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Resource theory of imaginarity: Quantification and state conversion
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Complex numbers are widely used in both classical and quantum physics and are indispensable components
for describing quantum systems and their dynamical behavior. Recently, the resource theory of imaginarity
has been introduced, allowing for a systematic study of complex numbers in quantum mechanics and quantum
information theory. In this work we develop theoretical methods for the resource theory of imaginarity, motivated
by recent progress within theories of entanglement and coherence. We investigate imaginarity quantification,
focusing on the geometric imaginarity and the robustness of imaginarity, and apply these tools to the state
conversion problem in imaginarity theory. Moreover, we analyze the complexity of real and general operations
in optical experiments, focusing on the number of unfixed wave plates for their implementation. We also discuss
the role of imaginarity for local state discrimination, proving that any pair of real orthogonal pure states can
be discriminated via local real operations and classical communication. Our study reveals the significance of
complex numbers in quantum physics and proves that imaginarity is a resource in optical experiments.
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I. INTRODUCTION

Quantum resource theories provide a unified approach for
studying properties of quantum systems and their applications
for quantum technology [1–3]. The basis of any quantum
resource theory is the definition of free states: these are states
which are easy to prepare, compared to the effort for creating
general quantum states. The concrete set of free states depends
on the specific problem under study. As an example, in the
resource theory of quantum entanglement [4–6] two remote
parties can easily perform quantum operations in their local
laboratories and can exchange classical information at no
additional cost. The set of states which can be easily estab-
lished in this setup is the set of separable states [7]. Another
important element of a resource theory is the definition of free
operations, corresponding to transformations of a quantum
system which are easy to implement. As with the free states,
the concrete definition depends on the problem under study.
In the theory of entanglement, the free operations are known
as local operations and classical communication (LOCC) [8].

Quantum entanglement is the main ingredient in many
quantum technological tasks, such as quantum teleportation
[9] and quantum key distribution [10]. However, it has become
clear in recent years that entanglement is not the sole source
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responsible for quantum advantages. This has led to the de-
velopment of other quantum resource theories, in particular,
the resource theories of coherence [11,12], quantum thermo-
dynamics [13,14], purity [15–17], and asymmetry [18–20].

In this article, which is also a companion paper of [21], we
investigate the resource theory of imaginarity [22], capturing
the effort to create and manipulate quantum states with com-
plex coefficients. The free states of this theory are real states,
i.e., quantum states with a real density matrix 〈m|ρ|n〉 ∈ R
for a fixed reference basis {|m〉}. The free operations are real
operations, i.e., quantum operations �[ρ] = KjρK†

j with real
Kraus operators: 〈m|Kj |n〉 ∈ R.

One of the main questions of any resource theory is
whether two given states ρ and σ can be converted into each
other via free operations. This is the state conversion problem,
and to solve it one needs to determine all quantum states σ

which can be obtained from a given state ρ. If the conver-
sion ρ → σ is not possible deterministically, it might still be
possible to achieve the transformation stochastically. The goal
is then to determine the maximal probability of conversion
P(ρ → σ ). For the resource theory of imaginarity a full solu-
tion for probabilistic state conversion for all pure states was
recently announced in [21], along with a complete solution
for deterministic conversion for all single-qubit states. In this
article we present a detailed discussion of these results, along
with the technical proofs. Our methods make use of general
properties of resource quantifiers and their connection to the
state conversion problem. We present methods for imaginarity
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quantification, focusing on the geometric imaginarity and the
robustness of imaginarity, and show that both measures have
an operational interpretation via the state conversion prob-
lem. We also consider approximate imaginarity distillation,
where the goal is to maximize the fidelity with the maximally
imaginary states via real operations. Also for this problem the
solution for all mixed states was announced in [21], and we
present a detailed proof in this article.

The sets of free states and free operations completely
define a resource theory. However, for a resource theory to
have an operational meaning it is also desirable that there
exists an experimentally relevant setup where the free states
are easy to prepare and the free operations are easy to im-
plement, compared to general quantum states and operations.
As we show in this work, the resource theory of imaginarity
also fulfills this requirement when focusing on experiments
with linear optics, if we restrict our elements to only wave
plates and beam displacing devices. In standard path-encoded
method, a pure quantum state |ψ〉 of dimension d requires
2d − 2 unfixed wave plates to be created. In contrast, if all
coefficients are real, we need only d − 1 unfixed wave plates,
due to the smaller number of parameters of the real vector
space. Thus, restricting ourselves to quantum systems with
real coefficients allows us to reduce the number of unfixed
wave plates, suggesting that real quantum states are easier
to create, compared to general quantum states with complex
elements. Starting from this observation, we analyze the ef-
fort for performing a general quantum operation in optical
experiments, again focusing on the number of unfixed wave
plates. As announced in the companion paper [21], restricting
ourselves to real operations allows us to reduce the number of
unfixed wave plates by 1/2 in the limit of large dimension of
the system under study, and a complete proof of this statement
is presented in this work.

