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Abstract
We demonstrate, both analytically and experimentally, the usefulness of non-Markovianity for
preserving correlations and coherence in quantum systems. For this, we consider a broad class of
qubit evolutions, having a decoherence matrix separated from zero for large times. While any such
Markovian evolution leads to an exponential loss of correlations, non-Markovianity can help to
preserve correlations even in the limit t → ∞. In fact, under general assumptions, eternally
non-Markovian evolution naturally emerges as the one that allows for optimal preservation of
quantum correlations. For covariant qubit evolutions, we also show that non-Markovianity can be
used to preserve quantum coherence at all times, which is an important resource for quantum
metrology. We explicitly demonstrate this effect experimentally with linear optics, by
implementing the optimal non-Markovian quantum evolution.

1. Introduction

In quantum resource theories [1] correlations, such as entanglement [2], are seen as expendable resource to
perform certain tasks, e.g. quantum teleportation [3]. On the other hand, every quantum setup we try to
control is subject to noise, as it interacts with the environment [4]. Historically, the way to treat these
interactions and solve the equations of motion was with the aim of the Born–Markov approximation which
assumes that the characteristic time evolution of the environment is very short [5]. In other words, the
environment immediately loses memory of its contact with the system and is restored to its initial condition
instantaneously. Over time, several different mathematical descriptions of this feature have been proposed
[6–11].

The description that we will adopt in this work is based on the notion of divisibility of a dynamical map.
An evolution is termed Markovian, or CP-divisible, if it can be decomposed into [6–8]:

Λt = Vt,s ◦ Λs, (1)

where Vt,s is a valid quantum operation (a completely positive trace-preserving (CPTP) map) for all
t � s � 0. This definition is essential, if one is to describe an open system dynamics without an explicit
model of the environment. As stated in [11] this is the most general quantum version of a classical divisible
Markov stochastic process, where the requirement of positivity is replaced by complete positivity to account
for the possible presence of quantum correlations with some extra system. Generally, for any differentiable
Markovian evolution, the state evolves according to the (time-dependent)
Gorini–Kossakowski–Sudarshan–Lindblad equation [12–16]:
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dρ(t)

dt
= Lt(ρ) = −i [H(t), ρ(t)] +

∑
i,j

γij(t)

(
Aiρ(t)A†

j −
1

2

{
A†

j Ai, ρ(t)
})

, (2)

where H(t) is a time-dependent Hermitian operator, and γ ij(t) are elements of a positive semidefinite
matrix γ(t) we call a decoherence matrix [17].

Quantum dynamics which do not admit equation (1) are called non-Markovian. They exhibit memory
effects that manifest themselves via backflow of operationally relevant quantities from the environment to
the system [11]. In contrast to Markovian evolutions, the implementation of a non-Markovian dynamics
requires controlling correlations between the system and an ancilla for a finite time [18, 19]. Since
Markovian evolutions are easier to implement, it is reasonable to assume that they might be less useful for
some tasks, when compared to non-Markovian dynamics. Examples of tasks demonstrating the usefulness
of non-Markovianity are swapping the sign of entropy production rate and preserving purity in the context
of thermal operations [20], as well as improving the fidelity of quantum teleportation under a noisy
channel [21].

In this work, we show that the ability of a quantum evolution to preserve correlations is closely related
to non-Markovianity. We consider evolutions having the property that the eigenvalues of the matrix γ are
separated from zero for large times, so that the evolution does not simply become unitary at long time
scales, thus avoiding trivial preservation of correlations by Markovian dynamics. To demonstrate the main
features we are interested in, it is sufficient for us to concentrate on a qubit system. For a class of qubit
dynamics, we show that any Markovian evolution leads to an exponential loss of correlations. These results
suggest that correlations can only be preserved with the help of non-Markovianity. To make a fair
comparison between Markovian and non-Markovian dynamics, we focus on covariant qubit evolutions. We
show that the minimal loss of entanglement and mutual information occurs for eternally non-Markovian
evolutions, i.e., the ones exhibiting non-Markovianity for all times t > 0. While entanglement vanishes in
the limit t →∞, the dynamics still preserves nonzero mutual information and quantum discord.

Since covariant evolutions exhibit symmetry with respect to a given Hamiltonian [22], its eigenbasis
provides a natural reference for defining quantum coherence [23, 24]. In the case of two-level systems, this
corresponds to considering phase-covariant evolutions [25, 26], which cover all dynamics with rotational
symmetry about an axis in the Bloch representation, e.g. the z-axis. In this case, we find the evolution which
preserves quantum coherence for all finite times, including the limit t →∞. Interestingly, this dynamics
converges to a map which has a two-dimensional image, having finite coherence with respect to the
reference basis. As quantum coherence is a resource useful for quantum metrology [27], this dynamics
allows us to estimate a parameter ω encoded in the unitary U = e−iωσz , leading to non-zero quantum Fisher
information even in the limit t →∞.

