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Quantum asymmetry is a physical resource that coincides with the amount of coherence between the
eigenspaces of a generator responsible for phase encoding in interferometric experiments. We highlight an
apparently counterintuitive behavior that the asymmetry may increase as a result of a decrease of
coherence inside a degenerate subspace. We intuitively explain and illustrate the phenomena by performing
a three-mode single-photon interferometric experiment, where one arm carries the signal and two noisy
reference arms have fluctuating phases. We show that the source of the observed sensitivity improvement is
the reduction of correlations between these fluctuations and comment on the impact of the effect when
moving from the single-photon quantum level to the classical regime. Finally, we also establish the analogy
of the effect in the case of entanglement resource theory.
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Superposition of quantum states is a fundamental prin-
ciple of quantum mechanics and the ability to create and
preserve coherent superpositions is the essential prerequi-
site for the realization of all kinds of quantum technologies.
In recent years, the basic intuition that quantum super-
position is a valuable and fragile resource has been
formalized within the mathematical framework of quantum
resource theories [1–3]. The mathematical notion of coher-
ence relies on the decomposition of the Hilbert space of the
system into subspaces; usually the orthogonal eigenspaces
of an observable. This is actually a subcase of the more
general resource theory of quantum asymmetry [4,5],
where the resource is the degree to which a quantum state
breaks a certain symmetry, defined in terms of a Lie group.
Quantum asymmetry has been recognized as the relevant
physical resource in a variety of operational settings:
reference frame alignment [6–8], quantum thermodynamic
tasks [9–11], quantum speed limits [12,13], assessing
macroscopic quantumness [14–16], and, most importantly
for this Letter, quantum metrology [5,17–19]. In this
framework, the coherence of a quantum state with respect
to the eigenspaces of an observable G corresponds to the
asymmetry with respect to the one-parameter group of
translations eiθG; in the following, the term quantum
asymmetry will be used to refer to this specific notion.
In this work, we focus on a qutrit example, which is the

simplest case where a nontrivial generator G with a
degenerate eigenvalue exists. Our main result is to show
that the sensitivity to the phase θ, which also quantifies the
G asymmetry, is increased for probe states that are more
dephased in the degenerate subspace, thus effectively

“noisier,” in a sense that will be made more precise.
Furthermore, we also show that a similar, yet less pro-
nounced, behavior appears when the dephasing channel E
is used for entanglement distribution.
We study the phenomena in terms of a physical reali-

zation of the system as a three-arm interferometer and we
complement our theoretical analysis with a single-photon
optical experiment that confirms our predictions.
While quantum coherence theory is intimately related

with multiple phase interferometry [20–26], in this Letter
we focus on the estimation of a single phase θ, imprinted
onto a signal mode, while the phases of the other reference
modes fluctuate, generalizing the paradigmatic phase
diffusion model [27–33]. Interestingly, this interferometric
point of view will shed light on the apparently unintuitive
effect observed in the abstract description: we will show
that an increased dephasing in the degenerate subspace is
caused by less correlated fluctuations of the reference
phases, which allows to decrease the measurement noise
without altering the signal.
Asymmetry and the quantum Fisher information.—

Quantum resource theories, with the entanglement theory
as the most famous example [34], arise naturally when a set
of quantum states can be regarded as free and any state
outside of it as a resource [2]. This immediately defines also
free operations, i.e., quantum channels that cannot trans-
form free states into resources. In the resource theory of
asymmetry the starting point is the representation of a
symmetry group. In particular, we consider a finite-
dimensional representation of Uð1Þ: Uθ ¼ e−iθG, where
G ¼ P

k Ekjkihkj is the Hermitian generator, jki are its
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eigenstates, and Ek its eigenvalues, which can be degen-
erate. Resource states G are those not invariant under the
action of Uθ and free operations those commuting with Uθ.
If G is nondegenerate, G is the set of incoherent states
with no off-diagonal elements in the eigenbasis; otherwise,
all superpositions of eigenstates of the same degenerate
eigenvalue are also free.
There are inequivalent ways to quantify the asymmetry

of a quantum state, called asymmetry monotones,
which must not increase under free operations [35].
When Uθ is regarded as a θ parameter encoding operation
on a quantum state, the quantum Fisher information (QFI)
of the state is an asymmetry monotone [19]. It is defined as
F θðρÞ ¼ Tr½ρθL2