This article is structured as follows. In Sec. II we discuss
properties of general quantum resource theories. In Sec. III
we define the resource theory of imaginarity and discuss its
main features. In Sec. IV we present methods for imaginarity
quantification. In Sec. V we consider state transformations
via real operations. The operational meaning of imaginarity
in optical experiments is discussed in Sec. VI. In Sec. VII we
discuss applications of imaginarity for local discrimination of
quantum states. The conclusion is presented in Sec. VIII.

II. QUANTUM RESOURCE THEORIES
AND THEIR FEATURES

One of the main questions in any quantum resource theory
is whether, for two given quantum states ρ and σ , there exists
a free operation � f transforming ρ into σ :

σ = � f [ρ]. (1)

The existence of such a transformation immediately implies
that ρ is more resourceful than σ , and in particular,

R(ρ) � R(σ ) (2)

for any resource measure R.
If ρ cannot be converted into σ via a free operation, e.g.,

if R(ρ) < R(σ ), it might still be possible to achieve the con-
version probabilistically, if the corresponding resource theory

allows for stochastic free operations, with free Kraus opera-
tors {Kj} such that

∑
i K†

j Kj � 1. It is further reasonable to
assume that any incomplete set of free Kraus operators {Kj}
can be completed with free Kraus operators {Li} such that∑

i

L†
i Li +

∑
j

K†
j Kj = 1. (3)

The maximal probability for converting ρ into σ is then de-
fined as

P(ρ → σ ) = max
{Kj}

{∑
j

p j : σ =
∑

j KjρK†
j∑

j p j

}
(4)

with probabilities p j = Tr[KjρK†
j ], and the maximum is taken

over all (possibly incomplete) sets of free Kraus operators
{Kj}. The existence of a deterministic free operation between
ρ and σ as in Eq. (1) is then equivalent to P(ρ → σ ) = 1.

If two states ρ and σ do not allow for determinis-
tic or stochastic transformations [i.e., P(ρ → σ ) = 0], there
remains the possibility of performing the transformation ap-
proximately. The figure of merit in this case is the maximal
transformation fidelity

F (ρ → σ ) = max
� f

{F (� f [ρ], σ )}, (5)

with fidelity

F (ρ, σ ) =
(

Tr
√√

ρσ
√

ρ
)2

, (6)

and the maximum is taken over all free operations � f .
Any resource measure R is monotonic under free oper-

ations; see Eq. (2). For resource theories which allow for
stochastic conversion, one typically requires a stronger con-
straint on the resource measure, to be monotonic on average
under free operations:

R(ρ) �
∑

j

q jR(σ j ). (7)

Here, the states σ j arise from ρ by applying a free operation,
σ j = KjρK†

j /q j with free Kraus operators Kj , and q j is the

corresponding probability, q j = Tr[KjρK†
j ]. Quantifiers satis-

fying Eq. (7) are also called strong resource monotones. If R
is additionally convex, i.e.,

R

(∑
j

p jρ j

)
�

∑
j

p jR(ρ j ), (8)

then strong monotonicity (7), implies monotonicity (2).
A powerful upper bound on the conversion probability (4),

can be obtained from any resource quantifier which is convex
and strongly monotonic under free operations. For any such
resource quantifier R, it holds that

P(ρ → σ ) � min

{
R(ρ)

R(σ )
, 1

}
. (9)

A proof of Eq. (9) was given in [23] for the resource theory
of coherence, but the methods presented there can be applied
for any resource theory. For this, let {Kj} be a (possibly
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incomplete) set of free Kraus operators which transform
ρ to σ :

σ =
∑

j KjρK†
j

Tr
[∑

j KjρK†
j

] . (10)

We further assume that there exist free Kraus operators {Li}
which complete the set {Kj}; see Eq. (3). We now define the
probabilities

p j = Tr[KjρK†
j ], (11a)

qi = Tr[LiρL†
i ] (11b)

and postmeasurement states

σ j = KjρK†
j

p j
, (12a)

τi = LiρL†
i

qi
. (12b)

In general it holds that P(ρ → σ ) � ∑
j p j , and there

exists a set of free Kraus operators {Kj} saturating this in-
equality. In the following, we assume that this is the case, i.e.,
P(ρ → σ ) = ∑

j p j . Using convexity and strong monotonic-
ity of R it follows that

R(ρ) �
∑

j

p jR(σ j ) +
∑

i

qiR(τi ) �
∑

j

p jR(σ j )