Non-Markovianity has been experimentally demonstrated based on various platforms such as linear
optics [28–35], nuclear magnetic resonance [36, 37], quantum dot [38], micromechanical system [39],
trapped ions [40], and superconducting qubits [41]. An attractive experimental platform for studying
non-Markovian effects is offered by photonic systems, where controlled interactions between different
degrees of freedom, preparation of arbitrary quantum states, and a full state tomography are highly
desirable and also appealing for testing fundamental paradigms of quantum mechanics. Here, we
demonstrate experimentally, using an optical system, a quantum process which is non-Markovian for all
t > 0, and observe the optimal preservation of quantum correlations.

2. Results

2.1. Markovian qubit evolutions destroy correlations
Let us consider a two-level quantum system and its dynamical evolution given by a time-dependent
Lindbladian:

Ltρ =
1

2

3∑
i,j=1

γij(t)

(
σiρσj −

1

2
{σjσi, ρ}

)
, (3)

where {σi}i=1,2,3 are Pauli matrices and the coefficients γ ij(t) form a Hermitian matrix γ(t) = (γ ij(t)),
γ(t) = γ(t)†. Equation (3) specifies the evolution of the system as an initial value problem:

d

dt
ρ(t) = Ltρ(t), ρ(0) = ρ0. (4)

We will make use of the standard notation: ρ̇t =
d
dt ρ(t).

We assume that the decoherence matrix γ(t) is such that the solution to the above equation gives rise to
a family Λt of CPTP maps: ρ(t) = Λtρ0. While it is difficult to obtain a general condition that γ(t) must
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satisfy in order to generate a CPTP evolution, several special cases have been considered in the literature
[26, 42]. Nevertheless, it is known that the condition γ(t) � 0 for all t � 0 is necessary and sufficient for Λt

to be CP-divisible [16, 43]. The reader is referred to the appendix for more detailed discussion of possible
solutions of equation (4).

We now consider Markovian qubit dynamics, having the property that all eigenvalues of γ are separated
from zero, i.e., γ(t) � c𝟙 for some c > 0. We show that such evolutions lead to the exponential decay of any
kind of correlations.

Proposition 1 Let Lt be a Lindbladian giving rise to the qubit dynamics Λt. If there is a constant c > 0 and
time T � 0, such that γ(t) � c𝟙 for all t � T, the corresponding qubit dynamics Λt fulfills

min
σA⊗σB

∥∥Λt ⊗ 𝟙(ρAB) − σA ⊗ σB
∥∥

1
� 2 e−2ct (5)

for all two-qubit states ρAB and the trace norm ‖M‖1 = Tr
√

M†M.

For the proof, we refer the reader to the appendix.
Proposition 1 shows that certain Markovian qubit dynamics destroy all correlations in bipartite

quantum states. Moreover, the decay of correlations is exponentially fast. As we will see in the following,
finely tuned non-Markovian systems can preserve certain correlations for all times, including in the limit
t →∞.

2.2. Eternally non-Markovian covariant evolutions preserve correlations and coherence in an optimal
way
We now focus on non-Markovian quantum evolutions that could potentially exhibit slower rates of decay of
entanglement and other quantum correlations. We will show that, apart from entanglement,
non-Markovianity is useful for preserving coherence. As coherence is a basis-dependent quantity, we
consider evolutions commuting with the unitary encoding the phase, which we assume to be in the
z-direction. Hence, we restrict our discussion to covariant evolutions [25, 26], with the following
decoherence matrix in the Pauli basis:

γ(t) =

⎛
⎝ a(t) ix(t) 0
−ix(t) a(t) 0

0 0 f (t)

⎞
⎠ . (6)

The eigenvalues of γ(t) are given by a(t) ± x(t), and f(t).
Note that the Lindbladian, expressed in the basis {σ+,σ−,σ3}, where σ± = 1

2 (σ1 ± σ2), has diagonal
decoherence matrix γ(t), satisfying the requirement for a general covariant quantum evolution [22].

For any covariant qubit dynamics, we can solve the equations of motion (4), using the parametrisation:
ρ(t) = 1

2

(
𝟙+

∑
k rk(t)σk

)
, (see also equation (29)):

ṙ1(t) = −[a(t) + f (t)]r1(t), (7a)

ṙ2(t) = −[a(t) + f (t)]r2(t), (7b)

ṙ3(t) = −2a(t)r3(t) − 2x(t). (7c)

The solution to the above equations gives rise to a CPTP dynamics if and only if

e−2A(t) + |lz(t)| � 1, (8a)

4e−2A(t)−2F(t) + lz(t)2 � (1 + e−2A(t))2, (8b)

where A(t) =
∫ t

0 a(τ)dτ , X(t) =
∫ t

0 x(τ)dτ , F(t) =
∫ t

0 f (τ)dτ , and lz(t) = 2e−2A(t)
∫ t

0 x(τ)e4A(τ)dτ (see
equations (5) and (11) in reference [26]). We obtain

r1(t) = e−A(t)−F(t)r1(0), (9a)

r2(t) = e−A(t)−F(t)r2(0), (9b)

r3(t) = e−2A(t)r3(0) − lz(t). (9c)

