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We present a review of a series of contact maps for the determination of native interactions in proteins
and nucleic acids based on a distance threshold. Such contact maps are mostly based on physical
and chemical construction, and yet they are sensitive to some parameters (e.g., distances or atomic
radii) and can neglect some key interactions. Furthermore, we also comment on a new class of contact
maps that only requires geometric arguments. The contact map is a necessary ingredient to build a
robust GōMartini model for proteins and their complexes in the Martini 3 force field. We present
the extension of a popular structure-based Gō-like approach to the study of protein–sugar complexes,
and the limitations of this approach are also discussed. The GōMartini approach was first introduced
by Poma et al. (J. Chem. Theory Comput. 13, 1366 (2017)) in Martini 2 force field, and recently, it
has gained the status of gold standard for protein simulation undergoing conformational changes in
Martini 3 force field. We discuss several studies that have provided support for this approach in the
context of the biophysical community.
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1. Introduction

Structural biology has made significant strides
in recent years, fueled by advancements in ex-
perimental techniques like nuclear magnetic res-
onance (NMR), X-ray crystallography, and cryo-
electron microscopy (cryo-EM). These techniques
provide detailed insights into the three-dimensional
structures of biomolecules, shedding light on their
functional mechanisms. However, static structural
data alone fails to capture the dynamic aspects of
molecular biology. To bridge the gap between static
structural data and dynamic experimental data, ro-
bust and versatile computational models capable
of accurately describing the dynamics of biomolec-
ular complexes are essential. The GōMartini ap-
proach [1] for proteins offers versatility by combin-
ing the latest Martini 3 force field [2] for proteins
and other biomolecules (e.g., lipids, carbohydrates,
nucleic acids, etc.) and its cost-effective edge ren-
ders this approach ideal for large-scale applications

in cellular environments [3]. Structure-based (SB)
model offers a promising approach, utilising coarse-
grained (CG) representations to capture the essence
of a biomolecule structure and dynamics.

The typical time scales of biological processes
involving, e.g., unfolding of proteins and protein
recognition, among other events, are in the range
of 10−6–10−3 s, and, thus, they are orders of mag-
nitude slower than typical molecular motion (i.e.,
10−15–10−12 s) simulated in all-atom (AA) molec-
ular dynamics (MD). The length scales of confor-
mational rearrangements are also much smaller in
AA-MD simulation than they would be for studying
processes involving large structural changes in bio-
logical systems. In this regard, the SB model and
CG approaches of biomolecular systems are ideal
tools to overcome such limitations. The replacement
of the position of each amino acid by its Cα atom
is a common choice. In this approach, several de-
grees of freedom of the system are removed, which
enables reaching the experimental time and length
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scales while maintaining a molecular-level model of
the systems under consideration. In particular, CG
approaches are used to infer the Young modulus and
confront it with atomic force microscopy (AFM) ex-
periments. Importantly, the mechanism of deforma-
tion that gives rise to the linear force-displacement
response can be characterised in the CG simula-
tion. Several CG models are not sensitive to pH
or ionic strength, and they also do not consider
the electrostatic interactions, post-translational co-
valent modifications of amino acids, etc. Those fac-
tors have been demonstrated to be important in,
for example, the recognition of cell receptors by
pathogens and control of the assembly of protein
complexes. In addition, standard AA-MD simula-
tion can target system sizes on the scale of ∼ 500
million atomistic particles in the latest SARS-CoV-
2 full virion in aerosol droplet [4], which is only pos-
sible in a few high-performance computing clusters
around the world. However, analogous systems for-
mulated using CG force fields, such as Martini 3 [2],
SIRAH [5], and UNRES [6], are an order of magni-
tude smaller. In CG-MD simulation, these systems
can be studied in a moderate-sized computing clus-
ter. Moreover, due to the large time-step used in
CG-MD (e.g., MD simulation with Martini 3 em-
ploys ∆tCG = 20 fs in comparison to AA-MD with
a ∆tMD = 2 fs), CG simulations are expected to
reach longer time scales than AA-MD. At the core
of the SB approach in proteins lies the concept of
native interactions, also known as “native contacts”
(NC), which provides a simple form to understand
the important interactions in equilibrium; it repre-
sents the close spatial proximity between residues
or atoms in the native state. Defining native inter-
actions poses a challenge, as simple cut-off distance-
based definitions can lead to two incompatible out-
comes: (i) the exclusion of relevant contacts beyond
6 Å, and (ii) the introduction of non-physical next-
nearest neighbour contacts. To address these limita-
tions, various methods have been developed to de-
fine native contacts, including atomic overlap map,
shadow map, CSU contact map, and Voronoi maps
(to be discussed in the next section). Each method
offers unique advantages and limitations, and the
optimal choice depends on the specific application.
In the past, we combined both the semi-atomistic
approach (e.g., Martini 3 force field) and the SB
approach, and as such, we developed an alternative
strategy to study conformational changes of pro-
teins, and through this review work, we plan to show
the extension to protein complexes.

Hence, we first discuss here several contact maps
that employ distance cut-off and chemical and phys-
ical information, secondly, we briefly introduce the
extension of the popular SB model developed for
protein–sugar complex and, lastly, the more robust
model, the so-called GōMartini approach that is
based on the SB model of proteins developed by
Professor Marek Cieplak (e.g., a Cα-based Gō-like
model) and others. This simple model turned out

to be efficient in capturing the long-time behaviour
of certain biomolecular systems under mechanical
forces and under high temperatures [7–11]. Most
importantly, the Martini force field with an almost
atomic resolution can use a backmapping protocol
to recover an AA representation from the CG rep-
resentation with an almost atomic resolution.

