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Abstract: In this paper, the very fundamental geometrical characteristics of the Mylar balloon like
the profile curve, height, volume, arclength, surface area, crimping factor, etc. are recognized as
geometrical moments In(x) and In and this observation has been used to introduce an infinite family
of surfaces Sn specified by the natural numbers n = 0, 1, 2, . . .. These surfaces are presented via explicit
formulas (through the incomplete Euler’s beta function) and can be identified as an interesting family
of balloons. Their parameterizations is achieved relying on the well-known relationships among
elliptic integrals, beta and gamma functions. The final results are expressed via the fundamental
mathematical constants, such as π and the lemniscate constant ϖ. Quite interesting formulas for
recursive calculations of various quantities related to associated figures modulo four are derived.
The most principal results are summarized in a table, illustrated via a few graphics, and some direct
relationships with other fundamental areas in mathematics, physics, and geometry are pointed out.
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recursive relations; crimping factor; lemniscate constant

MSC: 33B15; 33B20; 33E05; 51M25

1. Introduction

In industry, Mylar® is a trademark for ultra-thin foil sheets made from polyester
which great tensile strength makes them extremely inelastic—when folded, they remain
stable without being able to shrink or stretch significantly under the bending forces.

In geometry, Mylar is a term first introduced by Paulsen [1] in 1994 for surfaces of
revolution called Mylar balloons, whose shape almost perfectly approaches the shape of a
special type of inflatable membranes – objects, physically constructed from two identical
circular discs of Mylar foil, stitched along their boundaries and inflated to full capacity.

The interest in the subject has been inspired by the scientific balloons used by NASA
and other space agencies to carry out various research in the upper stratosphere [2,3]
including both terrestrial and extraterrestrial balloon development activities [4].

Due to the non-elasticity of the Mylar® foil, the resulting shape of the Mylar balloon
is somewhat surprisingly not spherical as one might expect based on the well-known fact
that the sphere possesses the maximal volume for a given surface area. Besides, the surface
area of the Mylar discs is not preserved which is clearly evidenced by the wrinkled areas
apparently observed for the commercially produced Mylar® balloons.

In mathematical formulation, Mylar balloons as pictured above are most adequately
described as a variational problem under a constraint (Paulsen’s formulation): Find a surface
of revolution enclosing maximum volume for a given directrix arclength.
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Let a > 0 be the radius of two initially flat discs, i.e., of the “deflated” Mylar balloon.
Without loss of generality, we can assume that the OZ-axis is an axis of revolution and the
curve, z = z(x), x ∈ [0, r], lying in the first quadrant of the XOZ-plane, is the upper half
of the generating curve of the “inflated” Mylar balloon with equatorial radius r (namely,
z(r) = 0, cf. Figure 1). It is intuitively clear that z(x) meets the OX and OZ axes at right
angles. By symmetry considerations it follows that the lower part of the generating curve
is obtained by reflection with respect to the OX-axis. Then, we can state the problem in
rigorous settings: Find z(x) that maximizes the volume

V = 4π

r∫

0

x z(x)dx (1)

subject to the arclength constraint L = 4a, i.e.,
r∫

0

√
1 + (z′(x))2 dx = a (2)

and satisfying the transversality conditions

z′(0) = 0, lim
x→r

z′ = −∞ (3)

where z′(x) ≡ dz/dx.

The Mylar Balloon: An Alternative Description 257

non elasticity of the balloon’s material are the physical conditions that presup-
pose this formulation. In order to pose the problem rigorously, we assume that the
OZ-axis is the axis of revolution, and the curve in the XOZ-plane, z = z(x),
is taken to be the upper half of the right hand side of the balloon’s directrice (see
Fig. 1). Physically it is obvious that this curve smoothly decreases from its max-
imum height on the OZ-axis to a point on the OX-axis, i.e., z(r) = 0, for some
positive r, and the derivative ż(x) is negative for 0 < x < r. Also, it is intuitively
clear that the profile curve must cross the OX-axis perpendicularly. In order to
meet these requirements we have to assume ż(0) = 0 and limx→r ż(x) = −∞.

Figure 1. The profile curve of the Mylar balloon in the XOZ-plane,
where a is the radius of the disks (deflated radius), r is the radius of the
balloon (inflated radius) and τ is the thickness of the balloon.

Let a be the radius of the initially flat disks. On inflating of the balloon the disks
start deforming, but the Mylar foil resists stretching, so that the length of their radii
remains unchanged. Consequently, the arclength of the graph of z(x) from x = 0
to x = r remains fixed to a (Fig. 1). It follows from symmetry considerations that
the bottom half of the Mylar balloon is obtained by reflection of its upper half part
through the XOY -plane.
Now, we can state the problem in calculus of variations settings: Find the profile
curve (directrice) of the Mylar balloon

z = z(x), z(r) = 0, ż(x) ≤ 0, 0 ≤ x ≤ r
by maximizing the volume

V = 4π

r∫

0

xz(x)dx (1)

Figure 1. 3D view of the inflated Mylar balloon (left) and its cross-section through the symmetry axis
OZ in the plane XOZ (right), where N and S are the North and South Poles respectively, E denotes the
Equator of this surface of revolution, O is the center of the Mylar balloon, τ is its thickness, whereas a
and r are the deflated and inflated radii respectively. The plots are obtained via Mathematica® [5]
through the parameterization of the profile curve in terms of the Euler’s beta function given by (75).

The Japanese engineer Kawaguchi [6] in 1977 came up with a Mylar balloon-shaped
surfaces from a different perspective. Looking for a shallowest surface of revolution which
has no circumferential stress he found that this is achieved exactly when the meridional
kµ and parallel kπ principal curvatures obey everywhere on the surface the so-called
Weingarten condition

kµ = 2kπ . (4)

Some years later in 2003, Mladenov and Oprea [7] proved that this linear type relationship
between curvatures specifies the Mylar balloon uniquely.

In a broader sense the Mylar balloon can be considered as a particular case (c = 2) of a
class of surfaces satisfying the linear Weingarten relation

kµ = ckπ , c ∈R\{0} (5)

for which besides variational characterization have been found explicit parameterizations
and some interesting results about their global geometry [8].