= P(ρ → σ )
∑

j

p j

P(ρ → σ )
R(σ j )

� P(ρ → σ )R(σ ). (13)

This completes the proof of Eq. (9).
An important resource quantifier is the robustness with

respect to the set of free states F ,

RF (ρ) = min
τ

{
s � 0 :

ρ + sτ

1 + s
∈ F

}
, (14)

where the minimum is taken over all quantum states τ and
all s � 0. The robustness measure was first studied in the
resource theory of entanglement [5,24,25] and more recently
in the resource theory of coherence [26,27]. For any quantum
resource theory, the robustness is closely related to the success
probability in channel discrimination tasks [28,29]. Here, a
quantum channel � j is acting on a state ρ with probability
p j . The goal of channel discrimination is to determine which
channel has acted, by applying a measurement with POVM el-
ements {Mj} to the final states � j (ρ). The success probability
of the procedure is given as

psucc(ρ, {p j,� j}, {Mj}) =
∑

j

p jTr[Mj� j (ρ)]. (15)

The connection between channel discrimination and the ro-
bustness measure is then given by [28,29]

max
{p j ,� j},{Mj }

psucc(ρ, {p j,� j}, {Mj})

maxσ∈F psucc(σ, {p j,� j}, {Mj})
= 1 + RF (ρ).

(16)
Equation (16) implies that for any resource state ρ (i.e., a
quantum state which is not an element of F ) there exist a set

of channels {� j} and a probability distribution {p j} such that
the optimal guessing probability is strictly larger than for any
σ ∈ F .

III. RESOURCE THEORY OF IMAGINARITY

In the resource theory of imaginarity [22] the free states are
called real states, corresponding to the set of quantum states
with a real density matrix:

R = {ρ : 〈m|ρ|n〉 ∈ R}. (17)

Similarly to the resource theory of coherence [12] this defini-
tion depends on the reference basis {|m〉}, and a state which
is real with respect to one basis is not necessarily real with
respect to another basis. Free operations in imaginarity theory
are called real operations, corresponding to quantum opera-
tions �[ρ] = ∑

j KjρK†
j with real Kraus operators [22]:

〈m|Kj |n〉 ∈ R. (18)

This definition implies that a real operation cannot create
imaginarity, even if interpreted as a quantum measurement.
It is clear from Eq. (18) that an incomplete set of real Kraus
operators {Kj} can always be completed with real Kraus oper-
ators {Li} such that Eq. (3) holds. In particular, we can define

L0 =
√
1 −

∑
j

K†
j Kj . (19)

Since K†
j Kj are real symmetric matrices, also L0 is real, and

moreover, L†
0L0 + ∑

j K†
j Kj = 1. An important state in the

resource theory of imaginarity is the maximally imaginary
state

|+̂〉 = 1√
2

(|0〉 + i|1〉). (20)

The state |+̂〉 can be converted into any quantum state of
arbitrary dimension via real operations [22]. The same holds
true for the state |−̂〉 = (|0〉 − i|1〉)/

√
2.

We now show that in the resource theory of imaginarity
any pure state admits a simple generic form. Recalling that
the definition of imaginarity is basis dependent, we define
complex conjugation of a state |ψ〉 as

|ψ∗〉 =
∑

j

c∗
j | j〉, (21)

where {| j〉} is the reference basis, and c j = 〈 j|ψ〉. The states
|ψ〉 and |ψ∗〉 can also be expressed as

|ψ〉 = a|γ1〉 + ib|γ2〉, (22a)

|ψ∗〉 = a|γ1〉 − ib|γ2〉, (22b)

where a and b are real numbers with a2 + b2 = 1, and |γi〉 are
real states. Equipped with these tools, we are now ready to
prove the following proposition.

Proposition 1. For any pure state |ψ〉 there exists a real
orthogonal matrix O such that

O|ψ〉 =
√

1 + |〈ψ∗|ψ〉|
2

|0〉 + i

√
1 − |〈ψ∗|ψ〉|

2
|1〉. (23)
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Proof. In the first step, note that for any two real states |γ1〉
and |γ2〉 there exists a real orthogonal matrix O such that

O|γ1〉 = |0〉, (24)

O|γ2〉 = cos θ |0〉 + sin θ |1〉, (25)

where cos θ = 〈γ1|γ2〉. Applying O to the state |ψ〉 gives us

O|ψ〉 = (a + ib cos θ )|0〉 + ib sin θ |1〉. (26)

Since the state O|ψ〉 is effectively a single-qubit state, we can
associate a Bloch vector r with it, with coordinates

rx = b2 sin(2θ ),

ry = 2ab sin(θ ), (27)

rz = a2 + b2 cos(2θ ).

