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Quantum entanglement of pure states is usually quantified via the entanglement entropy, the von
Neumann entropy of the reduced state. Entanglement entropy is closely related to entanglement distillation,
a process for converting quantum states into singlets, which can then be used for various quantum
technological tasks. The relation between entanglement entropy and entanglement distillation has been
known only for the asymptotic setting, and the meaning of entanglement entropy in the single-copy regime
has so far remained open. Here we close this gap by considering entanglement catalysis. We prove that
entanglement entropy completely characterizes state transformations in the presence of entangled catalysts.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite
pure state to be used for quantum information processing, giving asymptotic results an operational meaning
also in the single-copy setup.
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Originated in chemistry, catalysis allows one to increase
the rate of a chemical reaction. This is achieved by using a
catalyst, a substance which is not consumed in the process,
and can thus be used repeatedly without additional costs.
Similarly, a quantum catalyst is a quantum system which is
not changed by the process under consideration, giving
access to transformations which are not achievable without
it. In the early days of quantum information science, the
investigation of catalysis focused on transformations of
entangled states via local operations and classical commu-
nication (LOCC) [1–3].
One of the first examples [2] demonstrating the power of

catalysis in quantum theory involves pure entangled states
shared by two parties, Alice and Bob. Two states, denoted
by jψiAB and jϕiAB, are chosen such that no LOCC
procedure can convert jψiAB into jϕiAB. Such states can
be found using the conditions for LOCC transformations
presented in [1]. Even if a direct conversion from jψiAB to
jϕiAB is not possible, in some cases conversion can still be
achieved by using a catalyst. This is an additional quantum
system in an entangled state jμiA0B0

, enabling the trans-
formation jψiAB ⊗ jμiA0B0

→ jϕiAB ⊗ jμiA0B0
. Since the

state of the catalyst remains unchanged in the process, it
can be reused for another transformation in the future. A
complete characterization of pure quantum states which can
be transformed into each other via LOCC with a catalyst
has so far remained open. Partial results addressing this
question have been presented over the last decades [4–10].
Catalysis also enhances transformations in quantum

thermodynamics, lifting the well-known second law in
the classical domain to many second laws in the quantum
regime [11]. Moreover, in quantum thermodynamics any
quantum state can be used as a universal catalyst [12].

Catalytic properties of quantum coherence [13,14], purity
[15], and theories having certain symmetries [16] have also
been considered. There has also been significant interest in
correlated catalysts [17–20]. Allowing a catalyst to build up
correlations with the system has been shown to enhance
the transformation power of the corresponding procedure
[21–23].
In this Letter we consider catalytic LOCC transforma-

tions. For a bipartite system S ¼ AB, a catalytic LOCC
transformation is defined as

ρS → lim
n→∞

TrC½ΛnðρS ⊗ τCn Þ�: ð1Þ

Here, C ¼ A0B0 is a bipartite system of the catalyst, fτCn g is
a sequence of catalyst states, and fΛng is a sequence of
LOCC protocols (see also Fig. 1). We require that for all n
the catalyst remains unchanged in the process:

TrS½ΛnðρS ⊗ τCn Þ� ¼ τCn : ð2Þ

In general, we do not bound the dimension of the catalyst,
and we further require that the system decouples from the
catalyst for large n. In particular, for a catalytic trans-
formation from ρS to σS we require

lim
n→∞

jjμSCn − σS ⊗ τCn jj1 ¼ 0; ð3Þ

where jjMjj1 ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
is the trace norm and μSCn ¼