2. Contact maps for determination of
interaction and topological aspect in

proteins and nucleic acids

2.1. Contact maps based on distance threshold
and geometric principles

A simple protein contact map (CM) based on
a distance cut-off that allows for the calculation
of protein interactions depends essentially on the
atomic positions (see Fig. 1). This method consid-
ers the interaction of any pair of atoms in differ-
ent residues that are within a certain distance of
each other. For example, in protein studies, contacts
have often been defined based on atomic geometry
by selecting the heavy atoms in a given amino acid
residue — an atomic contact is found, if two heavy
atoms associated with distance residues are within
a specific cut-off distance (i.e., 4.0–6.5 Å) [12]. De-
spite its simplicity, the cut-off CM suffers from sev-
eral issues that render it less accurate and reliable
in determining native contacts [13], especially in
the context of SB models that require accurate de-
termination of the native contacts to examine the
emerging protein dynamics from the underlying ge-
ometry. One of the problems with the cut-off CM
is a high sensitivity to the cut-off distance. This
means that even slight adjustments of this parame-
ter can result in substantial changes in the number
of identified contacts. This sensitivity can impede
the comparison of results across different studies.
Additionally, the cut-off CM often identifies con-
tacts between atoms that are not physically in con-
tact with each other, leading to erroneous conclu-
sions about molecular structure and function. Fur-
thermore, it fails to account for occluded contacts or
structural elements, overlooking the accessibility of
atoms and their embedding within the larger-scale
structure, potentially overestimating the number of
identified contacts.

In contrast, the shadow CM [14] fixes some of
the previous limitations of cut-off CM and offers
a more advanced approach to determining atomic
contacts within a protein. It considers the concept
of “shadows” cast by other atoms. In this method,
two atoms are only considered to be in contact if
there are no other atoms blocking the line of sight
between them. The process of obtaining contacts
involves the following steps:

(i) Calculating the distances between all pairs of
atoms in the protein and creating a list of
pairs within a specified cut-off distance.
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Fig. 1. Representations of contact maps (CM) in the literature. The cut-off CM used only the distance between
centres, while the shadow methodology improved the former by not discarding centres in the yellow areas. The
CM can be improved by including structural categories, the contacts of structural units (CSU) methodology,
represented by the Roman numbers, and defining illegitimate (marked with red crosses) interaction. However,
the CSU CM uses an extended sphere that accounts for solvent effects (dashed circles at right) as a first guess
for contacts, which can be asymmetric (as shown by the red and yellow lines at right) due to shadowing effects.
Cut-off-free pure geometric strategy can use a Voronoi diagram, as shown in the panel below, to create the
CM based on the Delaunay triangularization.

(ii) Utilising a spherical screening radius, typi-
cally ≤ 0.5 Å, centred at each atom, and for
each pair of atoms, excluding contacts if one
atom is obscured by the shadow of another
atom and intuitively captures only the “visi-
ble” atoms from the perspective of a reference
atom.

This procedure is visually depicted in Fig. 1. The
shadow CM has demonstrated superior accuracy
compared to the cut-off CM for several reasons.
First, it exhibits less sensitivity to the choice of
cut-off distance, as this parameter is primarily used
to establish the initial set of potential contacts
and the occluded contacts are subsequently re-
moved. Second, the shadow CM aligns better with
experimental data by capturing contacts between
atoms separated by intervening atoms, such as wa-
ter molecules. Despite its advantages, the shadow
CM does come with certain limitations. Notably, it
introduces increased computational complexity and
retains some sensitivity to the cut-off distance, al-
beit to a lesser extent than the cut-off CM. This
sensitivity to noise may result in the identification
of false positive contacts, particularly in molecules
with flexible structures (i.e., loops and coils) or
when dealing with noisy experimental data. Fur-
thermore, the shadow CM cannot capture solvent-
mediated contacts or indirect contacts in general.

An entirely different strategy for defining protein
contacts involves a cut-off-free methodology that re-
lies solely on geometric principles [12, 15, 16]. The
Voronoi tessellation [17] is a technique for parti-
tioning the physical space into convex polyhedrons,
called Voronoi cells, with each cell associated with a
specific site. Typically, the Cα atom of each amino
acid is chosen in the context of protein structure

analysis. The Delaunay triangulation [17] comple-
ments Voronoi tessellation by connecting a set of
points with a network of triangles, ensuring that
no point lies inside the circumcircle of any trian-
gle. In the case of protein structure analysis, Delau-
nay triangulation is often used in conjunction with
Voronoi tessellation to define protein contacts. To
define these contacts using Voronoi tessellation and
Delaunay triangulation, the following steps are typ-
ically followed:

(i) Constructing the Voronoi tessellation of the
protein structure.

(ii) Determining for each pair of adjacent Voronoi
cells whether a corresponding Delaunay edge
exists.

(iii) If the Delaunay edge exists, then the two sites
are considered to be in contact.