Now let O′ be a real orthogonal transformation, such that
the Bloch vector s of the state O′O|ψ〉 is in the positive y-z
plane. Since |s| = 1, we can give the coordinates of s as
follows:

sx = 0, sy = |ry|,
sz =

√
1 − r2

y =
√

1 − 4a2b2 + 4a2b2 cos2 θ. (28)

From Eqs. (22) we further obtain

a|γ1〉 = |ψ〉 + |ψ∗〉
2

, (29a)

b|γ2〉 = |ψ〉 − |ψ∗〉
2i

. (29b)

These results allow us to express a2 and b2 as

a2 =
∣∣∣∣ |ψ〉 + |ψ∗〉

2

∣∣∣∣
2

= 1

4
(2 + 〈ψ∗|ψ〉 + 〈ψ |ψ∗〉), (30)

b2 =
∣∣∣∣ |ψ〉 − |ψ∗〉

2i

∣∣∣∣
2

= 1

4
(2 − 〈ψ∗|ψ〉 − 〈ψ |ψ∗〉). (31)

Recalling that cos θ = 〈γ1|γ2〉 we arrive at

ab cos θ = ab〈γ1|γ2〉 = 1

4i
(〈ψ∗|ψ〉 − 〈ψ |ψ∗〉). (32)

Using these results, we can simplify Eqs. (28) as follows:

sx = 0, sy =
√

1 − |〈ψ∗|ψ〉|2, sz = |〈ψ∗|ψ〉|. (33)

The pure state corresponding to the Bloch vector s is given by
Eq. (23). �

As we see in the next section, the generic form given in
Proposition 1 is very relevant when it comes to imaginarity
quantification for pure states. We now prove that for any real
state ρ the fidelity with the maximally imaginary state |+̂〉 is
bounded by 1/2.

Proposition 2. For any real state ρ ∈ R it holds that

〈+̂|ρ|+̂〉 � 1
2 , (34)

with equality if ρ is a single-qubit state.

Proof. For any real state we can write 〈+̂|ρ|+̂〉 as

〈+̂|ρ|+̂〉 = (〈0| − i〈1|)ρ(|0〉 + i|1〉)

2

= 〈0|ρ|0〉 + 〈1|ρ|1〉
2

, (35)

where we have used equality 〈0|ρ|1〉 − 〈1|ρ|0〉 = 0, which is
true for any ρ ∈ R. This result directly implies Eq. (34), and
it is clear that equality holds true for real qubit states. �

In the following, we also make use of the fact that any d-
dimensional quantum state ρ can be decomposed as [22]

ρ = Re(ρ) + iIm(ρ), (36)

where Re(ρ) = 1
2 (ρ + ρT ) is a real quantum state and

Im(ρ) = 1
2i (ρ − ρT ) is a real antisymmetric matrix. By spec-

tral theorem Im(ρ) has an even rank 2r and there is a real
orthogonal matrix O such that OIm (ρ)OT is block-diagonal
[30, p. 136],

O Im ρOT = 0d−2r

r⊕
k=1

λk

(
0 1

−1 0

)
, (37)

where λk > 0.

IV. QUANTIFYING IMAGINARITY

Resource quantifiers for general quantum resource theories
have been discussed in Sec. II. For the resource theory of
imaginarity, any imaginarity measure I should be 0 on all
real states:

I (ρ) = 0 for any ρ ∈ R. (38)

Moreover, I should not increase under real operations:

I (�[ρ]) � I (ρ) (39)

for any real operation �. A strong imaginarity monotone
additionally fulfills ∑

j

q jI (σ j ) � I (ρ) (40)

with q j = Tr[KjρK†
j ], σ j = KjρK†

j /q j , and real Kraus opera-
tors Kj .

Monotonicity (39) implies that all imaginarity measures
are invariant under real orthogonal transformations:

I
(
OρOT

) = I (ρ). (41)

To prove this, note that Eq. (39) immediately implies

I (OρOT ) � I (ρ) (42)

for all states ρ and all real orthogonal matrices O. Defining
σ = OρOT we further obtain

I (ρ) = I (OT σO) � I (σ ) = I (OρOT ). (43)

Combining Eqs. (42) and (43) proves Eq. (41).
For any pure state |ψ〉 any imaginarity measure I depends

only on |〈ψ∗|ψ〉|,
I (|ψ〉) = f (|〈ψ∗|ψ〉|), (44)

where the function f depends on the concrete imaginarity
measure I . To see this, recall that for any pure state |ψ〉
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there exists a real orthogonal matrix O bringing |ψ〉 into the
generic form (23). The proof of Eq. (44) is complete by using
Eq. (41) and noting that the generic form (23), depends only
on |〈ψ∗|ψ〉|.

