training, testing, or
validation sets is not 
specified

ECG signals Classification 
of ECG signals 
into 3 
categories: 
congestive HF, 
arrhythmia, 
normal 
heartbeats

Kaouter et 
al., 2019 
[71]

CNN Accuracy 96.67% ECG arrhythmia 
classification

ECG signals from 
MITDB (54 subjects) 
Total 1000 non-
overlapping frames 
representing various 
cardiac issues and 
normal conditions, from
45 subjects (19 women, 
26 men)

The division of data 
into training, testing, or
validation sets is not 
specified

Images of ECG 
signals 

Diagnosis of 17
types of 
arrhythmia

Al-Huseiny 
et al., 2020 
[72]

CNN Accuracy 93.40% Heartbeat and MI
classification

MITDB (47 subjects), 
PTBDB (290 subjects) 

The division of data 
into training, testing, or
validation sets is not 
specified

ECG signals Classification 
of heartbeats 
and myocardial 
infarction

Kachuee et 
al., 2018 
[73]

CNN Accuracy 85.99% Heartbeat 
diseases 
classification, AF

PhysioNet/CinC 
Challenge 2017 (8,528 

Single lead ECG 
recordings of 

Classification 
of normal sinus 
rhythm, AF, 

Kamaleswar
an et al., 
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detection ECG records)

Division of data into 
training, testing, or 
validation sets is not 
specified

variable length other abnormal 
rhythms, and 
noise

2018 [74]

CNN Accuracy 99.78% Classification of 
MI

Physiobank (PTB) ECG
database: 52 normal 
subjects, 148 MI 
patients

Division of data into 
training, testing, or 
validation sets is not 
specified

12-lead ECG 
signals

Diagnosis of 
MI

Baloglu et 
al., 2019 
[75]

SNN Accuracy 95.60 ± 
0.5 [%]

ECG signal 
processing and 
arrhythmia 
classification

MIT-BIH dataset ECG 
signals encoded into 
spike trains using delta 
modulators

Division of data into 
training, testing, or 
validation sets is not 
specified

ECG signals that 
are encoded into 
spike trains using 
delta modulators

classification of
ECG signals 
into different 
arrhythmia 
classes

Corradi et 
al., 2019 
[36]

SNN Accuracy 97.16 [%] ECG signal 
processing and 
classification, 
specifically for 
arrhythmia 
detection

PhysioNet MIT-BIH 
arrhythmia database

60/40

Input encoding of 
ECG signals into 
spike trains using 
delta modulators

Classification 
of heartbeats 
into various 
categories, 
focusing on the 
detection of 
VEBs and 
normal 
heartbeats

Kovács, 
Samiee, 
2022 [37]

SNN Accuracy 97.90% ECG signal 
processing for 
cardiac 
arrhythmia 
detection

The MIT-BIH ECG 
arrhythmia database 

The division of data 
into training, testing, or
validation sets is not 
specified

ECG signal Classification 
of ECG signals 
for arrhythmia 
detection

Amirshahi, 
Hashemi, 
2019 [76]

SNN Accuracy 84.80% ECG 
classification that
is used for 
diagnosing 
arrhythmias and 
other heart-
related conditions

2017 PhysioNet/CinC 
Challenge 8,528 single-
lead ECG records with 
varying lengths from 9 
to 60 seconds

90/10 

The ECG signals 
are subjected to 
zero padding to 
standardize signal 
length

Classification 
results of the 
ECG signal into
the 4 categories
(normal, AF, 
other, noise)

Feng et al., 
2022 [38]

SNN Accuracy 95.60 ± 
0.5 [%]

ECG signal 
processing and 
arrhythmia 
classification

MIT-BIH dataset ECG 
signals encoded into 
spike trains using delta 
modulators

Division of data into 
training, testing, or 
validation sets is not 
specified

ECG signals that 
are encoded into 
spike trains using 
delta modulators

classification of
ECG signals 
into different 
arrhythmia 
classes

Corradi et 
al., 2019 
[36]

SNN Accuracy 97.16 [%] ECG signal 
processing and 
classification, 
specifically for 

PhysioNet MIT-BIH 
arrhythmia database

Input encoding of 
ECG signals into 
spike trains using 

Classification 
of heartbeats 
into various 
categories, 

Kovács, 
Samiee, 
2022 [37]
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arrhythmia 
detection

60/40 delta modulators focusing on the 
detection of 
VEBs and 
normal 
heartbeats

DNN Accuracy 83.20% Determination of 
the severity of 
coronary artery 
stenoses

Data from 125 lesions 
in 87 patient-specific 
anatomical models from
CT data 

The division of data 
into training, testing, or
validation sets is not 
specified.