There are several advantages of using Voronoi tes-
sellation and Delaunay triangulation in protein
structure for contact definition and topological
properties studies. This method is computationally
efficient, robust to data noise, and capable of cap-
turing both direct and indirect contacts.

2.2. Contact maps based on chemical
and physical information

The contacts of structural units (CSU)
method [18] is a structure-based approach that
leverages geometric and chemical information to
identify contacts between amino acid residues
within a protein. It involves three main steps:

(i) Identifying pairs of heavy atoms that are in
close proximity, typically within a defined dis-
tance threshold.
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(ii) Assigning each atom to a specific class based
on its chemical properties, such as its element
(O, N, C, S) and its connectivity to other
atoms.

(iii) Establishing contacts between residues based
on the presence of specific interactions be-
tween their individual atoms, including hy-
drogen bonds, aromatic interactions, and
hydrophobic interactions. Any interactions
that do not fit into these specific cate-
gories — labelled as “non-specific contacts”
— are excluded from consideration in the
CSU method. This exclusion is based on the
premise that these non-specific interactions
may not convey the structural or functional
relevance that the method aims to capture.

In essence, the CSU method focuses on recogniz-
ing and emphasizing interactions with well-defined
chemical characteristics, enhancing the specificity
and relevance of the identified contacts within the
protein structure. However, the CSU method has
certain limitations, e.g., it only accounts for at-
tractive interactions and neglects repulsive interac-
tions, potentially leading to the inclusion of con-
tacts destabilised by repulsive forces. Additionally,
this method may identify contacts between residues
that are not physically in contact, as it relies on
the presence of at least one specific contact, and
can also return asymmetric contacts, as depicted
in Fig. 1, due to shadowing effects of neighbouring
units. Moreover, it might miss important contacts,
particularly in helical structures, due to its focus on
specific interactions. Overall, the CSU method pro-
vides a valuable approach for identifying contacts
in proteins, but it does have limitations stemming
from its exclusion of repulsive interactions and po-
tential lack of selectivity.

The repulsive CSU (rCSU) methodology [7] ad-
dresses these shortcomings by incorporating repul-
sive interactions and refining contact identification,
offering a more accurate and reliable approach to
a new form of contact map generation. The rCSU
methodology extends the CSU approach by consid-
ering repulsive interactions between charged atoms.
It aims to provide a more precise representation of
inter-residue contacts by accounting for both attrac-
tive and repulsive forces. The rCSU algorithm pro-
ceeds in a manner similar to CSU:

(i) Initially, it identifies pairs of heavy atoms in
close proximity.

(ii) Subsequently, it classifies atoms based on
their chemical properties, akin to CSU.

(iii) The determination of whether there is a con-
tact between two residues is dependent on
the overall balance or net outcome of in-
teractions at the atomic level, calculated as
the difference between the number of attrac-
tive contacts (e.g., hydrogen bonds, aromatic
interactions, ionic bridges, and hydrophobic

interactions) and the number of repulsive con-
tacts (Coulombic repulsions between charged
atoms).

(iv) If the net contact is positive, a contact be-
tween the residues is established.

The rCSU methodology offers several advantages
over CSU. It provides more accurate contact predic-
tions by considering repulsive interactions, reducing
the likelihood of contacts destabilised by repulsive
forces. Furthermore, it enhances contact selectivity
by evaluating the net contact between residues, low-
ering the probability of false positives. This method-
ology also captures a wider range of interactions,
including ionic bridges, resulting in a more com-
prehensive representation of inter-residue contacts.
In summary, the rCSU methodology presents a
more accurate and reliable approach to CM de-
termination compared to CSU, as it incorporates
more chemical information and improves contact
selectivity.

The OV+rCSU method [7] combines the
strengths of the overlap (OV) method and the
rCSU method to identify contact maps in pro-
teins. The OV method identifies contacts based
on the overlap of enlarged van der Waals spheres
around the heavy atoms, while the rCSU method
incorporates repulsive interactions between atoms
with charges to refine contact identification. In con-
trast, the shadow CM method relies on a fixed dis-
tance cut-off, independent of atomic size, and re-
moves contacts with intervening atoms. OV+rCSU
is superior to the shadow CM method because it
considers atomic sizes derived from experimental
studies [19], and repulsive interactions, enabling
the capture of a broader range of interactions
while maintaining selectivity and a decrease in false
positives.

The CSU method is simpler, only considering at-
tractive interactions and disregarding repulsive in-
teractions. This method can simply lead to false
positives, as some contacts may be destabilised by
repulsive forces. OV+rCSU addresses this limita-
tion by incorporating repulsive interactions to refine
contact identification. While rCSU is an improve-
ment over CSU, it may miss some true contacts
due to its focus on net contact between residues.
The OV+rCSU method complements rCSU by con-
sidering overlaps of van der Waals spheres, po-
tentially capturing additional contacts. OV may
identify false positives due to its reliance on over-
laps without considering repulsive interactions.
OV+rCSU and rCSU address this limitation by in-
corporating repulsive interactions to refine contact
identification.