In the following, we consider two concrete measures of
imaginarity: geometric imaginarity and robustness of imagi-
narity.

A. Geometric imaginarity

For a pure state |ψ〉 we define the geometric imaginarity as

Ig(|ψ〉) = 1 − max
|φ〉∈R

|〈φ|ψ〉|2. (45)

For mixed states, we define Ig as the minimal average imagi-
narity, minimized over all decompositions of the state

Ig(ρ) = min
∑

j

p jIg(|ψ j〉), (46)

where the minimum is taken over all ensembles {pj, |ψ j〉}
such that ρ = ∑

j p j |ψ j〉〈ψ j |. From the definition we see that
Ig is convex:

Ig

(∑
j

p jρ j

)
�

∑
j

p jIg(ρ j ). (47)

The definition of geometric imaginarity is analogous to
fidelity-based quantifiers in other resource theories, in par-
ticular, the geometric measure of entanglement [31–34] and
geometric measure of coherence [35].

Due to Eq. (44), for pure states the geometric imaginarity
must be a function of |〈ψ∗|ψ〉|. We now go one step further
and give an explicit expression for all pure states.

Proposition 3. The geometric imaginarity of a pure state
|ψ〉 is given as

Ig(|ψ〉) = 1 − |〈ψ∗|ψ〉|
2

. (48)

Proof. By Eq. (41) and Proposition 1 it follows that

Ig(|ψ〉) = Ig

(√
1 + |〈ψ∗|ψ〉|

2
|0〉 + i

√
1 − |〈ψ∗|ψ〉|

2
|1〉

)
.

(49)

To complete the proof, we now evaluate Ig for any state of
the form

|μ〉 = a0|0〉 + ia1|1〉 (50)

with a0 � a1 � 0 and a2
0 + a2

1 = 1. For any real state |ν〉 =∑
j b j | j〉 we have

|〈ν|μ〉|2 = |a0b0 + ia1b1|2 = a2
0b2

0 + a2
1b2

1 � a2
0, (51)

where the inequality follows from the fact that
∑

j b2
j = 1.

Since |〈0|μ〉|2 = a2
0, we conclude that

max
|ν〉∈R

|〈ν|μ〉|2 = a2
0, (52)

and thus Ig(|μ〉) = a2
1. �

Recall now that strong imaginarity monotones fulfill
Eq. (40). The following proposition shows that this is the case
for geometric imaginarity.

Proposition 4. Geometric imaginarity is a strong imaginar-
ity monotone.

Proof. To prove Eq. (40) in general, we first prove it for
pure states. By Proposition 1, it is enough to prove it for states

|α〉 = cos α|0〉 + i sin α|1〉 (53)

with α ∈ [0, π/4], for which the geometric imaginarity is
given by Ig(|α〉) = sin2 α. For a pure initial state, all post-
measurement states σ j are also pure. Thus, proving Eq. (40)
for pure states reduces to proving the inequality∑

j

max
|φ j〉∈R

|〈φ j |Kj |α〉|2 � cos2 α, (54)

where {Kj} is a set of real Kraus operators. To prove Eq. (54),
we first note that∑

j

max
|φ j〉∈R

|〈φ j |Kj |α〉|2 �
∑

j

|〈0|KT
j Kj |α〉|2
s j

, (55)

where we have introduced

s j = 〈0|KT
j Kj |0〉. (56)

Recalling that all Kraus operators Kj are real and using the
explicit form of |α〉 we obtain

|〈0|KT
j Kj |α〉|2 = |〈0|KT

j Kj |0〉|2 cos2 α

+ |〈0|KT
j Kj |1〉|2 sin2 α

� |〈0|KT
j Kj |0〉|2 cos2 α, (57)

which further implies that

∑
j

max
|φ j〉∈R

|〈φ j |Kj |α〉|2 �
∑

j

|〈0|KT
j Kj |0〉|2
s j

cos2 α. (58)

Using the definition of s j in Eq. (56) and the fact that∑
j KT

j Kj = 1, we obtain the desired inequality (54).
The above arguments prove that Ig satisfies Eq. (40) when

ρ is pure. To extend this result to mixed states, consider an
optimal decomposition of a mixed state ρ = ∑

j p j |ψ j〉〈ψ j |,
such that

Ig(ρ) =
∑

j

p jIg(|ψ j〉). (59)

Introducing the quantity s jk = 〈ψk|KT
j Kj |ψk〉 we obtain

∑
j

q jIg

(
KjρKT

j

q j

)

=
∑

j

q jIg

(∑
k

pk

Kj |ψk〉〈ψk|KT
j

q j

)

=
∑

j

q jIg

(∑
k

pks jk

q j
× Kj |ψk〉〈ψk|KT

j

s jk

)

�
∑

j,k

pks jkIg

(
Kj |ψk〉〈ψk|KT

j

s jk

)

�
∑

j

p jIg(|ψ j〉) = Ig(ρ), (60)
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where in the first inequality we have used the facts that Ig

is convex. This completes the proof of Eq. (40) for all mixed
states. �

As we show in Sec. V, geometric imaginarity for pure
states admits an operational interpretation in the state conver-
sion task.