ΛnðρS ⊗ τCn Þ is the total final state. Eq. (2) ensures that the
catalyst remains unchanged in the procedure, and thus can
be used for another process in the future. Moreover, Eq. (3)
means that the correlations between the system and the
catalyst can be made arbitrarily small, implying that
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multiple uses of the catalyst on independent systems will
lead to a negligible amount of correlations between the
systems involved.
We will now show that for pure states catalytic LOCC

transformations are closely related to asymptotic LOCC
transformations. In the asymptotic setting, the parties can
operate on a large number of copies of the initial state
simultaneously. The figure of merit for the process is the
transformation rate, giving the maximal number of copies
of jϕiAB achievable per copy of the initial state jψiAB. It has
been shown in Ref. [24] that the optimal rate is given by
HðψAÞ=HðϕAÞ, where ψA and ϕA are the reduced states of
jψiAB and jϕiAB, and HðρÞ ¼ −Tr½ρ log2ρ� is the von
Neumann entropy. For pure states the von Neumann
entropy of the reduced state is also a quantifier of
entanglement, known as entanglement entropy [24–26]:
EðjψiABÞ ¼ HðψAÞ. If the initial and the target state have
the same entanglement entropy, then conversion jψiAB →
jϕiAB is possible with unit rate.
We are now ready to present the first result of this Letter.

Alice and Bob can convert jψiAB into jϕiAB via catalytic
LOCC if and only if

HðψAÞ ≥ HðϕAÞ: ð4Þ

This result means that for pure states catalysts enhance the
transformation power of LOCC, making the transformations
as powerful as in the asymptotic limit. The result in Eq. (4) is
a consequence of the following theorem, concerning trans-
formations between quantum states ρS and σS of a general
multipartite system S via multipartite LOCC.
Theorem 1.—If ρS can be transformed into σS via

asymptotic LOCC with unit rate, then there exists a
catalytic LOCC protocol transforming ρS into σS.
Proof.—We consider a system S consisting of m parties

and restricted to LOCC. Let all the parties share a state ρ.
Moreover, we assume that for any ε > 0 there exists an
integer n and an LOCC transformation Λ such that

Λðρ⊗nÞ ¼ Γ and DðΓ; σ⊗nÞ < ε; ð5Þ

where Dðρ; σÞ ¼ 1
2
jjρ − σjj1 is the trace distance. The

above relation implies that σ is asymptotically achie-
vable from ρ with unit rate. We will now show that in
this case there also exists a catalytic LOCC procedure
transforming ρ into σ. The following proof is inspired
by techniques introduced very recently within quantum
thermodynamics [23].
Consider a catalyst in the state

τ ¼ 1

n

Xn
k¼1

ρ⊗k−1 ⊗ Γn−k ⊗ jkihkj: ð6Þ

The Hilbert space of the catalyst is in S⊗n−1 ⊗ K, where n
is the integer introduced in Eq. (5) and K represents an
auxiliary system of dimension n. For brevity, we denote the
initial system S as S1, and n − 1 copies of the same system
which belong to the catalyst are denoted by S2;…; Sn.
Thus, the system C of the catalyst is identified with
C ¼ S2…SnK. Moreover, Γ is a quantum state on S1 ⊗
S2 ⊗ � � � ⊗ Sn [see also Eq. (5)], and Γi is the reduced state
of Γ on S1 ⊗ S2 ⊗ � � � ⊗ Si. We further define Γ0 ¼ 1. The
auxiliary system K is maintained by Alice, serving as a
register with a Hilbert space of dimension n with basis
fjki; k ∈ ½1; n�g.
Consider now the following LOCC protocol acting on

the system and the catalyst: (i) Alice performs a rank-1
projective measurement on the auxiliary system K in the
basis jki. She then communicates the outcome of the
measurement to all the other parties. If Alice obtains
the outcome n, all parties perform the LOCC protocol Λ
given in Eq. (5) on S1 ⊗ S2 ⊗ � � � ⊗ Sn. For any other
outcome of Alice’s measurement the parties do nothing.
(ii) Alice applies a unitary on the auxiliary system that
converts jni → j1i and jii → jiþ 1i. (iii) Finally, all the
parties apply a SWAP unitary on their parts of (Si, Siþ1) and
(S1, Sn), which shifts Si → Siþ1 and Sn → S1.
The initial state of the system and the catalyst is given by