The Voronoi/Delaunay [15] methodology pro-
vides a cut-off-free approach [12] to CM determi-
nation, relying on geometric constructs to define
contacts based on the proximity and connectiv-
ity of residues. It involves partitioning space into
polyhedra, known as Voronoi cells, with each cell
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associated with a residue. The faces of these poly-
hedra define the closest contacts between residues,
offering a geometric foundation for contact defini-
tion. This methodology does not require a fixed
cut-off distance, eliminating the need for arbitrary
cut-off/parameter selection. It delivers a geomet-
ric basis for contact definition, ensuring consistency
and robustness, capturing both local and global
contact patterns, and providing a comprehensive
view of the protein structural connectivity. This
method can be used to define both residue–residue
and atom–atom contacts, offering flexibility in
granularity.

The choice between the OV+rCSU and
Voronoi/Delaunay methodologies depends on
the specific application’s requirements for accuracy,
efficiency, and robustness. For applications demand-
ing high accuracy and comprehensiveness, such as
protein folding simulations or detailed structural
analysis, the OV+rCSU methodology may be the
preferred/recommended choice in SB models. The
explicit consideration of atomic sizes and repulsive
interactions provides a more detailed and realistic
representation of native contacts in proteins. For
applications requiring a fast and efficient method
for capturing local and global contact patterns,
such as network analysis or large-scale structural
comparisons, the Voronoi/Delaunay methodology
may be the better choice. Its cut-off-free nature
and geometric foundation make it computationally
efficient and less sensitive to arbitrary cut-off
selections. In general, the OV+rCSU methodol-
ogy is well-suited for applications where a high
level of accuracy and detail is crucial, while the
Voronoi/Delaunay methodology is well-suited for
applications where efficiency and robustness are
primary considerations.

Overall, the OV+rCSU methodology offers a
more accurate and comprehensive approach to con-
tact map determination compared to rCSU, OV,
and shadow CMs individually. It combines the
strengths of the OV and rCSU methods to iden-
tify a broader range of interactions while maintain-
ing selectivity and reducing the number of false
positives.

A recent method that considers the equilibrium
dynamics of a protein, such as the differen-
tial/dynamic contact map (dCM) [20], offers an al-
ternative solution. It can identify the most struc-
turally relevant contacts in a protein using AA-MD
simulations. This method relies on contact fre-
quency and the definition of stability. Frequency
measures the number of times a contact was ob-
served between two residues. High contact fre-
quencies indicate more stable contacts. Stability,
on the other hand, is determined by considering
the chemical characteristics of residues involved
in a contact. For instance, hydrophobic interac-
tions are generally more stable than polar–polar
and electrostatic interactions. To obtain a more
detailed view of the set of protein contacts, the

OV+rCSU approach is used with the dCM analysis.
The OV+rCSU considers the chemical character of
each residue and the respective contacts between
a pair of residues, classifying them into categories
to count the number of stabilising and destabilis-
ing contacts per residue, defining a contact when
both residues have a net stabilising character. The
dCM and OV+rCSU methodologies together form
a robust contact map technique known as differ-
ential contact map that has been validated in the
study of the dynamics of large protein complexes.
For example, the dCM analysis identifies the high-
frequency (> 0.9) contacts between amino acids
in the SARS-CoV-2 trimeric spike protein [20]. It
reveals that flexible loops are the source of con-
tact fluctuations, comprising approximately 1772
amino acids based on secondary structural analysis,
while helices and strands are roughly represented
by 712 and 819 residues, respectively. The entire
spike protein has 3363 residues. This indicates that
the methodology is feasible even for large protein
complexes.

2.3. Contact maps for intrinsically
disordered proteins

Creating a contact map for intrinsically disor-
dered proteins (IDPs) presents challenges due to
their lack of well-defined tertiary structure, which
evolves over time. Furthermore, the energetic land-
scape of these proteins significantly differs from
those with stable structures that possess a sin-
gular energetic minimum [21], as opposed to the
shallow energetic wells between which the pro-
tein’s conformation fluctuates [22]. This necessi-
tates defining the contact map temporally and up-
dating it at every simulation step. Given the ab-
sence of a fixed protein structure, a specialized al-
gorithm is essential for determining this contact
map.

One feasible approach is an algorithm based on
three criteria: distance between amino acids, orien-
tation of specific residues’ side groups, and the po-
tential number of contacts a given residue can estab-
lish. The algorithm categorizes contacts into three
types: sidechain–sidechain (ss), backbone–backbone
(bb), or backbone–sidechain (bs), each utilising
slightly different criteria.

The distance criterion serves as the foundational
parameter governing the onset of a contact. Con-
tacts break when the distance between the centres
of Cα atoms of particular residues exceeds a de-
fined limit, fσi,j , where σi,j = rmin(0.5)1/6. Here,
rmin indicates the position of the energetic poten-
tial minimum. The values of rmin, determined from
an analysis of distances between residues in 21,090
non-redundant proteins from the CATH database,
varied based on the interaction type. The rmin val-
ues for bb and ss contacts were determined as the
mean values from the collected data, resulting in
5.0 Å and 6.8 Å for bb and bs contacts, respectively.
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However, for ss contacts, rmin was individually cal-
culated for each pair of residues. This value ranged
from 6.42 Å for the Ala–Ala interaction up to
10.85 Å for the Trp–Trp interaction, and compre-
hensive details about other pairs of residues capa-
ble of forming contacts are presented in [23, 24].
As mentioned earlier, contacts fluctuate during the
simulation, and contact is broken when the distance
between residues exceeds fσi,j , where f = 1.5. Dif-
ferent values of this factor were also considered and
are well described in [23, 24].