Later on, these considerations have been explored in concrete settings [9,10] and
further extended in [11] to the class of surfaces obeying to the relation

kµ = akπ + b, a ∈R\{0}, b ∈ R. (6)



Mathematics 2024, 12, 557 3 of 18

Except in architectural geometry, where the Mylar balloon appears as a curved support
structure, e.g., the above mentioned Kawaguchi’s dome, natural shapes with constant ratio
of principal curvatures, kµ/kπ = 2, occur also in many practical realizations of free-
form shapes, say, inflatable pouch anchors [12], underwater bags for compressed air energy
storage [13], and super pressure balloons for scientific observations in the stratosphere [14], etc.
Pressure-driven shapes of this kind are obtained by maximizing the volume of the internal
space formed within flexible but (almost) inextensible soft membranes, i.e., by increasing
the volume of three-dimensional bodies (which can be any kind of pouches, bags, packages,
balloons, etc.) via a submetric transformation, meaning without increasing the distance
between any pair of points on their surfaces [15].

At this moment it is interesting also to point out other purely mechanical applica-
tions of the Mylar balloons in the description of the structured (with internal degrees of
freedom) infinitesimal test bodies moving on different curved two-dimensional surfaces
embedded into the three-dimensional Euclidean space described in [16,17]. In the gen-
eral case, we have some differential two-dimensional manifold (S, Γ, g) endowed with
the affine connection Γ and the metric tensor g that can be either interrelated or defined
independently. Then the internally-structured infinitesimal test bodies moving on such a
differential manifold S can be characterized by their positions x ∈ S (this is just a remnant
of the centre of mass’ positions of the extended bodies in the flat theory) as well as by
their internal configurations (i.e., the internal variables attached at x ∈ S) injected into the
tangent space TxS, which is called microphysical space and can be identified with the set of
linear frames (order bases) eA ∈ TxS. Therefore, the configuration space Q of the structured
infinitesimal test bodies moving on S is given by the union of the manifolds of linear frames
FxS in the tangent spaces TxS for all x ∈ S, i.e., Q = FS = ∪x∈SFxS. This means that any
system of local coordinates xi on the manifold S induces local coordinates (xi, ei

A) on the
manifold of all linear frames FS and (xi, eA

i) on the manifold of all linear coframes F∗S.
In the case of a Riemannian manifold (S, g), we have that the affine connection Γ is

related to the metric tensor g and becomes the Levi-Civita (Christoffel) affine connection

Γ[g]i jk =
1
2

gim
(

gmj,k + gmk,j − gjk,m

)
(7)

therefore, the corresponding curvature tensor

R[g]i jkl = ∂kΓ[g]i jl − ∂lΓ[g]i jk + Γ[g]i akΓ[g]a jl − Γ[g]i alΓ[g]a jk (8)

generally do not vanish (i.e., the surface S is curved). In this situation we obtain that the
geometry in the non-trivial manner influences both the translational motion xi and the
internal configuration ei

A of the structured infinitesimal test bodies moving on such a
curved surface S (for more details see, e.g., [16,17]).

The rest of the paper is organized as follows. In Section 2, the basic geometrical
characteristics of the Mylar balloon (such as the profile curve, height, arclength, surface
area, volume, etc.) are represented by a variety of closed-form expressions using elliptic
integrals [18] and the fundamental mathematical constants such as the number π and the
lemniscate constant ϖ. It is also shown there that the Mylar balloon’s geometry can be
characterize via certain integral quantities, geometrical moments, In(x) and In, specified by
the number (their order) n = 0, 1, 2, . . ..

In Section 3, the geometrical moments, In(x), are interpreted as Mylar balloon’s
cousins, i.e., as an enumerable set of surfaces, Sn, closely associated with Mylar balloons
(see. Figure 2). The Mylar balloon, SM, belongs to this family for n = 2, namely, S2 ≡ SM.
All Mylar balloon’s cousins are parameterized via the Euler’s beta or gamma functions.
In Section 3.1, the first and second fundamental forms along with the principal curvatures
of Sn are explicitly calculated. Sections 3.2 and 3.3 are devoted to the evaluation in terms of
beta and gamma functions of the basic geometrical characteristics of the Mylar balloon’s
cousins and the Mylar balloon, respectively.
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In Section 4, certain recursive relations are explored to represent four non-intersecting
residue classes for the thickness τn, the meridional section area Σn and the volume Vn of
the Mylar balloon’s cousins. The main new results of the present research can be found in
Sections 3 and 4.

Finally, Section 5 concludes the paper with some general remarks regarding deviation
of these new surfaces from the ideal shape, i.e., the sphere, and introduces one of the relevant
characteristics for such comparison—the aspect ratio η. It turns out that the balloon with
golden ratio proportion is in some sense central for this family of surfaces. On the other
hand this characteristic opens the possibility for all spheroids, i.e., axially symmetric oblate
shapes which aspect ratio η is in the interval [0, 1), to be parameterized analytically using
the formulas derived in Section 3.

2. Mylar Balloon’s Geometrical Characteristics

Any Mylar balloon SM can be defined as a surface of revolution which is obtained
when we maximize the volume of the cavity confined between two equal circular discs
made of the Mylar foil and glued together at their boundaries (neither stretching nor
shrinking of the Mylar foil is allowed) for a given (fixed) arclength a (where a is the radius
of the “deflated” Mylar balloon, i.e., of the Mylar discs) of its directrix (generating curve),
z = ±z(x), x ∈ [0, r] (where r is the radius of the “inflated" Mylar balloon, and, obviously
r < a) which, when rotated about the OZ-axis produces the two mirror-symmetric parts
(with respect to the XOY-plane) of the balloon, i.e., its top or bottom half depending on the
sign taken, plus or minus, of the z-coordinate, respectively (see, e.g., [1,19,20]).

It can be shown that the constraint equation for the generating curve of the Mylar
balloon, lying in the first quadrant of the XOZ-plane, can be written as

z ′
M(x) = − x2

√
r4 − x4

, i.e., zM(x) =
r∫

x

t2dt√
r4 − t4

, x ∈ [0, r]. (9)

Equivalently, by introducing the dimensionless parameter u = x/r, it can be given

Definition 1. The Mylar balloon is a surface of revolution SM ⊂ R3 parameterized as

SM =
{

x = xM(u, v) :=
(
x(u) cos v, x(u) sin v, ± zM(u)

)
, u ∈ [0, 1], v ∈ [0, 2π)

}
(10)

with a generating curve

CM = {(x, z), x = x(u), z = ± zM(u)} (11)

where

x(u) := ru, zM(u) := r
1∫

u

t2dt√
1 − t4

(12)

and equatorial radius r. By alternating the plus and minus signs in (10) and (11) the two symmetri-
cally lying parts of SM to the XOY-plane and CM to the OX-axis are obtained.