Patient-specific 
anatomical 
models from CT 
data

Prediction of 
FFR values

Itu et al., 
2016 [42]

DNN Accuracy 74.60% Improvement in 
the performance 
of CCTA by 
correctly 
reclassifying 
hemodynamically
nonsignificant 
stenosis

122 consecutive 
patients were initially 
included, with 
exclusions leading to a 
final sample

The division of data 
into training, testing, or
validation sets is not 
specified

CCTA data Detection of 
functionally 
important CAD

Coenen et 
al., 2015 
[43]

DNN Accuracy 99.91% 
with 10 clusters (5 
clusters for healthy 
subjects, 5 clusters 
for sick subjects)

Diagnosing CAD
using CMRI 
dataset

CMRI dataset with 
labeled and unlabeled 
data

The division of data 
into training, testing, or
validation sets is not 
specified

CMRI data Diagnosis of 
CAD

Joloudari et 
al., 2022 
[44]

DNN Accuracy

Inter-patient: 
93.10%

For reduced rhythm 
classes: 92.24%

For merged rhythm 
classes: 96.13%

Detection of 
different rhythm 
classes from an 
ECG database

New ECG database 
with 50,977 single lead 
beats, classified into 5 
AAMI classes

Division of data into 
training, testing, or 
validation sets is not 
specified

ECG data from all
12 leads

Detection of 
cardiac 
arrhythmias

Xu et al., 
2018 [77]

DNN The AUROCs for 
DEHF were 0.843 
(internal validation) 
and 0.889 (external 
validation) for 
HFrEF; and 0.821 
(internal validation) 
and 0.850 (external 
validation) for HF 
with mid-range to 
reduced EF

HF identification 
using ECG

55,163 ECGs from 
22,765 patients at 2 
hospitals

Division of data into 
training, testing, or 
validation sets is not 
specified

ECG records Identification of
HFrEF (EF ≤ 
40%), and HF 
with mid-range 
to reduced EF 
(≤ 50%)

Kwon et al., 
2018 [78]

ABP — arterial blood pressure; ACHD — adult congenital heart disease; AF — atrial fibrillation; AFDB — Atrial Fibrillation Database; 
ANN — Artificial Neural Networks; AUC — area under the receiver operating characteristic curve; CAC — coronary artery calcifications; 
CAD — coronary artery disease; CCTA — coronary computed tomography angiography; CMRI — cardiac magnetic resonance imaging; 
CNN — Convolutional Neural Networks; CT — computed tomography; CTO — chronic total occlusion; DNN — Deep Neural Networks; 
ECG — electrocardiogram; EF — ejection fraction; FFR — fractional flow reserve; GAN — Generative Adversarial Networks; HF — heart
failure; HFrEF — heart failure with reduced ejection fraction; ICUs — Intensive Care Units; LBBB — left bundle branch block; LV — left 
ventricle; MDE — myocardial delayed enhancement; MDT — multidisciplinary team; MI — myocardial infarction; MRI — magnetic 
resonance images; NSR — normal sinus rhythm; NSRDB — Normal Sinus Rhythm Database; NYHA — New York Heart Association; PPV
— positive predictive value; PTB — Physikalisch-Technische Bundesanstalt; RBBB — right bundle branch block; RNN — Recurrent 
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Neural Networks; RV — right ventricle; SNN — Spiking Neural Networks; STEMI — ST-segment elevated myocardial infarction; TTE — 
transthoracic echocardiogram; VEBs — ventricular ectopic beats

Central illustration. Artificial intelligence workflow in interventional cardiology: a basic 

schema; CT — computed tomography; MRI — magnetic resonance imaging.
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Figure 1. The scheme of the methodology of literature review; AI — artificial intelligence; 

IC — interventional cardiology.
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