Another crucial criterion is the orientation of
residues. Implementing this criterion is not straight-
forward, as each residue is treated as a spheri-
cal bead. Therefore, neighbouring residues must be
considered for direction implementation, as detailed
in [23, 24]. Determining the orientation of a back-
bone hydrogen bond or a sidechain Cβ atom re-
lies on the positions of three consecutive Cα atoms.
This criterion is essential because we assume that
a bb contact can occur if the N-atom on the back-
bone part of the i-th residue can establish a hydro-
gen bond with the O-atom on the backbone part of
residue j, or vice versa. However, this interaction is
permissible only when both atoms are oriented to-
ward each other. The same requirement for residue
orientation applies to ss and bs contacts. Detailed
descriptions of the mathematical formulas that en-
able the implementation of these requirements are
provided in [23, 24].

The final criterion involves the residue types that
are essential for defining contacts. They are cate-
gorized into six classes: (1) Gly, (2) Pro, (3) hy-
drophobic, (4) polar, (5) negatively charged, and
(6) positively charged. The solvent being implicit
in the program restricts the simulation of interac-
tions between polar residues and water molecules.
Employing the one-bead-per-residue model leads to
a less dense protein representation. To compensate
for this, we restrict each amino acid’s capacity to
form a limited number of contacts. The formula
zs = nb + min(s,nH + nP) determines this num-
ber, where nb signifies the allowable count of back-
bone contacts, s represents the maximum quantity
of sidechain contacts, nH denotes the upper limit
for contacts with hydrophobic residues, and nP sig-
nifies the limit for contacts with polar side chains.
Detailed values of these parameters can be found
in [23].

It is crucial to note that the contact map, irre-
spective of its method of creation, can be utilised
with any potential energy function, whether it is a
spherical potential like Lennard–Jones (LJ) or one
that integrates directional criteria. The initial step
always involves validating the distance criterion, fol-
lowed by evaluating the ability to create specific
contacts. The above-mentioned methods for defin-
ing contacts are necessary not only for the descrip-
tion of the dynamics of single protein chains but
also for research on the aggregation of IDPs or even
the creation of protein droplets.

2.4. Contact maps for nucleic acids:
RNA structures

SB models based on a Gō-like approach have also
been used to study RNA molecules in CG descrip-
tions. The CG model considers a nucleotide by a
single bead, and then a contact map is built on the
basis of the distances between the interaction sites
in the native structure. Such is the approach used in
the self-organized polymer (SOP) model proposed
by Hyeon and Thirumalai [25], designed to anal-
yse the dynamics of RNA unfolding under constant
force.

As in the CSU method, additional physicochemi-
cal details can be introduced by considering the in-
teraction type between nucleotides. The main forces
that stabilize RNA structures are due to stacking
interactions and base pairing. The former is present
when two nucleobases are close enough and lie on
parallel planes exhibiting an overlap between their
faces. On the other hand, base pairs originate from
hydrogen bonds formed between the edges of the ni-
trogenous bases, yielding a relatively large number
of possible geometrical arrangements between the
four nucleobases that characterize RNA molecule:
adenine (A), uracil (U), guanine (G), and cyto-
sine (C). In particular, A–U or C–G base pairs and
stacking interactions give rise to the well-known A-
form double helix, a motif of extreme importance
in RNA structure. Electrostatics can also be con-
sidered explicitly, regardless of the proximity of the
nucleotides in the native structure. For this purpose,
a point charge is generally placed on the phosphorus
atom on the backbone, which interacts with other
charged particles through an implicit solvent ap-
proach.

Some Gō models have employed specific terms or
functional forms for stacking and base pairs con-
tacts using this information. The three-interaction
site model of Hyeon and Thirumalai [25, 26] de-
fines a nucleotide by three point particles represent-
ing the nucleobase (A, U, C, G), sugar ring (i.e.,
ribose: C5H10O5), and phosphate group (PO3−

4 ),
which allows the introduction of directional inter-
actions. The model has been parameterized with
melting temperatures of small RNA fragments to
study RNA folding thermodynamics under several
ion concentrations and temperatures, and its in-
teractions are also specific for contacts belonging
to a double helix. Later versions of the model,
however, are capable of introducing complemen-
tary base pairs between non-native contacts and
stacking interactions between non-consecutive nu-
cleotides [27]. This combination makes it possible
to deal with a more complex free-energy landscape
while introducing contacts that stabilize the native
structure and taking care of describing properly the
thermodynamics of the double helices, which have
an important contribution to the overall stability.
In addition, the model of Hori and Takada [28],
designed for the study of structural deformations
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Fig. 2. Panel (a) shows the all-atom MD and SB CG modelling of the sugar–Man5B complex (PDB:3W0K).
The blue protein segment comprises the residues (200–220), which is considered the active loop responsible
for the cleavage of the O-glycosidic bond in polysaccharides. The CG model employs the Cα positions for
protein and C4 atoms for the sugar hexamer. Panel (b) shows the fluctuations of the complex under AA and
CG simulations. The RMSF shows fluctuations of the protein segment undocked (black line) and docked with
mannohexaose and cellohexaose in green and red solid lines, respectively. This figure was adapted with the
permission from [35].

of RNA and protein–RNA complexes, also uses a
three-point representation of a nucleotide and a
parametrization from MD simulations and distin-
guishes stacking from base-pairs in their Gō-like ap-
proach.