The basic geometrical characteristics of the Mylar balloon (see Figure 1), such as the
profile arclength, surface area, volume, etc., can be obtained as a direct consequence of the
formulas above.

Let us start with the perimeter (arclength) LM of the profile curve (complete meridional
section, see Figure 1) of the Mylar balloon, which according to (12) can be calculated as

LM = 4
E∫

N

ds = 4
E∫

N

√
dx2 + dz 2

M = 4
1∫

0

√
(x′(u))2 + (z ′

M(u))2 du = 4r
1∫

0

du√
1 − u4

(13)

where N and E denote the North Pole and the Equator of the Mylar balloon respectively
(see Figure 1), and x′(u) = dx/du, etc. As a result we obtain

LM = 2ϖr = ϖd (14)
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where d = 2r is the equatorial diameter of the balloon and ϖ is the lemniscate constant

ϖ ≈ 2. 62206 (15)

defined as

ϖ := 2
1∫

0

du√
1 − u4

≡ 2K(i) (16)

where K(i) is complete elliptic integral with modulus k = i.
With the help of substitution u =

√
1 − w2, the complete elliptic integral in (16) with

imaginary modulus k = i is transformed to a complete elliptic integral with real modulus
k = 1/

√
2. Therefore, the defining formula for the lemniscate constant ϖ takes the form

ϖ :=
√

2
1∫

0

dw√
(1 − w2)(1 − w2/2)

≡
√

2 K(
1√
2
). (17)

There is an obvious analogy between the above obtained formula, LM = 2ϖr, and the
familiar expression, Lcircle = 2πr, for the circumference of the circle, with π replaced by ϖ
for the Mylar balloon. Hence, the notation ϖ (pomega), which historically is a cursive variant
of π, is being used. Its name “pomega” recalls both the relationship of ϖ to the letter π and
the ϖ’s similarity to a variant of the lowercase omega ω with a macron (long mark) placed
over it (cf. [21]).

Moreover, it should be noted the remarkable fact that the perimeter of the profile curve
of the Mylar balloon is given by exactly the same formula, LM = ϖd, as is the perimeter of
the lemniscate of Bernoulli (hence the name “lemniscate constant”) with d interpreted as
the diameter of the curve, being the maximum distance between any two points on it.

As it follows from LM = 2ϖr and the arclength constraint condition LM = 4a (cf. (2))
the ratio of the inflated radius r to the deflated one a is given by the relation

r
a
=

2
ϖ

= (1. 31103 . . .)−1 ≈ 0. 7627. (18)

As the next geometrical characteristic of the Mylar balloon we can calculate its surface

area, AM, by integrating over all the conical bands with infinitesimal width ds =
√

dx2 + dz 2
M

and length 2πx, where x is the distance from the z-axis (axis of rotation, cf. (9)–(12)) to the
arclength element ds, i.e.,

AM = 2π
∫

SM

x
√

dx2 + dz 2
M = 4π

r∫

0

x
√

1 + (z ′
M(x))2 dx = 4πr2

1∫

0

udu√
1 − u4

(19)

which is immediately integrated to obtain

AM = π2r2. (20)

It is clearly seen, the surface area of the (inflated) Mylar balloon differs from the
original area Adiscs = 2πa2 of the two sewn together circular Mylar discs, showing an
effective (integral) shrinking (hence visible crimping or wrinkling) of the inflated balloon’s
surface relative to the deflated one, i.e.,

Adiscs
AM

=
2πa2

AM
=

2
π

( a
r

)2
=

2
π

(ϖ

2

)2
≈ 1.09422 (21)

which is accounting for more than about 8. 61% loss of the original (deflated) surface area.
We can also introduce a local measure of the above-described integral shrinking that is

defined as the ratio of the surface area of a small patch on the deflated Mylar balloon to the
surface area of the corresponding patch on the inflated Mylar balloon. This local measure
is called crimping factor and is defined through the relation (see, e.g., [1])

CM(u) =
1
u

u∫

0

dt√
1 − t4

· (22)
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It can be shown that the crimping factor CM(u) is minimal at the poles, where u = 0
(see Figure 1 right), i.e.,

Cmin
M = CM(0) = lim

u→0

1
u

u∫

0

dt√
1 − t4

=

[
0
0

]

l′Hôspital′s rule
= lim

u→0

1√
1 − u4

= 1 (23)

and maximal at the Equator, for u = 1 (again see Figure 1 right), i.e.,

Cmax
M = CM(1) =

1∫

0

dt√
1 − t4

=
LM
4r

=
a
r
=

ϖ

2
≈ 1.31103. (24)

Another geometrical characteristic of the Mylar balloon is the polar diameter (thickness,
height) τM calculated by taking twice the distance from the center of the balloon to one of
its poles, i.e.,

τM = 2zM(0) = 2r
1∫

0

t2dt√
1 − t4

(25)

which can be rewritten as

τM = 2
( 1∫

0

√
1 + t2

1 − t2 dt −
1∫

0

dt√
(1 − t2)(1 + t2)

)
·r. (26)

Then, by the substitution, t =
√

1 − w2, the expression for τM takes the form

τM =
√

2
(

2
1∫

0

√
1 − w2/2

1 − w2 dw −
1∫

0

dw√
(1 − w2)(1 − w2/2)

)
· r

=
√

2
(

2E(
1√
2
)− K(

1√
2
)
)
· r

which, on using the Legendre’s relation [22] for the complete elliptic integrals of the first
K(1/

√
2) and the second kind E(1/

√
2), i.e.,

(
2E

( 1√
2

)
− K

( 1√
2

))
K
( 1√

2

)
=

π

2
(27)

and, by virtue of the definition of the lemniscate constant in (17), is transformed to a
compact form

τM =
π

ϖ
r. (28)

Note that d = 2r and τM are the two extreme (maximal and minimal respectively)
distances between any two points on the Mylar balloon. Their ratio is given by the relation

d
τM

=
2ϖ

π
≈ 1. 6692. (29)