B. Robustness of imaginarity

For a general resource theory the robustness measure has
been defined in Sec. II. Following this approach, the robust-
ness of imaginarity is defined as [22]

IR(ρ) = min
τ

{
s � 0 :

ρ + sτ

1 + s
∈ R

}
, (61)

where the minimum is taken over all quantum states τ and all
s � 0. The following proposition gives a closed expression for
the robustness of imaginarity of any quantum state ρ.

Proposition 5. The robustness of imaginarity is equal to

IR(ρ) = 1
2‖ρ − ρT ‖1, (62)

where T denotes transposition and ‖M‖1 = Tr
√

M†M is the
trace norm.

Proof. Let τ ∗ be a quantum state achieving the minimum in
Eq. (61). Then the matrix ρ + IR(ρ)τ ∗ is real and Hermitian,
and thus

ρ + IR(ρ)τ ∗ = ρT + IR(ρ)(τ ∗)T . (63)

We can now obtain a lower bound on the robustness of imagi-
narity as

‖ρ − ρT ‖1 = IR(ρ)‖(τ ∗)T − τ ∗‖1 � 2IR(ρ), (64)

where we have used the fact that ‖(τ ∗)T −τ ∗‖1 � ‖(τ ∗)T ‖1+
‖τ ∗‖1 = 2. Thus, we have the bound

IR(ρ) � 1
2‖ρ − ρT ‖1. (65)

To complete the proof, we present a state τ ∗ such that ρ +
sτ ∗ is a real matrix with s = 1

2‖ρ − ρT ‖1. To see this, recall
that there exists a real orthogonal matrix O such that OImρOT

is block-diagonal as in Eq. (37) with coefficients λm � 0. If
the dimension of the Hilbert space is even, we define τ ∗ to be
a block-diagonal matrix of the form

τ ∗ = 1

2
∑

m λm
OT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 −iλ1

iλ1 λ1

λ2 −iλ2

iλ2 λ2
. . .

λk −iλk

iλk λk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

O. (66)

Note that ρ + 2
∑

m λmτ ∗ is a real matrix, and moreover,

1

2
‖ρ − ρT ‖1 = ‖Imρ‖1 = 2

∑
m

λm. (67)

This completes the proof for Hilbert space with even dimension. For odd dimension, the proof follows the same lines of
reasoning, if we define state τ ∗ as

τ ∗ = 1

2
∑

m λm
OT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 −iλ1 0
iλ1 λ1 0

λ2 −iλ2 0
iλ2 λ2 0

. . .
...

λk −iλk 0
iλk λk 0

0 0 0 0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

O. (68)

This completes the proof of the proposition. �
Proposition 5 implies that the robustness of imaginarity

coincides with the distance-based measure of imaginarity
studied in [22]. For single-qubit states with Bloch vector
r = (rx, ry, rz ) the robustness of imaginarity simplifies to

IR(ρ) = |ry|. (69)

For pure states the robustness of imaginarity can be written as

IR(|ψ〉) =
√

1 − |〈ψ∗|ψ〉|2. (70)

This follows directly from Proposition 5 and the fact that
|||ψ〉〈ψ | − |φ〉〈φ|||1 = 2

√
1 − |〈ψ |φ〉|2 holds true for any two

pure states |ψ〉 and |φ〉.
Due to Proposition 5, the robustness of imaginarity has the

property

IR(pρ1 ⊕ [1 − p]ρ2) = pIR(ρ1) + (1 − p)IR(ρ2), (71)

which has previously been explored within the resource theory
of quantum coherence [36].
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In the next section we apply these results to quantum state
conversion in imaginarity theory.

V. STATE TRANSFORMATIONS VIA REAL OPERATIONS

We now discuss state transformations in the resource the-
ory of imaginarity. Deterministic transformations for pure
states have been considered in [22]. The results presented
in [22] together with Proposition 5 imply that the conver-
sion |ψ〉 → |φ〉 is possible via real operations if and only if
IR(|ψ〉) � IR(|φ〉). In the following, we consider stochastic
conversion for pure states.

A. Stochastic transformations for pure states

We now provide the maximal probability for converting a
pure state |ψ〉 into another pure state |φ〉 via real operations.
The following theorem was announced in [21], and we give a
full proof of it in this article.