We will now show that the only negative eigenvalue of γ(t) must be f(t), and any other negative
eigenvalue will not result in a valid quantum dynamics. Let us assume by contradiction that one of two
eigenvalues: a(t) ± x(t) is negative. Without loss of generality, we may say that there exists a constant c > 0
such that x(t) > a(t) + c for all t > T. From equation (7c) we see that ṙ3(t) < −2c for all t > T, which

3



New J. Phys. 24 (2022) 053022 M Miller et al

could not lead to a valid quantum evolution, as any Bloch vector would inevitable evolve into a vector
outside of the Bloch ball. Thus, γ(t) can have only one negative eigenvalue for all t > T, which must be f(t).

In the same spirit as in proposition 1, we assume that all eigenvalues of γ(t) are separated from zero for
all t > T. If all eigenvalues become eventually positive, the evolution will become Markovian and the
correlations vanish, as described in proposition 1. Hence in the following, we will focus on the other case,
where the decoherence matrix γ(t) has a negative eigenvalue f(t).

We will now investigate the action of the time evolution on a two-qubit quantum state ρAB. We consider
a broad class of correlation quantifiers C, making the only assumption that the amount of correlations does
not increase under local noise:

C(Φ⊗ 𝟙[ρAB]) � C(ρAB), (10)

where Φ is an arbitrary local operation. In particular, equation (10) is true for the mutual information and
any measure of entanglement [2, 44, 45]. Our goal in the following is to determine the functions f(t) leading
to the minimal loss of correlations among all dynamics with given a(t) and x(t). More precisely, given a
correlation quantifier C, a two-qubit state ρAB, and time t � 0 we aim to maximize C(Λt ⊗ 𝟙[ρAB]) over all
functions f(t).

It is tempting to believe that the optimal solution for f(t) will in general depend on the setup, in
particular on the state and the correlation quantifier. Perhaps surprisingly, we will see in the following that
the optimal choice of f(t) is unique, giving rise to a quantum evolution which is non-Markovian for all
t > T.

Proposition 2 For given functions a(t) and x(t) and time T such that a(t) � |x(t)|, for all t > T, the
phase-covariant dynamics for which the loss of correlations is minimal at any given time t > T is given by the
function f(t) satisfying the equality

4 e−2A(t)−2F(t) + lz(t)2 = (1 + e−2A(t))2, (11)

where F(t) =
∫ t

0 f (τ)dτ . In particular, for x(t) = 0, f(t) = −a(t)tanh A(t).

We refer to the appendix for the proof.
As an illustration, consider the phase-covariant dynamics Λt for which a(t) = a, x(t) = x are constants

such that a � |x|. The evolution of an initial qubit state ρ(t) = Λtρ0 is given by

r1,2(t) = α(t)r1,2(0), (12a)

r3(t) = β(t)r3(0) − c(t). (12b)

with α(t) = e−at−
∫ t

0 f (t)dt , β(t) = e−2at , c(t) = x
a (1 − e−2at). We can write the Choi–Jamiołkowski state of

this evolution as

Ωt =
1

4

⎛
⎜⎜⎝

1 + β(t) 0 0 2α(t)
0 1 − β(t) 0 0
0 0 1 − β(t) 0

2α(t) 0 0 1 + β(t)

⎞
⎟⎟⎠− c(t)

4
diag(1,−1, 1,−1). (13)

For the resulting evolution Λt to be completely positive, we require [42]: 4α(t)2 + c(t)2 � (1 + β(t))2. This
inequality is saturated for all t � 0 if we choose f(t) as in equation (11). Note that in this case, f(t) is
negative for all |x| � a and t > 0. It is straightforward to verify that the optimal choice of the function f(t),
as in proposition 2, is

f (t) = −1

2
a

(
1 − x2

a2

)
sinh 2at

cosh2 at − x2

a2 sinh2 at
(14)

(see also proposition 4 in reference [26]).
For the choice of f(t) defined in equation (14), we have

α(t) =

√
(1 + e−2at)2

4
−

(x

a

)2 (1 − e−2at)2

4
. (15)

Note that in the limit t →∞, the Bloch sphere becomes a flat disk of radius 1
2

√
1 −

(
x
a

)2
with the center at

x
a along the z-axis.

In the special case when x = 0 and the dynamics becomes unital, we have f(t) = −a tanh at. This
evolution (for a = 1, up to a constant factor) was first proposed in [17] (see equation (14) therein). In our
work, this dynamics arises naturally as a family of evolutions which is optimal for preserving correlations.