As it can be easily deduced from (21), the effective (integral) shrinking equals the ratio
of the deflated radius a to the thickness τM, which in connection with the above ratio can
be expressed as

Adiscs
AM

=
a

τM
=

ϖ

4

(
d

τM

)
≈ 1. 09422. (30)

Proceeding on, we can calculate the meridional section area, ΣM, of the Mylar balloon as

ΣM = 4
r∫

0

zM(x)dx = 4r2
1∫

0

t3dt√
1 − t4

(31)

which is readily integrated to obtain the formula

ΣM = 2r2. (32)
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We can also calculate the Mylar balloon’s volume VM by using the shell method, i.e.,

VM = 4π

r∫

0

x zM(x)dx = 4πr3
1∫

u=0

1∫

t=u

t2u√
1 − t4

dt du (33)

where we have used the representation of the profile curve in (12). Changing the order
of integration in (33) from (u, t) ∈ [0, 1]× [u, 1] to (t, u) ∈ [0, 1]× [0, t], the volume takes
the form

VM = 4πr3
1∫

t=0

t∫

u=0

t2u√
1 − t4

du dt = 2πr3
1∫

0

t4dt√
1 − t4

(34)

which using integration by parts can be rewritten as

VM = −πr3
1∫

0

t d
(√

1 − t4
)
= −πr3 t

√
1 − t4

∣∣∣
1

0
+ πr3

1∫

0

√
1 − t4 dt

= πr3
1∫

0

dt√
1 − t4

− πr3
1∫

0

t4dt√
1 − t4

·

Next, taking into account definition (16) for the lemniscate constant ϖ, and interpreting the
last integral as VM/(2πr3) using (34), we obtain the final formula for the volume as

VM =
πϖ

3
r3. (35)

We summarize the results obtained above in

Theorem 1. The most important Mylar balloon’s geometrical characteristics are given by the
expressions

LM = 2ϖr, AM = π2r2, τM =
π

ϖ
r, ΣM = 2r2, VM =

πϖ

3
r3 (36)

where r is the equatorial radius of the (inflated) Mylar balloon.

Moreover, the integral expressions (12), (13), (19), (22), (25), (31) and (34) clearly
indicate that the Mylar balloon can be actually characterized by a set of dimensionless
quantities, geometrical moments, defined as (cf. [23])

In(u) :=
u∫

0

tndt√
1 − t4

, In := In(1) =
1∫

0

tndt√
1 − t4

, u ∈ [0, 1], n = 0, 1, 2, . . . (37)

which allow us to state

Theorem 2. Relying on geometrical moments the Mylar balloon’s geometrical characteristics are
given by the formulas

LM = 4I0 · r, AM = 4πI1 · r2, τM = 2I2 · r, ΣM = 4I3 · r2, VM = 2πI4 · r3 (38)

where I0, . . . , I4 are the first five geometrical moments associated with the Mylar balloon.

Furthermore, the profile curve zM(u) and the crimping factor CM(u) (cf. (12) and (22))
can be also given in alternative forms using geometrical moments, i.e.,

zM(u) =
(
I2 − I2(u)

)
· r, CM(u) =

I0(u)
u

, u =
x
r
· (39)
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In the next section the geometrical moments of the Mylar balloon, In(u), are inter-
preted as surfaces. They constitute an enumerable set of surfaces of revolutions, Sn, clearly
associated with Mylar balloons, which means that we are going to introduce a family of
Mylar balloon’s cousins.

3. Mylar Balloon’s Cousins

In the next definition we introduce a special kind of balloons – Mylar balloon’s cousins,
an enumerable set of surfaces of revolution associated with Mylar balloons.

Definition 2. The Mylar balloon’s cousins Sn ⊂ R3 are surfaces of revolution

Sn =
{

x = xn(u, v) :=
(
x(u) cos v, x(u) sin v, ±zn(u)

)
, u ∈ [0, 1], v ∈ [0, 2π)

}
(40)

with generating curves Cn of the form

Cn = {(x, z), x = x(u), z = ±zn(u)} (41)

where

x(u) := ru, zn(u) := r
1∫

u

tndt√
1 − t4

, n = 0, 1, . . . (42)

Here the parameter r > 0 specifies the equatorial radius of the balloons and the two symmetrically
lying parts of Sn to the XOY-plane and that ones of Cn to the OX-axis are generated by alternating
the plus and minus signs in (40) and (41).

Note that the Mylar balloon, SM, belongs to the above defined family, S2 ≡ SM,
and each one of the balloons, Sn, n ̸= 2, is a special generalization of the Mylar balloon
(compare the parameterizations of SM and Sn in (12) and (42)). Substituting ω = t4, the
integral in (42) can be rewritten as

zn(u) =
r
4

1∫

u4

ω
n−3

4 (1 − ω)−
1
2 dω (43)

therefore, the profile curves Cn of the Mylar balloon’s cousins (see Figure 2) can be ex-
pressed as

x(u)= ru, zn(u)=
r
4
·
(
B
(n + 1

4
,

1
2
)
−Bu4

(n + 1
4

,
1
2
))

, u∈ [0, 1], n=0, 1, . . . (44)

where the definitions of the incomplete beta function Bζ(p, q) and the beta function
B(p, q) ≡ B1(p, q) have been used (cf., e.g. [22,24,25]), i.e.,

X

Z

-0.4-0.8 0.4 0.8

-0.8

-0.5

-0.2

0.2

0.5

0.8

Figure 2. Profile curves (complete cross-sections) of Mylar balloon’s cousins, Sn, with equatorial
radius r = 1, for n = 1, 2, 3, 5 and 9, viewed from the outside in.
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Bζ(p, q) =

ζ∫

0

ωp−1(1 − ω)q−1dω, 0 ≤ ζ ≤ 1, p > 0, q > 0 (45)

B(p, q) ≡ B1(p, q) =
1∫

0

ωp−1(1 − ω)q−1dω. (46)

In addition to the several balloon profiles given in Figure 2 and the Mylar balloon
for n = 2 in Figure 1, other two 3D graphics (with and without a cut) of one of the Mylar
balloon’s cousins, S3, can be seen in Figure 3.

Figure 3. A side view of the Mylar balloon’s cousin S3 drawn with r = 1. An open part (left) and the
entire surface (right).

The plots are produced with the help of the computer algebra system Mathematica® [5],
using the new parameterization (44).