θ�, where ρθ ¼ UθρU
†
θ and the symmetric

logarithmic derivative (SLD) operator Lθ is defined as
2ðdρθ=dθÞ ¼ Lθρθ þ ρθLθ. The QFI quantifies the sensi-
tivity of ρ to the imprinted phase θ, since the quantum
Cramér-Rao bound (CRB) states that the variance of
any unbiased estimator θ̃ is lower bounded as [36–38]
Δ2θ̃ ≥ ½1=νF θðρÞ�, where ν is the number of repetitions
and the bound is saturable for large ν.
Qutrit model.—Consider a three-level system (qutrit) and

the generator G ¼ E1j1ih1j þ E2ðj2ih2j þ j3ih3jÞ, where
we have fixed an orthonormal basis fj2i; j3ig of the
degenerate eigenspace, singled out by the dephasing
channel E, which describes a decrease of coherence
between the two eigenspaces by a factor η and between
fj2i; j3ig by a factor κ:

EðρÞ ¼

2
64

ρ11 ηρ12 ηρ13

ηρ21 ρ22 κρ23

ηρ31 κρ32 ρ33

3
75: ð1Þ

The channel is physical (a completely positive map)
provided

0 ≤ η ≤ 1 ∧ 2η2 − 1 ≤ κ ≤ 1; ð2Þ

we restrict to real-valued η and κ without loss of generality.
We consider the phase parameter θ unitarily encoded by

G, i.e., EθðρÞ ¼ e−iθGEðρÞeiθG and to study the effect of
dephasing we focus on a pure probe state ρ0 ¼ jψ0ihψ0j
that is a superposition of states from different eigenspaces:
jψ0i ¼ ffiffiffi

q
p j1i þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð1 − qÞ=2�p ðj2i þ j3iÞ, with 0 ≤ q ≤ 1.

The corresponding QFI is

F ½Eθðρ0Þ� ¼
8ðE1 − E2Þ2η2ð1 − qÞq

κ þ 1þ qð1 − κÞ ð3Þ

and quantifies both the asymmetry of the state EðρÞ and its
phase sensitivity. Details on the calculation are in the
Supplemental Material [39].
As expected, the QFI is a monotonically increasing

function of η. However, for any value of η and q it is a

decreasing function of κ. This means that more dephasing
in the degenerate subspace gives higher sensitivity to the
imprinted phase θ, despite the state becoming in some
sense noisier—decreasing κ from 1 (no dephasing) to a
value κ ≥ 0 always decreases its purity Trρ2. While this
result appears counterintuitive, we stress that it does not
violate the monotonicity property of the QFI. According to
Eq. (2), a channel with η ¼ 1 and κ < 1 is not physical.
Thus, it is not possible to see the two decoherence effects
parametrized by η and κ as the action of separate channels.
Since E and e−iθG commute, the overall channel Eθ also

describes a physical process in which noise and parameter
encoding happen simultaneously. While the QFI quantifies
the asymmetry of the noisy state EðρÞ, from a quantum
metrology point of view, one assumes that the channel Eθ is
given and optimizes the probe state. The so-called channel
QFI maxρF ½EθðρÞ� ¼ 8η2ðκ − 2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
κ þ 1

p þ 3Þ=ðκ − 1Þ2
is obtained for q ¼ qopt ¼ 1=½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðκ þ 1Þp þ 1�; apart from
the κ ¼ 1 case, the optimal state is not a balanced
superposition.
Our results are not due to a peculiar behavior of the QFI;

we have also evaluated the relative entropy of asymmetry
[7,8,44,45] and observed a qualitatively analogous behav-
ior, with the maximal asymmetry achieved for a slightly
different value of q. However, the simplest and in some
sense the most intuitive measure, i.e, the sum of the trace
norm of the modes of asymmetry [17], does not depend on
κ and hence would not reveal the effect.
Interferometric realization.—We now show a simple

physical explanation of the apparently counterintuitive
result. Consider a three-mode interferometer, as depicted
in Fig. 1. A single photon is prepared in a three mode
superposition by the action of two beam splitters, creating
the initial state jψ0i. Then the phase θ is imprinted on the
first signal mode, while the second and third reference
modes do not have stable phases but are subject to random
phase fluctuations ϕ1 and ϕ2, with zero mean and a joint
probability distribution Pðϕ1;ϕ2Þ. The simplest choice is
given by correlated “phase kicks,” i.e., ϕ1 and ϕ2 fluctuate
to two equal and opposite values �ϕ0 ∈ ½−ðπ=2Þ; ðπ=2Þ�
with probabilities Pðϕ0;ϕ0Þ ¼ Pð−ϕ0;−ϕ0Þ ¼ 1