4
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We will now consider implications of these results for concrete correlation quantifiers. We use
entanglement negativity [46, 47] as a measure of entanglement

E(ρ) =
‖ρTB‖1 − 1

2
, (16)

where TB denotes the partial transpose. This measure was chosen for its simplicity of computation, since it
only relies on the straightforward evaluation of the trace norm of the partial transpose of a mixed state [47].
We also consider the quantum mutual information I(ρ) = S(ρA) + S(ρB) − S(ρ) with the von Neumann
entropy S(ρ) = −Tr(ρ log2 ρ).

For the optimal choice of f(t) as in equation (14), the negativity of the state (13) is given by

E(Ωt) =
1

2
e−2at . (17)

We see that the evolution Λt preserves entanglement for all finite times, and becomes entanglement
breaking in the limit t →∞ [48]. The mutual information, however, does not vanish in the limit t →∞:

lim
t→∞

I(Ωt) =
h(p)

2
, (18)

with p =
1+ x

a
2 and the binary entropy h(p) = −p log2 p − (1 − p)log2(1 − p). Additionally, the

Choi–Jamiołkowski state (13) exhibits a nonzero amount of quantum discord [49, 50]. Quantum discord is
useful for various quantum technological tasks [51–53], an important example being distribution of
entanglement between remote parties [54–60]. Following results in [61], we obtain:

lim
t→∞

Q(Ωt) =
h
(

1+ x
a

2

)
2

+ h

⎛
⎝1 + 1

2

√
1 −

(
x
a

)2

2

⎞
⎠− 1, (19)

where Q is quantum discord as defined in [49, 61]. In the case of |x| < a, the discord remains nonzero in
the limit t →∞. We refer to the appendix for more details.

Non-Markovianity is also useful for preserving quantum coherence, a fact which can be used in
quantum metrology. Since we consider covariant evolutions with dephasing matrix of the form (6),
coherence with respect to the eigenbasis of σz is a meaningful quantity in this setup. A quantifier of
coherence C(ρ) vanishes for all states which are diagonal in the eigenbasis of σz, and moreover C(ρ) is
monotonic under incoherent operations [23, 24, 62]. These are quantum operations Λ[ρ] =

∑
i KiρK†

i

having the property that each Kraus operator does not create coherence [23, 24]. Using similar arguments
as in the proof of proposition 2, we can see that a covariant qubit evolution is optimal for preserving
coherence at any time t � 0, if f(t) satisfies equation (11).

Let us consider the 	1-norm of coherence, defined as C	1 (ρ) =
∑

i	=j|ρij| [23]. For a single-qubit state

with Bloch vector r = (r1, r2, r3), the 	1-norm of coherence reduces to C	1 =
√

r2
1 + r2

2. Using equation (12),
we can evaluate C	1 as a function of time:

C	1 (t) = e−at−
∫ t

0 f (τ)dτC	1 (0), (20)

where C	1 (0) is the initial amount of coherence at time t = 0. The maximal amount of coherence at any
time t � 0 is obtained for f(t) given in equation (11), leading to

C	1 (t) =
1

2
C	1 (0)

√
(1 + e−2at)2 − x2

a2
(1 − e−2at)2. (21)

Coherence in general does not vanish even in the limit t →∞, as long as C	1 (0) > 0 and |x| < a.
Non-Markovianity is also useful in the context of quantum metrology [63]. Let us suppose a quantum

state ρ interacts with a device through the Hamiltonian H = ω
2 σz. We would like to estimate the value of the

parameter ω. We can use the fact that the evolution commutes with the Hamiltonian H and, for a suitably
chosen f(t), preserves coherence in the basis {|0〉, |1〉}, to facilitate the estimation of ω. The lower bound on
the variance of the estimator of ω is given by the quantum Cramer–Rao bound [64]:

(Δω)2 � 1

Fω(ρ)
, (22)

5
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Figure 1. Experimental setup for ENM process and results. (a) The whole experimental setup includes three modules: entangled
photon source, eternally non-Markovian process, state tomography. (b) Experimentally reconstructed F matrix with black-edged
transparent cubes when 1

2 δ
2Δn2t2 = 0.91. (c) The dynamical process of the absolutes of the spectral values of the process

matrix, whose ideal values are given by Equation (25) and are monotonic in time, in agreement with results in [66]. The dots are
experimental results, and the lines are the corresponding theoretical fits. (d) The dynamical process of the product of the absolute
values of the spectral values. (e) Dynamics of mutual information (light blue disks), negativity (red disks), and geometric discord
(orange disks), whose theoretical values are shown as solid lines. Key to components: PBS, polarizing beamsplitter; BS,
beamsplitters; QWP, quarter-wave plate; HWP, half-wave plate; SPD, single photon source; DHWP, dichroic half wave plate;
DPBS, dichroic polarizing beamsplitter; DM, dichroic mirror; FC, fiber coupler; QP, quartz plate.

where Fω(ρ) is the quantum Fisher information. The following closed formula is valid in the qubit
case [65]:

Fω(ρ) = |�̇r|2 + (�r · �̇r)2

1 − r2
(23)

with�r, the Bloch vector and �̇r = ∂�r/∂ω. In case of phase-covariant dynamics considered here, the second
term always vanishes and �̇r = tC	1 (t)(cos ωt,− sin ωt, 0), leading to Fω(ρ) = t2C2

	1
(t), with C	1 being the

	1-norm of coherence. Hence, the non-Markovian evolution that maximizes C	1 in equation (21) also
maximizes the quantum Fisher information (23).