3.1. First and Second Fundamental Forms and Principal Curvatures

A surface in R3 parameterized as x = x(u, v) is determined almost uniquely by its
first I and second I I fundamental forms (see, e.g., [26])

I = Edu2 + 2Fdudv + Gdv2, I I = Ldu2 + 2Mdudv + Ndv2

where the coefficients are defined by the formulas

E = xu · xu, F = xu · xv, G = xv · xv

(47)

L = xuu · n, M = xuv · n, N = xvv · n

and n is the unit vector which is normal to the surface

n =
xu × xv

|xu × xv|
·

Here we have used the notation xu = ∂x/∂u, xuu = ∂2x/∂u2, etc.
If x = x(u, v) is a surface of revolution, i.e.,

x(u, v) = (h(u) cos v, h(u) sin v, g(u)) (48)

then the meridional, κµ, and the parallel, κπ , principal curvatures can be found by the
classical formulas

κµ ≡ L
E
=

g′′h′ − g′h′′

(g′2 + h′2)3/2
, κπ ≡ N

G
=

g′

h(g′2 + h′2)1/2
(49)

where g′ ≡ dg/du, etc.
Applying the above formulas, the coefficients of the first FFFn = (E, F, G) and second

SFFn = (L, M, N) fundamental forms of Sn are calculated as
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FFFn =
{

r2 · u2n − u4 + 1
1 − u4 , 0, r2 · u2

}

(50)

SFFn =
{
− r · un−1((2 − n)u4 + n

)

(1 − u4)
√

u2n − u4 + 1
, 0, −r · un+1

√
u2n − u4 + 1

}
.

The corresponding principal curvatures of Sn, i.e., κµ|n and κπ|n, calculated via (49), are
obtained as

κµ|n = −1
r
·
(
n − (n − 2)u4)un−1

(u2n − u4 + 1)3/2 , κπ|n = −1
r
· un−1
√

u2n − u4 + 1
· (51)

For the special case of the Mylar balloon, i.e., for S2, we obtain that

FFF2 =
{ r2

1 − u4 , 0, r2u2
}

, SFF2 =
{
− 2ru

1 − u4 , 0, −ru3
}

(52)

κµ|2 = −2u
r

, κπ|2 = −u
r

(53)

which confirms the well-known fact that the Mylar balloon is a linear Weingarten surface, i.e.
its principal curvatures κµ ≡ κµ|2 and κπ ≡ κπ|2 satisfy the relation

κµ − 2κπ = 0. (54)

Using (51) it can be easily verified that the Mylar balloon’s cousins S0 and S1 are
Weingarten surfaces as well, which means that their principal curvatures obey functional
relations, the so-called Weingarten relations. For S0 this is the seventh-order equation

32κµ κ6
π r4 − κ3

µ − 8κ3
π − 6κ2

µ κπ − 12κµ κ2
π = 0 (55)

and for S1 we have the twelfth-order polynomial equation

κ4
π

(
5κ4

πr4 − 4κ2
πr2 + 1

)2
+ κ2

µ

(
12κ4

πr2 − 2κ2
π − 15κ6

πr4)+ κ4
µ = 0 (56)

where the second indices in κµ|0, κπ|0, κµ|1, κπ|1, have been suppressed.
Unfortunately, it was not possible for us to derive the most general equation representing
the Weingarten relation for an arbitrary index n.

However, an interesting conclusions about the ratio kn(u) = κµ|n/κπ|n of the two
principal curvatures for any member in the family Sn can be easily derived. Relying again
on the equations in (51) it is straightforward to see that this is the fractional function

kn(u) =
(2 − n)u4 + n
u2n − u4 + 1

, u ∈ [0, 1], n = 0, 1, 2, . . . . (57)

From the above expression it is immediately seen that at the poles (where u = 0) the
numerical value of this fractional function kn(u) coincides with the genuine number n
of the surface to which it refers to, i.e., kn(0) = n, and then varying smoothly along the
meridians it reaches at the equator (where u = 1) the same integer value for all surfaces in
the family, i.e., kn(1) = 2. In particular, this means that for n = 0 we have a monotonically
increasing function when u ∈ [0, 1], i.e.,

k0(u) =
2u4

2 − u4 (58)

whereas for n = 1 the fractional function

k1(u) =
1 + u4

1 + u2 − u4 (59)

first decreases to the minimal value 2/
√

5 at umin =
√√

5 − 2 and then increases to the
maximal value 2. In the case of the Mylar balloon (i.e., when n = 2) the ratio between the
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meridional and parallel curvatures is constant (see (54)), i.e., k2 ≡ k2(u) = 2. Let us also
note that, as it is shown in [7], this fact specifies the shape of the rotational surface uniquely
(cf. (53) and (54)). Graphical representations of the two functions k0(u) and k1(u) are given
in Figure 4, right.

æ

æ

æ
æ

æ æ æ æ æ æ æ

�

�

�
�

� � � � � � �

ø

ø
ø

ø
ø ø ø ø ø ø ø

n

1 2 3 4 5 6 7 8 9 10

1

2

3

4

V̂n − ⋆, Σ̂n τn − •− ⋄, ̂
kn

n = 1

n = 0

0 0.486 1

2

1
0.894

HuL

u

Figure 4. Graphical representations of (left) the first eleven dimensionless quantities V̂n, Σ̂n and τ̂n,
n = 0, 1, . . . , 10, and (right) the fractional functions k0(u) and k1(u), cf. (58) and (59).

3.2. Geometrical Characteristics of the Mylar Balloon’s Cousins

Applying standard methods as in Section 2, we can calculate the basic geometrical
characteristics of the Mylar balloon’s cousins Sn such as the perimeter Ln of the profile
curves of the balloons, their surface areas An, etc.