4
ð1þ cÞ

and Pðϕ0;−ϕ0Þ ¼ Pð−ϕ0;ϕ0Þ ¼ 1
4
ð1 − cÞ, where c ¼

E½ϕ1ϕ2�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ϕ2

1�E½ϕ2
2�

p
is the correlation coefficient, rang-

ing from perfectly correlated c ¼ 1 to perfectly anticorre-
lated c ¼ −1 and E denotes the expectation with respect to
Pðϕ1;ϕ2Þ. These parameters are related to the previous
ones as

η¼E½eiϕ1 �¼E½eiϕ2 �¼ cosϕ0;

κ¼E½eiðϕ1−ϕ2Þ�¼ cos2ϕ0ð1−cÞþc¼η2þcð1−η2Þ; ð4Þ

as the action of the dephasing channel corresponds
to Eð⋆Þ ¼ E½e−iðϕ2j2ih2jþϕ3j3ih3jÞ⋆eiðϕ2j2ih2jþϕ3j3ih3jÞ�. The
parameter ϕ0 represents the magnitude of the phase kicks
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and is directly linked to the parameter η, which wewill keep
using for convenience. The parameter κ on the other hand,
depends both on ϕ0 and on the correlation coefficient c, and
the whole range of physical values of κ in Eq. (2) can be
obtained by varying c. It is also possible to obtain the same
qutrit channel E if Pðϕ1;ϕ2Þ is a bivariate Gaussian
distribution, similarly to the standard phase diffusion model
in a Mach-Zehnder (MZ) interferometer [27,29,46]. The
qualitative picture remains the same: the less correlated
(i.e., more anticorrelated) ϕ1 and ϕ2 are, the higher the
phase sensitivity is. However, for c < 0 the effect is less
pronounced, since this noise model does not reproduce the
full range of physical κ in Eq. (2), as detailed in Sec. B of
Ref. [39], where we also present experimental results for
this model.
In Fig. 1 we also show the optimal detection scheme

that saturates the QFI, formally a projective measure-
ment on the eigenstates of the SLD Lθ0 : ð1= ffiffiffi

2
p Þj1i �

iðe−iθ0=2Þðj2i þ j3iÞ and ð1= ffiffiffi
2

p Þðj2i − j3iÞ. Here θ0 is the
working point around which we estimate small variations
of the parameter. Setting θ0 ¼ 0 for concreteness, the
probabilities of registering the photon at one of the three
detectors read

p1 ¼
1 − p3

2
þ fθ; fθ ¼ vη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1 − qÞ

p
sin θ;

p2 ¼
1 − p3

2
− fθ p3 ¼

1

2
ð1 − qÞð1 − vκÞ; ð5Þ

where we have also introduced an additional visibility
parameter 0 ≤ v ≤ 1 that takes into account imperfect
interference—see Sec. C of Ref. [39] for a complete
derivation.
If v ¼ 1 and κ ¼ 1, detector “3” never clicks (p3 ¼ 0).

This corresponds to perfectly correlated phases fluctua-
tions, c ¼ 1, and results in an effective standard qubit
dephasing model (modes 2 and 3 can be regarded as a
single mode). When κ is decreased, which corresponds to
moving from the perfectly correlated noise (c ¼ 1) via
uncorrelated (c ¼ 0) to the perfectly anticorrelated one

(c ¼ −1), detector 3 filters out the “anticorrelated” part of
the phase noise. Doing so, it effectively increases the
visibility of the interference pattern observed in detectors
“1” and “2” [note that the θ dependent “fringe terms” fθ in
p1 and p2 do not depend on κ, see Eq. (5)]:

V ¼ pð1j π
2
Þ − pð1j −π

2
Þ

pð1j π
2
Þ þ pð1j −π

2
Þ ¼

4vη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1 − qÞp

1þ qþ vκð1 − qÞ ð6Þ

and leads to a better phase sensitivity. The possibility of
filtering out the anticorrelated part of the noise is the
essence of the counterintuitive behavior of the QFI.
Experimental results.—We have realized the proposed

model in a photonic experiment that is schematically
depicted in Fig. 1. The two reference arms of the three-
arm interferometer are piezoactuated, which allow us to
control both the phase to be measured θ and the zero-mean
fluctuations ϕ1 and ϕ2, (see Sec. D of the Supplemental
Material [39] for a detailed description of the physical
implementation). The interferometer outputs are coupled to
single mode fibers connected to superconducting nanowire
single photon detectors (SNSPD) with coincidence
counters. We feed the interferometer with heralded
single photons at 795 nm generated in a continuously
driven nondegenerate (795 and 805 nm) SPDC source.
We run the experiment in 80-sec-long intervals and
accumulate coincidences for various parameter settings
fθ;ϕ0; cg ∈ ½0; 2π� × ½0; 1.16� × ½−1; 1�. To emulate the
discrete �ϕ0 phase kicks we measure each fϕ1;ϕ2g
subsetting separately and combine the results according
to the given c. The compact form of the interferometer
provides sufficient 15-min-long phase stability. To maintain
long-time stability, each measurement interval is preceded
by a calibration step consisting of scanning the actuators
and observing intensity fringes (without heralding) at the
interferometer outputs. The calibration step not only allows
us to stabilize θ value but also provides information
about the intrinsic visibility v ≈ 0.97 and relative efficien-
cies χ in the three measurement ports χðp2=p1Þ ≈ 0.95,
χðp3=p1Þ ≈ 1.61. We first compare the measured coinci-
dence distributions with the theoretical predictions given by
Eq. (5). To recover the probabilities from measured counts
we normalize the number of detected photons accounting
for different net efficiencies at the interferometer output
ports. In Figs. 2(a)–2(d) we show examples of normalized
counts Ñ measured for a range of θ phases along with the
expected curves corresponding to the same η and c
parameters. From those we recover the visibilities that
are shown on a common plot in Fig. 2(e). The solid lines
represent the expected behavior as described by Eq. (6).
In order to validate the improvement of the phase

estimation precision in the presence of increasingly anti-
correlated noise, we have implemented an estimation
procedure based on the efficient locally unbiased estimator
(at the working point θ0 ¼ 0):

FIG. 1. Schematics of the experimental demonstration of phase
estimation in the three-arm interferometer with correlated noise.
Heralded single photons from spontaneous parametric down-
conversion are used to probe the system with noisy phases ϕ1 and
ϕ2 to estimate the phase θ. Inset shows an example realization of
phase noise with high anticorrelation.
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θ̂ ¼ N1 − N2

2vη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − qÞqp ðN1 þ N2 þ N3Þ

; ð7Þ

where Ni denotes the detected photon counts in the given
output port. We evaluate the estimator on 104 randomly
prepared sets of measurement outcomes each containing
105 samples in total. Each set is prepared by randomly
sampling (with repetitions) from the 105 measured single-
photon counts at the θ0 ¼ 0 point. The resulting single-
photon estimation precision, defined as the inverse of the
estimator variance divided by the total number of detected
photons, is presented in Fig. 3. The error bars correspond to
chi-squared 99% confidence interval. The rescaling to
single-photon value allows us to compare the achieved
precision with the classical FI (solid lines), calculated for
the model probabilities [Eq. (5)] that take into account the
finite interference visibility v. The dashed lines represent
the ultimate bound given by the QFI. In Fig. 3 we clearly
see that the estimation precision improves for the anti-
correlated noise as predicted by the FI and QFI.
Entanglement.—A similar effect can also be

observed for entanglement. Let us apply the channel E
to one part of the entangled state jψiAB ¼ffiffiffi
q

p j11i þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð1 − qÞ=2�p ðj22i þ j33iÞ. The resulting state
takes the form of a maximally correlated state [47]:

ρAB ¼ 1 ⊗ Eðjψihψ jABÞ ¼
X
i;j

αijjiiihjjj ð8Þ

with parameters α11¼q, α22¼α33¼ð1−qÞ=2, α12¼α21¼
α13¼α31¼η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1−qÞ=2p