Theorem 1. The maximum probability for a pure state
transformation |ψ〉 → |φ〉 via real operations is given by

P( |ψ〉 → |φ〉 ) = min

{
1 − | 〈ψ∗ | ψ〉 |
1 − | 〈φ∗ | φ〉 | , 1

}
. (72)

Proof. The proof uses properties of pure states within imag-
inarity theory (see Sec. III) and geometric imaginarity Ig

(see Sec. IV A). Since Ig is convex and a strong imaginarity
monotone, the transition probability P(ρ → σ ) is bounded as
[see also Eq. (9)]

P(ρ → σ ) � Ig(ρ)

Ig(σ )
. (73)

In the case of pure states we can use Proposition 3 to obtain

P(|ψ〉 → |φ〉) � 1 − |〈ψ∗|ψ〉|
1 − |〈φ∗|φ〉| . (74)

We now consider the case

|〈ψ∗|ψ〉| � |〈φ∗|φ〉| (75)

and show that there exists a real operation saturating the bound
(74). To see this, we first apply a real orthogonal transforma-
tion to state |ψ〉, bringing it into the form

|ψ ′〉 =
√

1 + |〈ψ∗|ψ〉|
2

|0〉 + i

√
1 − |〈ψ∗|ψ〉|

2
|1〉; (76)

see Proposition 1. Then we apply a real operation with the
Kraus operators

K0 =
(

a 0
0 1

)
, K1 =

√
1 − K2

0 , (77)

where a is defined as

a =
√

1 − |〈ψ∗|ψ〉|
1 − |〈φ∗|φ〉| × 1 + |〈φ∗|φ〉|

1 + |〈ψ∗|ψ〉| . (78)

Note that a � 1 by Eq. (75). As can be verified by inspection,
the Kraus operator K0 transforms |ψ ′〉 into the state

|φ′〉 =
√

1 + |〈φ∗|φ〉|
2

|0〉 + i

√
1 − |〈φ∗|φ〉|

2
|1〉, (79)

with probability

p = 1 − |〈ψ∗|ψ〉|
1 − |〈φ∗|φ〉| . (80)

Note that |φ′〉 is equivalent to the desired state |φ〉 up to a real
orthogonal transformation; see Proposition 1.

For the remaining case |〈ψ∗|ψ〉| < |〈φ∗|φ〉|, the trans-
formation |ψ〉 → |φ〉 can be achieved with unit probability
[22]. �

Theorem 1 allows us to determine the optimal probabil-
ity for transitions between pure states in imaginarity theory.
Moreover, it equips the geometric imaginarity Ig with an
operational meaning: the maximal probability to convert |ψ〉
into |φ〉 via real operations can be written as

P(|ψ〉 → |φ〉) = min

{
Ig(|ψ〉)

Ig(|φ〉)
, 1

}
. (81)

B. Deterministic transformations for all single-qubit states

So far we have focused on transformations between pure
states. We now go one step further and consider mixed states
of a single qubit. Note that any single-qubit state can be
represented by a real three-dimensional Bloch vector. The
following theorem provides a complete solution for the con-
version problem via real operations for all qubit states.

Theorem 2. For qubit states ρ and σ the transition ρ → σ

is possible via real operations if and only if

s2
y � r2

y , (82a)

1 − s2
z − s2

x

s2
y

� 1 − r2
z − r2

x

r2
y

, (82b)

where r and s are the Bloch vectors of the initial and the target
state, respectively.

This result was also announced in [21], and a complete
proof is presented in the following. For this, we make use
of methods developed earlier within the resource theory of
quantum coherence [37–39]. To use this analogy in an optimal
way, we introduce a new set of operations, which we term
y-z-preserving operations and denote �yz. They correspond to
single-qubit quantum operations which map the y-z plane of
the Bloch space onto itself, i.e., if a state ρ has a Bloch vector
in the y-z plane, then �yz[ρ] also has this property. In the
same way, x-z-preserving operations map the set of real states
onto itself. Similarly, z-preserving operations map diagonal
states onto diagonal states, thus corresponding to maximally
incoherent operations (MIOs) [40].

In the following we prove two lemmas which will be useful
for proving Theorem 2 and which also demonstrate a close
relation between the resource theories of coherence and imag-
inarity.

Lemma 1. Let ρr and σr be qubit states with Bloch vectors
in the x-z plane. If there exists a y-z-preserving operation
�yz such that �yz[ρr] = σr , there also exists a z-preserving
operation �z such that �z[ρr] = σr .

Proof. Since �yz is y-z preserving, it converts states |0〉 and
|1〉 into states μ0 and μ1 with Bloch vectors in the y-z plane,
i.e., μ0 and μ1 have purely imaginary off-diagonal elements.
This implies that any convex combination of |0〉 and |1〉 is
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also converted into a state with purely imaginary off-diagonal
elements.