ρ ⊗ τ ¼ 1

n

Xn
k¼1

ρ⊗k ⊗ Γn−k ⊗ jkihkj: ð7Þ

After applying step (i), the initial state transforms to

μi ¼ 1

n

Xn−1
k¼1

ρ⊗k ⊗ Γn−k ⊗ jkihkj þ 1

n
Γ ⊗ jnihnj: ð8Þ

In step (ii), μi transforms to μii, where

μii ¼ 1

n

Xn
k¼1

ρ⊗k−1 ⊗ Γnþ1−k ⊗ jkihkj: ð9Þ

Note that tracing out Sn from μii gives τ, which is the initial
state of the catalyst [see Eq. (6)]. Therefore, using step (iii),

FIG. 1. Catalytic LOCC transformation from ρS to σS with a
sequence of catalyst states fτCn g. The state of the catalyst does not
change in the procedure, and the system becomes decoupled from
the catalyst for n → ∞. If ρS and σS are bipartite pure states, the
transition is fully characterized by entanglement entropy of the
states.
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we transform μii to the final state μ having the property
TrS½μ� ¼ τ. This proves that the state of the catalyst does
not change in this procedure.
To complete the proof, we will now show that for any

ε > 0 there is an integer n such that

DðμSC; σS ⊗ τCÞ < 2ε; ð10Þ

where μSC is the total final state given above in this proof.
For this, recall that μSC is equivalent to the state μii in
Eq. (9) up to a cyclic SWAP. This implies that our figure of
merit DðμSC; σS ⊗ τCÞ is equal to Dðμii; νÞ, where the state
ν is given as

ν ¼ 1

n

Xn
k¼1

ρ⊗k−1 ⊗ Γn−k ⊗ σ ⊗ jkihkj: ð11Þ

We further obtain

Dðμii; νÞ ¼ 1

n

Xn
k¼1

DðΓnþ1−k;Γn−k ⊗ σÞ

≤
1

n

Xn
k¼1

D½Γnþ1−k; σ⊗ðnþ1−kÞ�

þ 1

n

Xn
k¼1

D½Γn−k ⊗ σ; σ⊗ðnþ1−kÞ� < 2ε; ð12Þ

where in the first inequality we used the triangle inequality
and in the second inequality we used Eq. (5) together with
the monotonicity of trace distance under partial trace. This
proves Eq. (10), showing also that the system and the
catalyst decouple in the procedure, and that Eq. (3) is
fulfilled. This completes the proof of the theorem. We also
note that a family of catalyst states similar to Eq. (6) has
been previously considered in [12]. ▪
In the bipartite setting, Theorem 1 directly implies that

jψiAB can be transformed into jϕiAB via catalytic LOCC if
Eq. (4) is fulfilled. As we will see in the following by using
properties of entanglement quantifiers [27,28], a trans-
formation is not possible if Eq. (4) is violated.
For this, we will show that the squashed entanglement,

introduced in [27], is monotonic under catalytic LOCC
transformations. For bipartite quantum states ρAB the
squashed entanglement is defined as [27]

EsqðρABÞ¼ inf
�
1

2
IðA;BjEÞ∶ρABE extension ofρAB

�
; ð13Þ

where the infimum is taken over all quantum states ρABE

with ρAB ¼ TrEðρABEÞ and

IðA;BjEÞ¼HðρAEÞþHðρBEÞ−HðρABEÞ−HðρEÞ ð14Þ

is the quantum conditional mutual information of ρABE.

We use the following properties of the squashed entan-
glement [27]: (i) Esq is an entanglement monotone, i.e., it
does not increase under LOCC. (ii) Esq is superadditive in
general and additive on tensor products:

EsqðρAA0BB0 Þ ≥ EsqðρABÞ þ EsqðρA0B0 Þ ð15Þ

and equality holds true if ρAA
0BB0 ¼ ρAB ⊗ ρA

0B0
. (iii) For a

pure state jψiAB squashed entanglement is equal to the
entanglement entropy, i.e., the entropy of the reduced state:
EsqðjψiABÞ ¼ HðψAÞ. We are now ready to prove that
the squashed entanglement is monotonic under cata-
lytic LOCC.
Theorem 2.—If a bipartite state ρAB can be transformed