The large number of non-complementary base
pairs and the possibility of forming hydrogen bonds
between nucleobases and phosphate groups or sugar
rings increases the complexity of the interaction net-
work of RNA molecules. Despite this, several tools
such as ClaRNA [28, 29], FR3D [30], or x3DNA-
DSSR [30, 31] can be used to annotate structures
and identify the most relevant interactions in the
system of interest, which can help to build Gō mod-
els able to capture the essentials of the phenomena
to study under simulations.

3. The structure-based model:
A Gō-like approach for protein–sugar

complexes

In nature, proteins and polysaccharides can ex-
ist separately and also form complexes, for in-
stance, the degradation of cellulose fibrils by fungi
or bacteria involves the processing of the biomate-
rial by enzymes (e.g., endo- and exo-glucanases) and
thus, a relevant biotechnological process that has
been improved for the biofuel production [32, 33].

At the molecular level, enzymes recognize the
cellulose chain ends or broken chains, and after at-
taching to them, the cleavage of the O-glycosidic
bond is carried out, releasing several small oligomers
that can be the source of energy for several microor-
ganisms. Also, glycosylation of proteins by sugar
moieties (i.e., N-glycan or O-glycan) can induce
conformational changes via allosteric communica-
tion. Such an effect was reported in the conforma-
tional transition from closed to open state in the
SARS-CoV-2 spike (S) glycoprotein [34]. The rele-
vance of describing such events by molecular sim-
ulation can lead us to the development of novel
therapeutics against pathogens such as viruses and
bacteria. In this regard, the study of protein–sugar
complexes remains an active field of research in the
biomolecular community.

The extension of the Gō-like approach for the
study of protein–sugar complexes was carried out
in [35]. In this work, the Cα-based Gō-like model for
proteins was coupled with a structure-based coarse-
grained (SB CG) model for polysaccharides. Each
sugar oligomer was formed by D-glucose units con-
nected by the β (1 → 4) glycosidic bonds in cel-
lohexaose and the α (1 → 4) glycosidic bonds in
amylohexaose case. Then, each sugar monomer in
the CG description was represented by one CG bead
centred on the position of the carbon atom. We con-
sidered the position of the C4 atom for comparison
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with respect to the C1 position. Alternatively, we
also derive parameters for C1 and the centre-of-
mass of the monomer. The new set of CG values
for bonded and non-bonded parameters was deter-
mined by AA-MD simulations using two statisti-
cal methods. One of these methods was the Boltz-
mann inversion (BI) method [36], while the other
was denoted by the energy-based (EB) approach.
The non-bonded parameters for the protein–sugar
complex were mapped by the Lennard–Jones (12–6)
potential according to the Gō-like approach. These
two methods were employed to calculate the stiff-
ness of sugar oligomers and protein secondary struc-
tures. Protein Man5B comprises 330 residues, with
PDB ID 3W0K. This study shows the stiffness of α-
helices, which, on average, are stiffer than β-strands.
Also note that in proteins, the secondary structures
are generally stiffer (based on elastic contacts) by a
factor of 5 than in sugars. This CG model was val-
idated for the case of the hexaose-Man5B catalytic
complex (see Fig. 2). The large fluctuations calcu-
lated by principal component analysis (PCA) of the
active loop in Man5B were retained in the CG de-
scription. The main trend between AA-MD [37] and
CG-MD simulations regarding the binding activity
was also captured in the CG model.

These results highlighted the energetic differences
between protein–sugar interactions and native in-
teraction in proteins (ε

PP
∼ 1.5 kcal/mol). It was

reported that the strength of sugar–protein energy
value (ε

SP
) was in the range of 3 to 6 kcal/mol. This

SB model for protein–sugar complex is constructed
under implicit solvent conditions, and no detailed
chemistry of residues is included, thus, ligand recog-
nition associated with long-range interaction or the
effect of single point mutations that induce confor-
mational changes cannot be captured by this simple
model. Furthermore, atomistic backmapping is not
doable under this representation because of the level
of CG description based on Cα atoms. In the next
section, we present an alternative approach that is
based on the Gō-like model for proteins and circum-
vents several limitations of this SB model.

4. Overview of the GōMartini approach
for protein complexes

The GōMartini approach was first introduced
by Poma et al. [1], and it coupled the Martini 2
with the SB model for protein (i.e., Gō-like type)
developed by Cieplak’s lab. The protocol for the
GōMartini approach is depicted in Fig. 3 (see
also [38]); the first step begins with an experi-
mental 3D structure of a globular protein. From
this structure, the OV+rCSU contact map is cre-
ated from the server http://pomalab.ippt.pan.
pl/GoContactMap [39, 40]. The next step involves
the transformation of AA to CG representation us-
ing the ./martinize2 script [41]. In the case of pro-
tein complexes, each of their chains must be isolated

Fig. 3. The GōMartini approach workflow for pro-
tein complexes. The study of oligomeric complexes
involves building a Martini CG representation, cre-
ating a contact map, and introducing Gō bonds
mapped as LJ potential through the virtual site
implementation (denoted as dummy beads in GRO-
MACS versions before 3.3). The resulting complex
is solvated and neutralized at ambient conditions.
MD simulations are performed using the GRO-
MACS MD package [38]. By iteratively modifying
εGō value in the range of 9.4 and 12.0 kJ/mol, CG-
Martini simulations are capable of reproducing ex-
perimental results.

in individual PDB files. The GōMartini approach
is applied to obtain a CG structure with the “cre-
ate_gomartini.py” script. The strength of the Gō
potential mapped by a Lennard–Jones (12–6) po-
tential can be adjusted to match results from ex-
periments or atomistic simulations. The GōMartini
approach allows the sampling of large-scale con-
formational changes, a limitation in AA-MD sim-
ulation [1]. This holds particular significance in
the investigation of proteins that undergo signifi-
cant structural transitions, such as unfolding events
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under a mechanical force, inter-domain motions,
and catalytic rearrangements, as well as in a better
description of protein complex stability [39, 42–46].