, and α23 ¼ α32 ¼ κð1 − qÞ=2.
In fact, these states can be regarded as the maximally
correlated states associated to the qutrit states in Eq. (1). It
is known that coherence properties of a quantum state are
closely related to entanglement properties of the corre-
sponding maximally correlated state [1,48]. Following this
analogy, it is reasonable to expect that the results presented
above will also extend to entanglement of the states in
Eq. (8). For this, we investigate distillable entanglement of
ρAB, characterizing how many singlets can be extracted
from the state ρAB via local operations and classical
communication in the asymptotic limit [49,50]. While
the distillable entanglement is hard to evaluate in general,
a closed expression exists for states of the form (8):
EdðρABÞ ¼ SðρBÞ − SðρABÞ with the von Neumann entropy
SðρÞ ¼ −Trðρlog2ρÞ. For this class of states only the global
entropy SðρÞ depends on κ and the distillable entanglement
EdðρABÞ is equal to the relative entropy of coherence of the
state in Eq. (1) with respect to the orthonormal basis
fj1i; j2i; j3ig [1,48]. We can intuitively think that there are
two competing effects at play: reducing κ decreases the
coherence in the subspace spanned by j2i and j3i, but at the
same time increases coherence between this subspace and
j1i. For this reason, the effect is far less pronounced than
with the QFI, but there is still a region of parameters where
the entanglement increases when moving from a positive
value of κ to a smaller (yet positive) value. More details
on the entanglement analysis are presented in Sec. F
of Ref. [39].
Classical light.—It is natural to wonder what would

happen if instead of a single photon we used classical light,
i.e., a coherent input state jαi. In this case we use a
Gaussian phase fluctuation model Pðϕ1;ϕ2Þ, see details in
Sec. B of Ref. [39]. We consider an estimation strategy,

FIG. 2. (a)–(d) Exemplary probability distributions for two
different η settings in the perfectly correlated and anticorrelated
case. The points correspond to measured and renormalized
coincidences (Ñ). (e) Measured (points) and expected (solid
lines) visibility parameter for chosen η and c parameters.

FIG. 3. Precision of θ estimation (points) for set of η and c
parameters compared with CRB and QCRB given by FI (solid
lines) and QFI, respectively.

PHYSICAL REVIEW LETTERS 128, 240504 (2022)

240504-4



analogous to the standard MZ interferometer, based on the
photon number difference I− ¼ n1 − n2, optimal in the
single-photon regime, and we evaluate the variance using
error propagation: Δ2θ ¼ Δ2I−=jðd=dθÞE½hI−i�j2, where
the Δ2I− includes also the contribution of the distribution
Pðϕ1;ϕ2Þ of the fluctuating reference phases. In Sec. D of
Ref. [39] we show that

Δ2θ ¼ 1

jαj2F θ
þ 1

2
ðη−2 − η2 þ η−2c − η2cÞ; ð9Þ

where the first terms contains the single-photon QFI (3)
[with the η and κ now related to the parameters σ and c of
the Gaussian noise model, see Eq. (B2) in the Supplemental
Material [39]]. This result implies that this strategy with
classical light performs worse than repeating a single
photon experiment many times, but for a weak coherent
state we have the same sensitivity per average photon, i.e.,

ðjαj2Δ2θÞ−1 !α→0
F θ. For an intense beam the variance

saturates to a constant value, as in standard phase diffusion
[29,31], and only vanishes for c ¼ −1.
Finally, we can also consider a “naive classical” strategy,

without any interference between the two reference modes,
which is equivalent to two separate MZ interferometers
sensing the phase shifts θ − ϕ1 and θ − ϕ2. In this case one
finds the same structure as in Eq. (9), but the first term
corresponds to the QFI evaluated at c ¼ 1, i.e., it does not
improve by reducing the correlations. Details are given in
Sec. G.2 of Ref. [39].
Discussion.— Starting with an abstract model of the loss

of coherence within a degenerate subspace of the generator
of a phase shift, we have discussed and demonstrated the
nonintuitive effect of an increased sensing precision. By
considering the optimal interferometric scheme we have
related such an improvement to the possibility of filtering
out the anticorrelated part of the dephasing noise. This
effect may be of practical importance in interferometric
schemes where one is able to cause the phase fluctuations
affecting multiple reference modes to become uncorrelated
(by, e.g., separating them spatially) or even make
them anticorrelated (if thermal fluctuations were respon-
sible for dephasing, while the materials had opposite
thermal and temperature coefficient of the refractive index).
Interestingly, the most significant gains from the effect can
be obtained at the single photon level, and when the light
from both the reference arms is interfered with each other
before eventually interfering with the light from the signal
arm. The results can be generalized to obtain qualitatively
similar effects in the case of d reference modes instead of
just two.
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