Starting with the perimeter Ln of the profile curves (i.e., the complete meridional
sections, see Figures 1 and 2) and using the integral representation in (42) we arrive at

Ln = 4
E∫

N

dsn = 4
E∫

N

√
dx2 + dz2

n = 4
1∫

0

√
(x′(u))2 + (z′n(u))2 du = 4r

1∫

0

√
1 − u4 + u2n
√

1 − u4
du

and then, on passing to ω = u4, we obtain

Ln = r
1∫

0

√
1 − ω + ωn/2

ω3/4
√

1 − ω
dω =

( 1∫

0

ω
n−5

4 (1 − ω)−
1
2 Gn(ω)dω

)
· r (60)

where

Gn(ω) =

√
1 − ω + ωn/2

ω(n−2)/4
, n = 0, 1, 2, . . . . (61)

Similarly, we can calculate the surface area of the Mylar Balloon’s cousins An , i.e.,

An = 2π
∫

Sn

x
√

dx2 + dz2
n = 4πr

1∫

0

u
√
(x′(u))2 + (z′n(u))2 du = 4πr2

1∫

0

u
√

1 − u4 + u2n
√

1 − u4
du

which finally can be expressed as

An = πr2
1∫

0

√
1 − ω + ωn/2
√

ω
√

1 − ω
dω = π ·

( 1∫

0

ω
n−4

4 (1 − ω)−
1
2 Gn(ω)dω

)
· r2. (62)

Note that for the case of the Mylar balloon, n = 2, the factor-function Gn(ω), which is
present in Equations (60) and (62) as a multiplier, is identically equal to one: G2(ω) ≡ 1.

For the next three geometrical characteristics, i.e., the thickness τn, the meridional
section area Σn, and the volume Vn, we obtain explicit representations using the beta
function defined by (46) or the gamma function which defining formula is given as [24,25]

Γ(p) =
∞∫

0

e−ωωp−1dω, p > 0. (63)
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The thickness (i.e., the polar diameter) τn of the balloons equals to the distance between
the two poles N and S (see Figure 1), i.e.,

τn = 2zn(0) = 2r
1∫

0

tndt√
1 − t4

=
r
2

1∫

0

ω
n−3

4 (1 − ω)−
1
2 dω (64)

which in terms of beta or gamma function can be written as

τn =
1
2
· B

(
n + 1

4
,

1
2

)
· r =

√
π

2
· Γ( n+1

4 )

Γ( n+3
4 )

· r (65)

where we used a formula connecting gamma and beta functions (cf., e.g., [22,25]), i.e.,

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

· (66)

Similarly, the meridional sections area, Σn, can be calculated as

Σn = 4
1∫

0

zn(u)d(x(u)) = 4r
1∫

0

zn(u)du = 4r2
1∫

0

tn+1dt√
1 − t4

= r2
1∫

0

ω
n−2

4 (1 − ω)−
1
2 dω (67)

or, via the beta or gamma functions, as

Σ0 = π · r2, Σn = B
(

n + 2
4

,
1
2

)
· r2 =

4
√

π

n
· Γ( n+2

4 )

Γ( n
4 )

· r2, n = 1, 2, . . . . (68)

For calculation of the volume, Vn, we proceed as in Section 2 using the shell method, i.e.,

Vn = 4π

1∫

0

x(u) zn(u)d(x(u)) = 4πr2
1∫

0

u zn(u)du (69)

where after replacing zn(u) with the integral expression in (42) and changing the order of
integration we arrive at

Vn = 2πr3
1∫

0

tn+2dt√
1 − t4

=
πr3

2

1∫

0

ω
n−1

4 (1 − ω)−
1
2 dω (70)

which by virtue of the definitions of the beta function and its connection with the gamma
function (see (46), (63) and (66)) can be written as

Vn =
π

2
· B

(
n + 3

4
,

1
2

)
· r3 =

2π
√

π

n + 1
· Γ( n+3

4 )

Γ( n+1
4 )

· r3. (71)

The results of this section are summarized in the next two theorems.

Theorem 3. The perimeter Ln of the profile curves (meridional sections) and the surface area An of
the Mylar balloon’s cousins Sn are given by the integral formulas

Ln =
( 1∫

0

ω
n−5

4 (1 − ω)−
1
2 Gn(ω)dω

)
· r, An =π·

( 1∫

0

ω
n−4

4 (1 − ω)−
1
2 Gn(ω)dω

)
· r2 (72)

where r > 0 is the equatorial radius of the balloons, the factor-function Gn(ω) is defined in (61)
and n = 0, 1, 2, . . ..
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Theorem 4. The thickness τn, the meridional section area Σn, and the volume Vn of the Mylar
balloon’s cousins Sn are given by the formulas, using beta functions

τn =
1
2
· B

(
n + 1

4
,

1
2

)
· r, Σn = B

(
n + 2

4
,

1
2

)
· r2, Vn =

π

2
· B

(
n + 3

4
,

1
2

)
· r3 (73)

or gamma functions

τn =

√
π

2
· Γ( n+1

4 )

Γ( n+3
4 )

· r, Σn =
4
√

π

n
· Γ( n+2

4 )

Γ( n
4 )

· r2, Vn =
2π

√
π

n + 1
· Γ( n+3

4 )

Γ( n+1
4 )

· r3 (74)

where r is the equatorial radius of the balloons and n = 0, 1, 2, . . ., except for Σn in the second row
valid for n = 1, 2, . . ..

3.3. Geometrical Characteristics of the Mylar Balloon via Beta and Gamma Functions

Taking the above-obtained formulas for n = 2 (or equivalently, using the relations (38) and
(39)) the basic geometrical characteristics of the Mylar balloon obtained in Section 2 can be
expressed in terms of the Euler’s beta or gamma functions (see, e.g., [22,25]).

Substituting n = 2 into (44) the parameterization of the profile curve CM ≡ C2 of the
Mylar balloon (see Figure 1) takes the form

x(u) = ru, zM(u) ≡ z2(u) =
r
4
·
(

B
(3

4
,

1
2

)
− Bu4

(3
4

,
1
2

))
, u ∈ [0, 1] (75)

where Bζ(p, q) is the incomplete beta function of the real variable ζ ∈ [0, 1], and B(p, q) ≡ B1(p, q)
is the beta function (see Formulas (45) and (46)).