into another state νAB via catalytic LOCC, then

EsqðρABÞ ≥ EsqðνABÞ: ð16Þ

Proof.—Assume that for any ε > 0 there exists a catalyst
state τA

0B0
and an LOCC protocol Λ such that the final state

σAA
0BB0 ¼ ΛðρAB ⊗ τA

0B0 Þ has the properties

DðTrA0B0 ½σAA0BB0 �; νABÞ < ε; ð17Þ

TrAB½σAA0BB0 � ¼ τA
0B0
: ð18Þ

Using the properties (i) and (ii) of the squashed entangle-
ment, we find

EsqðσAA0BB0 Þ ≤ EsqðρABÞ þ EsqðτA0B0 Þ ð19Þ

and also

EsqðσAA0BB0 Þ ≥ EsqðTrA0B0 ½σAA0BB0 �Þ þ EsqðτA0B0 Þ: ð20Þ

From Eqs. (19) and (20) it follows that

EsqðρABÞ ≥ EsqðTrA0B0 ½σAA0BB0 �Þ: ð21Þ

If TrA0B0 ½σAA0BB0 � can be made arbitrarily close to νAB in
trace distance, then by continuity of squashed entangle-
ment [29] we get EsqðρABÞ ≥ EsqðνABÞ, and the proof is
complete. ▪
Combining Theorems 1 and 2, we conclude that a pure

state jψiAB can be transformed into another pure state jϕiAB
via catalytic LOCC if and only if HðψAÞ ≥ HðϕAÞ, as
claimed in Eq. (4). It is instrumental to compare our results
to the results in [6,7], where exact catalytic transformations
between pure states have been studied, using a catalyst
which is also in a pure state. If no error is allowed at any
stage of the protocol, the transitions are characterized by a
set of entropic inequalities [6,7]. In this Letter—in contrast
to [6,7]—we allow for a catalyst in a mixed state. While the
state of the catalyst is not changed in the process, we also
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allow for an error in the state of the system, requiring that
the error vanishes in the limit of large catalysts. We see that
catalytic transformations between bipartite pure states are
fully characterized by the entanglement entropy. This gives
an operational interpretation for the von Neumann entropy
in the single-copy scenario.
Theorem 1 has surprising implications for general

bipartite states, when it comes to catalytic entanglement
distillation and dilution [24,30]. In particular, via catalytic
LOCC it is possible to convert any distillable state ρAB into
an entangled pure state jψiAB having entanglement entropy
EðjψiABÞ ¼ EdðρABÞ, where Ed is the distillable entangle-
ment [26,31]. On the other hand, via catalytic LOCC it is
possible to create any quantum state ρAB from a pure state
jψiAB with entanglement entropy EðjψiABÞ ¼ EcðρABÞ,
where Ec is the entanglement cost [26,31].
Remarkably, Theorem 1 holds not only for bipartite state

transformations, but also for multipartite LOCC protocols.
Here the goal is to convert a multipartite state ρS into
another state σS via multipartite LOCC. As a consequence,
it allows us to translate a broad range of asymptotic results
in entanglement theory to a corresponding result on the
single-copy level. We show it explicitly for a variation of
quantum state merging, which we term catalytic quantum
state merging. Before we present this task, we review the
standard quantum state merging procedure in the following.
In quantum state merging [32,33], Alice, Bob, and

Referee share asymptotically many copies of a quantum
state jψiRAB. The goal of the process is to send Alice’s part
of the state to Bob, while preserving correlations with the
Referee. Alice and Bob can perform LOCC protocols and
share additional singlets. As was shown in [32,33], the
performance of this process is characterized by the quan-
tum conditional entropy

HðAjBÞ ¼ HðψABÞ −HðψBÞ: ð22Þ

For HðAjBÞ > 0 quantum state merging can be performed
if Alice and Bob share additional singlets at rate HðAjBÞ,
and merging is not possible if fewer singlets are available.
For HðAjBÞ ≤ 0 Alice and Bob can perform quantum state
merging with LOCC, while additionally gaining singlets at

rate −HðAjBÞ. Remarkably, quantum state merging gives
an operational meaning to the quantum conditional entropy,
regardless of whether HðAjBÞ is positive or negative.
We are now ready to define catalytic quantum state

merging, giving the quantum conditional entropy an opera-
tional meaning also in the single-copy regime. Here, Alice,
Bob, and Referee share one copy of the state jψiRAB, and
can use additional catalysts in arbitrary states τR