The Martini force field allows for the simula-
tion of biomacromolecules at a faster rate than the
conventional AA representation. For proteins, an
old SM model based on an elastic network (EN)
model was used to preserve protein native struc-
ture by adding harmonic bonds between Cα atoms.
This has the drawback of not being able to ex-
plore the full conformational landscape of the pro-
tein, as well as overestimating the number of con-
tacts between nearby residues [1]. The GōMartini
approach involves replacing the contacts obtained
by the EN model based on a simple cut-off dis-
tance by the native contacts built based on the OV
and chemistry-based rCSU CMs. Then, virtual sites
are placed near the BB particles. Such implemen-
tation in GROMACS 2020 (or above) enhances the
production stage. The only energy scale in this ap-
proach (εGō) can be modified iteratively. The de-
fault value is 9.414 kJ/mol, which corresponds to
the energy of the hydrogen bond in proteins [35];
however, alternative values have been employed to
replicate experimental results, including 12 kJ/mol,
and in certain instances, values of 100 kJ/mol
over certain pairs of contacts were necessary [40].
Below is a brief review of successful GōMartini
studies with Martini 2 [47] and Martini 3 [2] force
fields.

4.1. Martini 2

The first applications of the GōMartini approach
were carried out using the Martini 2 force field. It
examined the folding of small α- and β-peptides,
the conformational flexibility of a set of proteins,
and the nanomechanics of a titin domain using dif-
ferent definitions of contact maps and different εGō
values. Folding simulations were done for an α-helix
segment of the histidine-containing phosphocarrier
protein and a β-strand of the G protein. Native con-
tacts were calculated from the PDB structures, and
the coordinates for the unfolded conformers were
obtained from a CG simulation at 500 K with im-
plicit solvent. The results showed that both peptides
refolded in almost all simulations. The equilibrium
dynamics of the type I cohesin domain, the domain
of I27 from titin, and ubiquitin (PDB IDs: 1AOH,
1TIT, and 1UBQ, respectively) were examined at
both atomistic and CG resolutions. RMSD anal-
yses revealed that the proteins were stable along
GōMartini simulations with deviations smaller than
0.2 nm and that characteristic residue fluctuations
were captured during the MD simulation, in agree-
ment with the previous EN model (i.e., ELNEDIN
approach [48]) and AA-MD simulations. A principal
component analysis indicated that the GōMartini
approach was able to capture the opening and clos-
ing motion of the Man5B glycoside hydrolase. The

amplitudes were comparable to those observed in
AA-MD simulations [37]. Finally, nanomechanical
studies employing the GōMartini approach on the
domain of I27 from titin showed the nanomechan-
ics can be captured at slower pulling speeds than
AA-MD simulations, and unfolding forces were sim-
ilar to experimental values when extrapolated to
low loading rates.

In another study [39], the GōMartini approach
was used to describe the membrane remodelling dy-
namics of the F-Bin/Amphiphysin/Rvs (F-BAR)
protein PACSIN-1. The conformation of PACSIN-1
was not maintained using the original definition
of native contacts, namely OV+rCSU, due to the
overstabilization of contacts between neighbouring
residues. The native contacts have been redefined.
Consequently, their definition included all i-th and
(i + 3)-th residue pairs. Also, if the minimum dis-
tance between all heavy elements (i.e., N, C, and O
atoms) is shorter than a distance threshold, a pair
of residues, i-th and j > (i+ 3)-rd, is considered to
have a native contact. Throughout the simulations,
lateral PACSIN-1:PACSIN-1 interactions were ob-
served and correlated with the solved 3D structure.
This optimization reproduced the structural and lo-
cal fluctuations observed in AA-MD simulations.

The GōMartini approach has been used to in-
vestigate the association of lipids with various pro-
teins [49–52]. In one of these studies, the conforma-
tional dynamics and the effect of oligomerization of
npq2 Light-harvesting complex II (LHCII) on the
association with lipids [52]. Another study exam-
ined the stability of LHCII in its monomeric and
trimeric forms, the cofactor flexibility, and the im-
pact of membrane composition [51]. Both studies
demonstrate the usefulness of the GōMartini ap-
proach for describing the conformational flexibility
of proteins, with results comparable to those ob-
tained by experimental techniques or AA-MD sim-
ulations.

The stability and enzyme flexibility of pro-
teomimetics in the presence of zinc metallopro-
teinase thermolysin was studied using GōMartini.
The simulation results were consistent with experi-
mental observations [50]. In another study [53], the
structural stability of PET-degrading enzyme (i.e.,
PETase) in a complex with copolymers at high tem-
peratures was examined. The results obtained from
the GōMartini simulation were in agreement with
the temperature-dependent conformation observed
in AA-MD simulations [53].