The crimping factor, CM(u), which integral formula is given in (22), can be also
represented via the beta function, i.e.,

CM(u) =
I0(u)

u
=

1
4u

· Bu4

(1
4

,
1
2

)
, u ∈ [0, 1]. (76)

The arclength LM, the surface area AM, and the polar diameter τM are straightfor-
wardly calculated through the beta or gamma functions, i.e.,

LM ≡ L2 = B
(

1
4

,
1
2

)
· r =

√
1

2π
· Γ

(
1
4

)2
· r = 2ϖ · r ≈ 5. 24411 · r (77)

AM ≡ A2 = π · B
(

1
2

,
1
2

)
· r2 = π · Γ

(
1
2

)2
· r2 = π2 · r2 ≈ 9. 8696 · r2 (78)

τM ≡ τ2 =
1
2
· B

(
3
4

,
1
2

)
· r =

√
2
π

· Γ
(

3
4

)2
· r =

π

ϖ
· r ≈ 1. 19814 · r. (79)

The meridional section area ΣM and the volume VM are expressed in a similar manner, i.e.,

ΣM ≡ Σ2 = B
(

1,
1
2

)
· r2 = 2 · r2 (80)

VM ≡ V2 =
π

6
·B
(

1
4

,
1
2

)
·r3 =

1
6

√
π

2
·Γ
(

1
4

)2
· r3 =

πϖ

3
·r3≈ 2. 74581·r3. (81)

Let us note that for the derivation of the final expressions in (65), (68) and (71) as well
as in (77)–(81) we have used the relations

Γ(1) = 1, Γ
(

1
2

)
=

√
π, Γ

(
1
4

)
· Γ

(
3
4

)
= π

√
2, Γ(p + 1) = pΓ(p). (82)
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4. Recursive Evaluation of τn, Σn, and Vn

Relying on the fundamental identity for the beta function

B(p + 1, q) =
p

p + q
B(p, q) (83)

and the explicit representations for τn, Σn and Vn, given by (65), (68) and (71), we obtain
the recursive relationships

τn+4 =
n + 1
n + 3

τn, Σn+4 =
n + 2
n + 4

Σn, Vn+4 =
n + 3
n + 5

Vn (84)

where n = 0, 1, 2, . . . . Hence, using the explicit representations of the geometrical charac-
teristics of the first four Mylar balloon’s cousins, i.e.,

τ0 = ϖ · r, τ1 =
π

2
· r, τ2 =

π

ϖ
· r, τ3 = r (85)

Σ0 = π · r2, Σ1 =
2π

ϖ
· r2, Σ2 = 2 · r2, Σ3 =

2ϖ

3
· r2 (86)

V0 =
π2

ϖ
· r3, V1 = π · r3, V2 =

πϖ

3
· r3, V3 =

π2

4
· r3 (87)

and the expressions (84) we can obtain all the geometrical characteristics τn, Σn and Vn for
n ≥ 0, e.g., the next two for n = 4, 5 are given as

τ4 =
ϖ

3
· r, Σ4 =

π

2
· r2, V4 =

3π2

5ϖ
· r3 (88)

τ5 =
π

4
· r, Σ5 =

6π

5ϖ
· r2, V5 =

2π

3
· r3 (89)

where for the derivation of the expressions in (85)–(87) we have used a representation
of the lemniscate constant via the beta or gamma functions (cf. the representations of ϖ
in (16) and (17)), i.e.,

ϖ =
1
2

B
(

1
4

,
1
2

)
=

1
2
√

2π
Γ
(

1
4

)2
. (90)

Next, applying formulas (84) iteratively for n ≡ p (mod 4), p ∈ {0, 1, 2, 3}, i.e., for
each one of the four residue classes n|p it can be readily obtained that

τn+4|p =
(n + 1)!!!!
(n + 3)!!!!

τp, Σn+4|p =
(n + 2)!!!!
(n + 4)!!!!

Σp, Vn+4|p =
(n + 3)!!!!
(n + 5)!!!!

Vp (91)

in which the shortcut notation n!!!! stands for the quadruple factorial, i.e., a product of
positive integers defined by the formula n!!!! = n(n − 4)(n − 8)(n − 12) . . . . It can be easily
seen that when n is an even number, i.e., when n = 2k with k ≥ 0, then n!!!! = 2kk!!, where
k!! stands for the double factorial, i.e., a product of positive integers defined by the formula
k!! = k(k − 2)(k − 4)(k − 6) . . . .

The above formulas specify four non-intersecting residue classes of geometrical char-
acteristics of the Mylar balloon’s cousins, i.e., τn|p, Σn|p and Vn|p, which in a more detailed
form can be given as

τn+4|p =
(n + 1)!!!!
(n + 3)!!!!

·
{

ϖ,
π

2
,

π

ϖ
, 1

}
· r (92)

Σn+4|p =
(n + 2)!!!!
(n + 4)!!!!

·
{

π,
2π

ϖ
, 2,

2ϖ

3

}
· r2 (93)

Vn+4|p =
(n + 3)!!!!
(n + 5)!!!!

·
{

π2

ϖ
, π,

πϖ

3
,

π2

4

}
· r3 (94)
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where the numerical multipliers in the curly brackets (i.e., the first elements in each one
of the classes, see Table 1) are applied in the order of their occurrence (i.e., the number ϖ
is for τn|0, π/2 is for τn|1, and so on), in correspondence with the complete set of residues
modulo 4, i.e., for p ∈ {0, 1, 2, 3}. The elements of each one of the classes, τn|p, Σn|p, and
Vn|p, with p ∈ {0, 1, 2, 3}, are obtained for n running through the values of n ≡ p (mod 4),
i.e., for n = 4k + p, k = 0, 1, 2, . . . .

It turns out to be convenient to introduce the dimensionless geometrical characteristics
τ̂n, Σ̂n and V̂n via the identities

τn = τ̂n r, Σn = Σ̂n r2, Vn = V̂n r3. (95)

Then for each one of the residue classes, p = 0, 1, 2, 3, we obtain explicit formulas for
the thickness

τ̂4k+4 =
(4k + 1)!!!!
(4k + 3)!!!!

· τ̂0 =
1
3
· 5

7
· 9

11
· · · 4k + 1

4k + 3
· ϖ (96)

τ̂4k+5 =
(2k + 1)!!
(2k + 2)!!

· τ̂1 =
1
2
· 3

4
· 5

6
· · · 2k + 1

2k + 2
· π

2
(97)

τ̂4k+6 =
(4k + 3)!!!!
(4k + 5)!!!!

· τ̂2 =
3
5
· 7

9
· 11

13
· · · 4k + 3

4k + 5
· π

ϖ
(98)

τ̂4k+7 =
(2k + 2)!!
(2k + 3)!!

· τ̂3 =
2
3
· 4

5
· 6

7
· · · 2k + 2

2k + 3
· 1 (99)

the meridional section area

Σ̂4k+4 =
(2k + 1)!!
(2k + 2)!!