2.3. Experimental implementation of an eternally non-Markovian process
We now present optical experiments, demonstrating that non-Markovianity is useful for preserving
quantum coherence and correlations, as predicted in the theoretical part of this work. We achieve the goal
of simulating a non-Markovian evolution by utilizing the fact that it can be obtained as a mixture of
different Markovian dynamics [67]. Several attempts of simulating non-Markovian dynamics have been
reported. This includes studying the transition between weak (only non CP-divisible) and strong (non
P-divisible) non-Markovianity [68], experimental investigations to demonstrate the ambiguity of the
extension of the definition of classical non-Markovianity to the quantum case [69, 70], using the spectrum
of an evolution over time to infer non P-divisibility [66], and practical demonstration of the non-convex
nature of Markovian and non-Markovian channels set [30].

Our experimental setup, illustrated in figure 1(a), relies on three stages: state preparation,
implementation of the non-Markovian evolution, and state tomography. The dynamics of interest is
described by four t-parameterized Kraus operators, we utilize the frequency degree and path degree of one
photon as the environment and its polarization as the system of interests. The system-environment
interaction is provided by the coupling between the frequency of the photons and the quartz crystal, and
path-dependent operations. We implement experimentally the eternally non-Markovian evolution which is
optimal for preserving quantum correlations and quantum coherence as in proposition 2. The details of our
high-fidelity, all-optical implementation are explained in the appendix.

6
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In order to verify the experimental set-up, we perform process tomography and experimentally
determine the spectrum of the corresponding n2 × n2 process matrix F:

Fi,j = Tr[GiΛ(Gj)], (24)

where Gi = σi/
√

2, which is derived from this dynamical process at each time, following [66].
The critical experimental step in measuring the spectrum is the application of the dynamics to the basis

matrices Gi 	=0, which are not legitimate physical quantum states. Nevertheless, there always exists a finite
real coefficient c and two legitimate states ρi,1 and ρi,2 satisfying Gi 	=0 = (ρi,1 − ρi,2)/c, which makes the F
matrix and its eigenvalues {λi} detectable in experiments.

In figures 1(b)–(d), we present the results characterizing the spectrum of the process matrix for the
relevant non-Markovian evolution. In particular, we compare it against the theoretical behavior of the
process eigenvalues, whose moduli read (see equation (61) and below):

(|λi|) =
(

1,
1

2

[
1 + exp

(
−1

2
δ2Δn2t2

)]
,

1

2

[
1 + exp

(
−1

2
δ2Δn2t2

)]
, exp

(
−1

2
δ2Δn2t2

))
. (25)

Here, the environmental parameter δ corresponds to the variance of the frequency distribution and
Δn = nH − nV denotes the nonzero difference in the refraction indices of the two states, |H〉 and |V〉, of
polarized photons. In particular, we verify that both the dynamics of each |λi| as well as their product are in
good agreement with the experimental data, which shows the high fidelity of our experimental
implementation. In figure 1(e), we show explicitly the resulting dynamics of entanglement negativity,
quantum discord, and mutual information—indeed, the implemented non-Markovian evolution yields
these three measures of correlations to follow the optimal behavior predicted in our work.

3. Discussion

We have shown that non-Markovianity is useful for preserving correlations and coherence in quantum
systems. Any Markovian qubit evolution leads to the exponential loss of correlations, if the decoherence
matrix is separated from zero for large times. This complements earlier results on the role of quantum
correlations in open quantum systems: while any Markovian evolution leads to monotonic decrease of
entanglement [6, 71] and mutual information [72], we show that for nontrivial qubit evolutions
non-Markovianity is required to preserve correlations at all times. In addition, non-Markovian qubit
evolutions, with decoherence matrix separated from zero, can preserve mutual information and quantum
discord even in the limit t →∞. For covariant evolutions, we have shown that non-Markovianity is also
useful for preserving quantum coherence with respect to the reference basis. This effect can be used for
parameter estimation: a phase encoded in a covariant unitary can be estimated with finite precision at any
time, and the quantum Fisher information is nonzero also in the limit t →∞. We characterize covariant
qubit evolutions that are optimal for preserving quantum coherence and correlations, and implement them
experimentally using linear optics.