One of the most notable applications of the
GōMartini approach is in the nanomechanics of
proteins that requires the use of steered molecu-
lar dynamics (SMD) simulations. The level of CG
in this approach has the advantage of reaching ex-
perimental time and length scales while maintain-
ing a detailed description of the system at the
molecular level26. In this particular aspect, sev-
eral studies have dealt with the nanomechanics of
Aβ40, Aβ42, α-synuclein, and other self-assembly
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peptides [43, 45, 46]. These investigations have
shed light on the stability of biological fibrils [54]
and their significance in the progression of neu-
rodegenerative diseases, as well as on the me-
chanical properties that can be used to develop
new materials with industrial uses [43, 45, 46].
In another study, the unbinding pathways of the
complex anticalin:CTLA-4 and its nanomechan-
ics under various pulling geometries, which led
to diverse force–distance profiles, were investi-
gated using AFM single-molecule force spectroscopy
(SMFS) experiments and GōMartini simulations.
As a result, this approach explained the ob-
served experimental patterns of mechanical stabil-
ity that were attributed to pulling geometries and
to the loss of native contacts between secondary
motifs [40, 44].

4.2. Martini 3

The recent version of Martini 3 for proteins [2]
and other polysaccharides [55–57] has improved the
ability of GōMartini to study large conformational
transitions in protein under several environmental
conditions. The protein copper, zinc superoxide dis-
mutase was the first use of GōMartini and Mar-
tini 3 for the study of conformational events [42].
The authors captured the allosteric effect of the
G93A mutation on the electrostatic loop (EL).
Note that the larger flexibility of EL causes the
opening of this loop, which further destabilises
the zinc-binding site of this enzyme via an in-
crease in the hydration levels. In accordance with
hybrid quantum-mechanical/molecular-mechanical
MD simulations, the opening of the EL was re-
produced using simulations, as well as its confor-
mational flexibility. This study paved the way for
the utilisation of the GōMartini methodology in the
comprehensive examination of mutations and their
allosteric effects on the structure and function of
proteins.

The implementation of CG-MD simulations em-
ploying the GōMartini strategy resulted in the
identification of a second phosphatidylinositol 4,5-
bisphosphate binding site on the C-terminal domain
of the tubby protein. The validation of this new
binding site was carried out by mutating charged
residues to alanine, both in silico and in living cells.
It was shown that the affinity for phosphoinositide
was reduced in both experiments [58].

In a study of the accessory factors UbiJ and
UbiK, the GōMartini approach was used to im-
prove the sampling process. Also, the absorption of
a trimeric protein in the membrane was studied.
A contact profile along an AA-MD simulation be-
tween the protein and the membrane was necessary
to tune the CG model, which improved the accuracy
of the interactions [59]. Small bifunctional molecules
capable of modulating protein-membrane interac-
tions were studied by GōMartini [60]. The CorA

transport system asymmetric gating mechanism
was investigated using the same method. For this
purpose, both AA-MD and CG-MD simulations
with different conformations of the protein chain
were performed. The highly dynamic conforma-
tional changes observed in the set of simula-
tions were consistent with recent structural stud-
ies. Based on previously reported information and
results from the CG simulations, the authors pro-
posed a patent on the novel asymmetric gating
model for this protein system [61].

The giant mechanical stability of the adhesion
bone sialoprotein-binding protein (Bbp) of Staphy-
lococcus aureus and its role in biofilm formation
have been recently investigated using AA-MD and
GōMartini SMD simulations. Single-molecule force
spectroscopy [44] has given evidence of such a
high degree of mechanostability in Bbp. Additional
experiments on the Bbp-fibrinogen-α complex re-
vealed that this is one of the most mechanostable
protein complexes studied so far. These results
agreed with experimental SMFS data [44].

The GōMartini approach has proven to be use-
ful for the study of diverse protein systems, reveal-
ing details about their nanomechanics, allosteric ef-
fects, and a deeper appreciation of their conforma-
tional flexibility. It is possible to extend this ap-
proach to the study of protein complexes with di-
verse oligomeric states by using the workflow de-
picted in Fig. 3. GōMartini can compensate for
protein–protein interactions that cannot be fully
captured by the Martini 3 force field, enhancing our
tools for the analysis of these complexes.

5. Conclusions

An interesting alternative for the study of
biomacromolecular events at the nanometric scale
and with a temporal resolution closer to experimen-
tal studies is presented by the GōMartini approach.
The scope of its application will be widened with
its future expansion to encompass other types of
molecules, such as carbohydrates, lipids, and nucleic
acids. The GōMartini has become the gold standard
in Martini 3, as it offers flexibility by combining
physical and chemical information in the construc-
tion of the contact map in protein. This is a partic-
ular advantage that renders the information stored
in the Gō interaction crucial for the understanding
of the mechanism of protein–protein dissociation, as
well as during the nanomechanical deformation, as
one can track directly the rupture of Gō bonds as it
will be in a continuum system. Martini 2 is used to
overestimate the protein–protein interaction, and in
Martini 3, the protein interface requires the contri-
bution of additional Gō bonds that can be obtained
by the OV+rCSU CM. We anticipate that a combi-
nation of statistical potentials and machine learning
approaches can assist the contact map determina-
tion in protein complexes.
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