· Σ̂0 =
1
2
· 3

4
· 5

6
· · · 2k + 1

2k + 2
· π (100)

Σ̂4k+5 =
(4k + 3)!!!!
(4k + 5)!!!!

· Σ̂1 =
3
5
· 7

9
· 11

13
· · · 4k + 3

4k + 5
· 2π

ϖ
(101)

Σ̂4k+6 =
(2k + 2)!!
(2k + 3)!!

· Σ̂2 =
2
3
· 4

5
· 6

7
· · · 2k + 2

2k + 3
· 2 (102)

Σ̂4k+7 =
(4k + 5)!!!!
(4k + 7)!!!!

· Σ̂3 =
5
7
· 9

11
· 13

15
· · · 4k + 5

4k + 7
· 2ϖ

3
(103)

and the volume

V̂4k+4 =
(4k + 3)!!!!
(4k + 5)!!!!

· V̂0 =
3
5
· 7

9
· 11

13
· · · 4k + 3

4k + 5
· π2

ϖ
(104)

V̂4k+5 =
(2k + 2)!!
(2k + 3)!!

· V̂1 =
2
3
· 4

5
· 6

7
· · · 2k + 2

2k + 3
· π (105)

V̂4k+6 =
(4k + 5)!!!!
(4k + 7)!!!!

· V̂2 =
5
7
· 9

11
· 13

15
· · · 4k + 5

4k + 7
· πϖ

3
(106)

V̂4k+7 =
(2k + 3)!!
(2k + 4)!!

· V̂3 =
3
4
· 5

6
· 7

8
· · · 2k + 3

2k + 4
· π2

4
(107)

where k = 0, 1, 2, . . .. As it can be easily deduced from the various representations given
above the three geometric characteristics τ̂n, Σ̂n and V̂n monotonically decrease tending
to zero as n goes to infinity. A graphical representation of their values for n = 0, . . . , 10 is
depicted in Figure 4, left.

Let us also note that according to the above Formulas (91)–(107) the geometrical
characteristics of the Mylar balloon’s cousins, i.e., τn, Σn and Vn, are expressed through the
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first elements in each of the four residue classes to which they belong, i.e., by the values of
τp ≡ τp|p, Σp ≡ Σp|p, or Vp ≡ Vp|p, for p ∈ {0, 1, 2, 3} (see Table 1).

Table 1. The first elements in each of the four residue classes of geometrical characteristics τn = τ̂n · r,
Σn = Σ̂n · r2, and Vn = V̂n · r3 of the Mylar balloon’s cousins calculated for n = p, p ∈ {0, 1, 2, 3}.

n τ̂n Σ̂n V̂n

0 ϖ π π2/ϖ
1 π/2 2π/ϖ π
2 π/ϖ 2 πϖ/3
3 1 2ϖ/3 π2/4

5. Concluding Remarks

In the presented article we have shown how the geometry of the Mylar balloon SM
and its cousins Sn can be described with the help of the Euler’s beta or gamma functions.
The fundamental geometrical characteristics of these surfaces (such as the arclengths Ln
of the profile curves, surface areas An, volumes Vn, etc.) have been studied in detail in
Section 3.2. For the special case of the Mylar balloon, i.e., for n = 2, these characteristics are
represented in Section 3.3.

Formulas expressing the geometrical characteristics via the fundamental mathematical
constants (such as π and the lemniscate constant ϖ) have been obtained in Sections 2 and 3.
A parameterization of the Mylar balloon’s cousins via the Euler’s beta functions is given
in Section 3. The first and second fundamental forms as well as the principal curvatures
of Sn are derived in Section 3.1, whereas Section 4 reveals the existence of residue classes
modulo four for the thickness τn, the meridional section areas Σn, and the volumes Vn of
the Mylar balloon’s cousins.

The Mylar balloon’s cousins Sn are essentially not spherical, as the above discussion
makes clear, nor are their cross-sections circular. The most common factor that can be used
for evaluating their deviation from the “ideal shape” of a sphere, respectively of a circle, is
the aspect ratio – a dimensionless quantity η defined as the ratio of the polar and equatorial
diameters of Sn, being the shortest and longest distances between any two of their points,
or in the most simple terms, the ratio of thickness and width (cf. also Formula (74))

ηn :=
τn

d
≡ τn

2r
=

√
π

4
· Γ( n+1

4 )

Γ( n+3
4 )

, n = 0, 1, 2, . . . . (108)

From the properties of the gamma function it is clear that

η∞ = lim
n→∞

ηn = 0. (109)

As η0 and η∞ are the extremal points of the family, it is interesting to know which is the
central (middle) one? In order to answer this question it is enough to solve the equation

ηc =
1
2

η0 (110)

which in explicit form amounts to

Γ( c+1
4 )

Γ( c+3
4 )

=
1
2
· Γ( 1

4 )

Γ( 3
4 ))

· (111)

Strange or not, it turns out that its solution c ≈ 1.61289 is quite close to the value of the
golden ratio φ = 1+

√
5

2 ≈ 1.618034, which is known to be the most aesthetically pleasing
proportion in nature (see, e.g., [27]), and ηc ≈ 0.655514.

Additionally, we should mention also that we can use the dimensionless quantity
τ̂n = τn/r = 2ηn, introduced in (95), to measure the aspect ratio for each one of the Mylar
balloon’s cousins by taking simply the halves of the expressions in (96)–(99), i.e.,
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η4k+4 =
(4k + 1)!!!!
(4k + 3)!!!!

· η0, η4k+5 =
(2k + 1)!!
(2k + 2)!!

· η1

(112)

η4k+6 =
(4k + 3)!!!!
(4k + 5)!!!!

· η2, η4k+7 =
(2k + 2)!!
(2k + 3)!!

· η3

where
η0 =

ϖ

2
, η1 =

π

4
, η2 =

π

2ϖ
, η3 =

1
2

(113)

and k = 0, 1, 2, . . ..
As far as the Mylar balloon is concerned concretely, i.e., for SM ≡ S2, the aspect ratio

is easily calculated as (compare with the numerical values in [7,19,20,28])

ηM ≡ η2 =
π

2ϖ
≈ 0. 59907. (114)

Last but not least, the new surfaces described here deserve further and deeper inves-
tigation. Especially interesting in this context there will be the analysis of the geodesics
on those surfaces or more general mechanical properties of their classical and quantum
systems defined on them in the spirit of [17,29].
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