Our results suggest that if a certain degree of control over the noise is available, it may still be possible to
distribute large amount of correlations over noisy channels. This is also demonstrated by our experiment,
making our experimental methods applicable for studying fundamental problems in quantum information
science. Non-Markovianity appears to be an important feature for quantum technologies, crucial to
maintain and store information in the form of quantum correlations and superposition.
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Appendix A. Markovian dynamics of qubit systems

To reduce the problem of solving equation (4) to a set of ordinary differential equations, where the
quantum nature of the system is implicit in the choice of a suitable parametrisation, we use the notation:

ρ(t) =
1

2

(
𝟙+

∑
k

rk(t)σk

)
, (26)

�r(t) = (r1(t), r2(t), r3(t)), ‖�r(t)‖ � 1. Using the commutation relations of the Pauli matrices, we obtain
from equation (3):

Ltρ(t) =
1

2

3∑
i,k=1

(
1

2
(γik(t) + γki(t)) ri(t) − γii(t) rk(t))σk + ξkσk). (27)

Setting γ(t)S = 1
2 (γ(t) + γ(t)T) and �ξ(t) = (ξk(t)), where ξk(t) = i

∑3
i,j=1 εijk γij(t), we get

�̇r(t) = (γS
t − (Tr γ(t))𝟙)�r(t) + �ξ(t), �r(0) = �r0. (28)

In the following, we will make the assumption that the matrix elements γ ij(t) are such that for all

i, j = 1, 2, 3 and 0 � t1 < t2 < ∞, the integrals
∫ t2

t1
Re γij(t)dt, and

∫ t2
t1
Im γij(t)dt are finite. We know from

the general theory (see theorem 5.3 in [73], p 30), that in that case there exists a unique solution to
equation (28) for t � 0.

A general solution to the inhomogeneous differential equation (28) is obtained in the usual way. Let Xt

be the fundamental solution to the homogeneous equation: �̇r(t) = At�r(t), where At = γS
t − (Tr γ(t))𝟙, i.e.

d
dt Xt = AtXt and X0 = 𝟙. Then the solution to equation (28) is given by

�r(t) = Xt�r0 + Xt

∫ t

0
X−1

s
�ξs ds. (29)

As we can see from equation (29), the evolution of a quantum two-level system given by Lt splits into a
sum of two evolutions: one that represents a solution to the homogeneous system of ordinary differential
equations (for which �ξt = 0, or equivalently, for which γ(t) is a real symmetric matrix that generates a
unital CPTP evolution) and the other that is independent of the initial condition of the system.

Appendix B. Proof of proposition 1

At first, let us assume that T = 0. Because γ(t) � c𝟙, and hence γS
t � c𝟙, we can rewrite equation (28) as

�̇r(t) = (A′
t − 2c𝟙)�r(t) + �ξ(t), (30)

where A′
t = γS

t − Trγ(t)𝟙+ 2c𝟙 < 0. The solution to the above equation can be written as

�r(t) = e−2ctX′
t�r0 + e−2ctX′

t

∫ t

0
e2cs(X′

s)
−1�ξs ds. (31)
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Here, X′
t represents a valid CPTP dynamics: d

dt X′
t = A′

tX
′
t and X′

0 = 𝟙. If by �η(t) we denote the vector

�η(t) = e−2ctX′
t

∫ t

0
e2cs(X′

s)
−1�ξs ds, (32)

then |�r(t) − �ηt | � 2 e−2ct |�r0|. Hence
‖Λtρ0 − ρ̃(t)‖1 � e−2ct , (33)

where ρ̃(t) = 1
2 (𝟙+ �ηt · �σ) for any state ρ0. This implies

‖Λt − Φt‖ � e−2ct , (34)

where Φtρ = (Tr ρ)ρ̃(t) and the norm of a linear map is given by the infimum over all quantum states

‖Λt − Φt‖ = inf
ρ
‖Λtρ− Φtρ‖1. (35)

Recall that the following inequality holds true for any pair of quantum channels Λ1 and Λ2 acting on a
Hilbert space of dimension d (see [74], corollary 2.2.4):

‖Λ1 ⊗ 𝟙d − Λ2 ⊗ 𝟙d‖ � d‖Λ1 − Λ2‖, (36)

With equation (34), it follows that

‖Λ1 ⊗ 𝟙d − Λ2 ⊗ 𝟙d‖ � 2 e−2ct . (37)

The action of Φt on one qubit of a two-qubit state ρAB is

Φt ⊗ 𝟙(ρAB) = Φt(ρ
A) ⊗ ρB. (38)

We obtain
‖Λt ⊗ 𝟙(ρAB) − Φt(ρ

A) ⊗ ρB‖1 � 2 e−2ct , (39)

for any two-qubit state ρAB. Finally, if T > 0, we can repeat the argument above for the evolution
Λ′

t = Λt+TΛ
−1
T , making use of the fact that Λt is CP-divisible. This completes the proof.