0A0B0
n . While

in standard quantum state merging the Referee is fully
inactive, in catalytic quantum state merging we allow the
Referee to perform local unitaries. However, communica-
tion between the Referee and the other parties is not
required (see also Fig. 2). The goal is to merge the single
copy of jψiRAB on Bob’s side without changing the state of
the catalyst for all n, and with decoupling of the catalyst in
the limit n → ∞. We find that for HðAjBÞ > 0 catalytic
quantum state merging can be performed if Alice and Bob
additionally share a pure entangled state with entanglement
entropy HðAjBÞ. This procedure is optimal: merging is not
possible if a pure state with a smaller entanglement entropy
is provided. IfHðAjBÞ ≤ 0, then catalytic state merging can
be performed without extra entanglement. In the end of the
process, Alice and Bob can gain an additional pure state
with entanglement entropy −HðAjBÞ. Also this procedure
is optimal: it is not possible to achieve merging and gain a
pure state with entanglement entropy exceeding −HðAjBÞ.
We refer to the Supplemental Material [34] for the proofs
and more details.
As a final example we discuss assisted entanglement

distillation [35,36], where three parties, Alice, Bob,
and Charlie, share a pure state jψiABC. By performing
LOCC involving all parties, their aim is to extract singlets
between Alice and Bob. In the asymptotic setup, the opti-
mal singlet rate is given by min fHðψAÞ; HðψBÞg [36].
Correspondingly, catalytic assisted entanglement distilla-
tion involves one copy of jψiABC. By applying catalytic
LOCC, the parties aim to establish a state jϕiAB shared by
Alice and Bob, having entanglement entropy as large as
possible. We find that min fHðψAÞ; HðψBÞg corresponds to
the maximal entanglement entropy achievable from jψiABC
in this procedure. The technical details can be found in the
Supplemental Material [34].

FIG. 2. Catalytic quantum state merging. Alice, Bob, and Referee share a single copy of jψiRAB. Alice aims to send her part of the state
to Bob by using catalytic LOCC, and the Referee can apply local unitary transformations. The process is completely characterized by the
quantum conditional entropy HðAjBÞ; see the main text for more details.
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In summary, we have shown that entanglement entropy
plays a fundamental role in quantifying the amount of
entanglement available in a bipartite pure state to be used
for quantum information processing. This holds in the
single-copy setup, where a single instance of a pure
quantum state is available, supported by a suitable catalyst
which remains unchanged in the process. Our methods are
directly applicable to studying the role of catalysis in more
general quantum information tasks. We have demonstrated
this explicitly for quantum state merging and assisted
entanglement distillation. It is reasonable to assume that
similar results will hold for other quantum information
protocols, including also the recently developed proce-
dures for entangled state transformations in multipartite
setups [37].
For bipartite pure entangled states, our methods allow us

to construct catalyst states which achieve optimal perfor-
mance, as described by Eq. (4). These catalyst states are
tailored to the specific state transition, allowing us to
implement the transformation repeatedly with an arbitrarily
small error. An interesting open question is whether
optimal performance can also be achieved with a universal
catalyst. Such possibility has been pointed out in [12] for
quantum thermodynamics and related theories. Extension
of these tools to the setup introduced in this Letter is
beyond the scope of our work, and we leave it open for
future research. Our results suggest a full equivalence
between asymptotic and catalytic entanglement theory.

We thank Patryk Lipka-Bartosik and Paul Skrzypczyk for
discussion and insightful comments on our manuscript. This
work was supported by the “QuantumOptical Technologies”
project, carried out within the International Research
Agendas program of the Foundation for Polish Science
cofinanced by the European Union under the European
Regional Development Fund.

Note added.—The authors of [38] have used similar
techniques to study the role of entangled catalysts for
quantum teleportation, showing that catalysts can signifi-
cantly enhance the teleportation fidelity.
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