Appendix C. Proof of proposition 2

Let γ(t) be as in equation (6) of the main text. Suppose f0(t) is the function that satisfies equation (11) of
the main text. We can write the decoherence matrix γ(t) as a sum of two matrices:

γ(t) =

⎛
⎝ a(t) ix(t) 0
−ix(t) a(t) 0

0 0 f0(t)

⎞
⎠+

⎛
⎝0 0 0

0 0 0
0 0 f (t) − f0(t)

⎞
⎠ . (40)

It is easy to see that as long as both matrices generate valid CPTP dynamics independently, the resulting
evolutions commute. Since f0(t) satisfies equation (11) of the main text, the first matrix generates a valid
CPTP dynamics. The dynamics generated be the second matrix is clearly CPTP for t > T. Indeed, because
for all t > T, a(t) > 0, and hence A(t) > 0, then from equation (8b), we have that
0 � F(t) − F0(t) =

∫ t
0 (f (τ) − f0(τ))dτ . This is enough to satisfy the complete-positivity conditions (8a)

and (8b). According to equation (10) of the main text, the amount of correlations at any given time t > T
cannot be larger than in the optimal case when f(t) = f0(t).

The second part of the proposition follows immediately from observing that the function lz(t) vanishes
as long as we put x(t) = 0.

Using similar arguments, we can see that the optimal preservation of quantum coherence at any time
t � 0 is achieved if f(t) is chosen such as to satisfy equation (11) of the main text. Indeed, the map
generated by the second matrix in equation (40) is a CPTP dynamics that does not create coherence
(a phase-damping map) and hence the value of any quantifier of coherence cannot increase under its action.

Appendix D. Evaluation of quantum discord

We follow the results in [61] regarding the quantum discord of 4 × 4 X-states. The classical part of the
correlations is given by equation (22) in [61] and it involves the minimization of the conditional entropy
(22) (conditional respect to general von Neumann measurements Bi). The entropies S(ρ0) and S(ρ1) are
defined in equations (19) and (20) in [61] and the parameters θ and θ′ in equations (16) and (17) in [61].
In our case, (see equation (13) of the main text),
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ρ11 = ρ33 =
1

4

(
1 +

x

a

)
(41)

ρ22 = ρ44 =
1

4

(
1 − x

a

)
(42)

ρ14 = ρ41 =
1

4

√
1 −

(x

a

)2
(43)

ρ23 = ρ32 = 0 (44)

Θ = 4kl

⎛
⎝

√
1 −

(
x
a

)2

4

⎞
⎠

2

(45)

θ =

√√√√√√ 4kl

(√
1−( x

a )2

4

)2

[
1
2

(
1 + x

a

)
k + 1

2

(
1 − x

a

)
l
]2 (46)

θ′ =

√√√√√√ 4kl

(√
1−( x

a )2

4

)2

[
1
2

(
1 + x

a

)
l + 1

2

(
1 − x

a

)
k
]2 , (47)

where k and l are the parameters of the measurements {Bi}. The minimum of the conditional entropy is
attained in one of the three cases:

(a) k = 0, l = 1

(b) k = 1, l = 0

(c) k = l = 1
2 .

In the first two cases, θ = θ′ = 0 and S(ρ0) = S(ρ1) = 1, which is not the minimal value. In the third

case, θ = θ′ =

√
1−( x

a )2

2 = θmax. Because the reduced state ρA is maximally mixed, we obtain

C(ρX) = 1 − S(ρ0)|θmax , (48)

where C is the measure of classical correlations as defined in [50, 61]. Then the quantum discord is
computed as the difference between the total correlations, given by the mutual information in
equations (18), and (48).

Appendix E. Methods of the experiment

The experimental set-up is shown in figure 1(a), it consists of three parts: state preparation, non-Markovian
evolution, and state tomography. Note that the single qubit operations acting on the polarization state of
photons induced by a half-wave plate (HWP) and a quarter wave plate (QWP) with angle θ are

h(θ) =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
, (49)

q(θ) =

⎛
⎜⎝ cos2 θ + i sin2 θ

(1 − i)

2
sin 2θ

(1 − i)

2
sin 2 θ i cos2 θ + sin2 θ

⎞
⎟⎠ . (50)

In the state preparation part, we can generate arbitrary pure qubit states

|φ〉 = cos(α)|H〉+ e−iβ sin(α)|V〉. (51)

In the non-Markovian evolution part, we implement the process with a success probability 1/2, as shown in
figure 1(a). We now show that how our all-optical non-Markovian process acts on a single qubit. In
particular, assume that we have an arbitrary initial qubit states (in basis {|H〉, |V〉})

ρ0 =
1

2

(
I + x0σx + y0σy + z0σz

)
. (52)
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The first 50:50 beam splitters (BS) separate the photons into approximately two branches with equal
probabilities independent of the polarization of the photons.

The upper branch is reflected by a reflector, and passes through a HWP with angle 22.5, implementing
the unitary operation

u1 = h(22.5) =
1√
2

(
1 1
1 −1

)
. (53)

The lower branch goes through a QWP with angle 0, followed by h(22.5), resulting in the transformation

u2 = h(22.5)q(0) =
1√
2

(
1 1
1 −1

)(
1 0
0 i

)
=

1√
2

(
1 i
1 −i

)
. (54)

The overall state then becomes

ρ1 =
1

2
u1ρ0u†

1 +
1

2
u2ρ0u†

2. (55)

After these two wave plates, the state ρ1 goes through a decoherence process in a quartz plate (QP). Now
we will move on describing the dynamics of a photon in QP.

Unlike the previous works [28, 75], where the authors make use of a FP cavity to modify the frequency
spectrum of the photons, we will not modify the spectrum of the photons, which means we will not change
the spectrum of the frequency of the single photons. The dynamics of the whole system including the
polarization state and frequency, |φ〉 ⊗ |φE〉, can be modeled by a unitary evolution

Utot(t) =

∫
dω

[
exp(−inHωt)|ω〉〈ω| ⊗ |H〉〈H| + exp(−inHωt)|ω〉〈ω| ⊗ |V〉〈V|

]
, (56)

and the frequency state is modeled as

|φE〉 =
∫

dω g(ω)|ω〉. (57)

The corresponding reduced dynamical map Λt of the polarization degree of freedoms takes the form,

|H〉〈H| Λt−−→|H〉〈H|, (58a)

|V〉〈V| Λt−−→|V〉〈V|, (58b)

|H〉〈V| Λt−−→κ(t)|H〉〈V|, (58c)

|V〉〈H| Λt−−→κ∗(t)|V〉〈H|, (58d)

where the decoherence factor reads

κ(t) =

∫
dω|g(ω)|2 exp(−iΔnωt), (59)

and Δn = nH − nV ≈ 0.0089 denotes the nonzero difference in the refraction indices of |H〉 and |V〉
polarized photons.

The spectral distribution of a single photon |g(ω)|2 in our experiments admits a Gaussian
distribution, i.e.,

|g(ω)|2 = 1√
2πδ

exp

[
− (ω − ω0)2

2δ2

]
, (60)

where ω0 is the central frequency and δ ≈ 1.44 × 1012 Hz is the variance, corresponding to the linewidth
Δλ ≈ 0.5 nm of down converted photons [76]. One can check that the normalization holds, i.e.,∫

dω|g(ω)|2 = 1.
Then the decoherence factor decays exponentially with t2, or equivalently the square of the crystal length

l2. We can calculate the decoherence factor and it can be written as

κ(l) = exp

(
−Δn2δ2l2

2c2
− iΔnω0l

c

)
, (61)

where l is the length of the crystal, c is the velocity of light in vacuum. We can check that

|κ(l)| = exp
(
−Δn2δ2l2

2c2

)
decays exponentially according to l2. In our experiment, we obtain the value of

1
2δ

2Δn2t2 for each QP from the data of process tomography.
In principle, we could implement the above process based on the non-Markovian evolution part in

figure 1(a) of the main text. However, there is an unpredictable phase φi between H and V polarized

11



New J. Phys. 24 (2022) 053022 M Miller et al

photons in each path, which are not equal to Δnω0l/c. To eliminate this phase, we need to tune the phase in
the two paths separately. In particular we can place a wave plate in each path to remove the phase, which
results in the actual setup in figure 1(a) of the main text.

After the decoherence process, photons in the upper branch are in the state

ρu =
1

2

[
I + x0σz + |κ(l)|(z0σx − y0σy)

]
, (62)

and the state in the lower branch is

ρl =
1

2

[
I − y0σz + |κ(l)|(z0σx − x0σy)

]
, (63)

then the upper branch passes through h(22.5) and is converted to

ρ′u =
1

2

[
I + |κ(l)|z0σz + x0σx + |κ(l)|y0σy

]
, (64)

while the photons in the lower branch are transformed to

ρ′l =
1

2

[
I + |κ(l)|z0σz + |κ(l)|x0σx + y0σy

]
. (65)

The final BS and mirror recombines the two branches and the final state is

ρ =
1

2
[I + κ(l)z0σz] +

1

4
[1 + κ(l)] (x0σx + y0σy), (66)

thus we can realize the ENM process with the evolution time corresponding to the length of the crystal l.
Since the transmissivity and reflectivity are both about 50%, we get a loss of 1/2 photons when
recombining the two branches, resulting in a success probability of around 1/2.

Experimentally, the dynamical behavior of relevant physical quantities can be estimated from the
reconstructed density matrix for each evolution time t. For an experimentally reconstructed state ρt, the
negativity E, mutual information I, and geometric discord D can be evaluated directly using

E(ρt) =
‖ρTB

t ‖1−1
2 , I(ρt) = S(ρA

t ) + S(ρB
t ) − S(ρ), and D(ρt) =

1
4 (‖x‖2 + ‖T‖2 − λmax), where

xi = Tr(σi ⊗ I)ρt , Tij = Tr(σi ⊗ σj)ρt, and λmax is the largest eigenvalue of the matrix K = xxT + TTT [77].
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[7] Chruściński D and Maniscalco S 2014 Phys. Rev. Lett. 112 120404
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