Now let {Kj} be the Kraus operators of �yz. We introduce
another transformation,

�′(ρ) =
∑

j

L jρL†
j , (83)

with Kraus operators Lj = K∗
j . It is straightforward to verify

that {Lj} is indeed a valid set of Kraus operators:∑
j

L†
j L j =

∑
j

(
K∗

j

)†
K∗

j =
∑

j

KT
j K∗

j =
∑

j

(
K†

j Kj
)∗ = 1.

(84)

Moreover, when applied to any state τr in the x-z plane, we
obtain

�′(τr ) =
∑

j

K∗
j τrK

T
j =

(∑
j

KjτrK
†
j

)∗
= [�yz(τr )]

T ,

(85)

where in the last step we have used the fact that �yz(τr ) is
Hermitian. It follows that

�′[ρr] = σr, (86a)

�′[|0〉〈0|] = μT
0 , (86b)

�′[|1〉〈1|] = μT
1 . (86c)

In the next step, we introduce the transformation

�̃(ρ) = 1
2�yz(ρ) + 1

2�′(ρ). (87)

Recalling that states μ0 and μ1 have purely imaginary off-
diagonal elements, we further obtain

�̃[ρr] = σr, (88a)

�̃[|0〉〈0|] = 1

2

(
μ0 + μT

0

) =
∑

j

〈 j|μ0| j〉| j〉〈 j|, (88b)

�̃[|1〉〈1|] = 1

2

(
μ1 + μT

1

) =
∑

j

〈 j|μ1| j〉| j〉〈 j|. (88c)

This implies that �̃ is a z-preserving operation transform-
ing ρr onto σr. �

In the next step, we use Lemma 1 to characterize the set
of real states achievable from a given real state ρ via y-z-
preserving operations.

Lemma 2. Let ρr and σr be qubit states in the x-z plane of
the Bloch sphere. Then there exists a y-z-preserving operation
such that σr = �yz[ρr] if and only if

s2
x � r2

x , (89a)

1 − s2
z

s2
x

� 1 − r2
z

r2
x

, (89b)

where r and s denote the Bloch vectors of ρr and σr , respec-
tively.

Proof. We first prove that a y-z-preserving operation vio-
lating Eq. (89a) and/or Eq. (89b) does not exist. Assume—by
contradiction—that there exists a y-z-preserving operation vi-
olating Eq. (89a) and/or Eq. (89b). Then by Lemma 1 there

must also exist a z-preserving (i.e., MIO) operation such that
σr = �MIO[ρr]. Such a transformation does not exist due to
results in [37–39].

We now show that a y-z-preserving operation exists if
Eqs. (89a) and (89b) are fulfilled. Note that σz and any rotation
around the x axis are y-z-preserving operations. Thus, we
can restrict ourselves to the positive part of the Bloch space,
i.e., all Bloch coordinates considered in the following are
nonnegative. Moreover, we are interested in the boundary of
the achievable region, characterized by the maximal sx for a
given sz.

If sz > rz, Eq. (89b) guarantees that Eq. (89a) is satisfied.
A y-z-preserving operation fulfilling Eq. (89b) with equality
is given by the Kraus operators

K1 =
(

a1 0
0 b1

)
, K2 =

(
0 b2

a2 0

)
, (90)

where the parameters ai and bi are chosen as

a1 = cos
θ − ν

2
, a2 = sin

θ − ν

2
, (91a)

b1 = sin
θ + ν

2
, b2 = cos

θ + ν

2
, (91b)

with ν = arctan[rz tan θ ], and parameter θ is in the range
[0, π

2 ]. By varying θ it is possible to attain any value for sz

in the range [rz, 1]. This proves that for sz > rz the boundary
of the achievable region is characterized by Eq. (89b).

For sz � rz Eq. (89a) ensures that Eq. (89b) is fulfilled. The
boundary of the achievable region is then obtained by the y-z-
preserving operation

�[ρ] = (1 − p)ρ + pσxρσx (92)

with p in the range [0, 1/2]. This proves that for sz � rz the
boundary of the achievable region is determined by Eq. (89a).

Equipped with these results, we are now ready to prove
Theorem 2. Since rotations around the y axis correspond to
real unitaries, without loss of generality we can assume that
the initial and the final state have Bloch vectors in the y-z
plane. It is thus enough to prove the statement for

s2
y � r2

y , (93a)

1 − s2
z

s2
y

� 1 − r2
z

r2
y

. (93b)

The proof of the theorem now directly follows from
Lemma 2 by symmetry, exchanging the x and y directions.

In Fig. 1 we show the y-z projection of the accessible region
for three different initial states. The complete region can be
obtained by rotation around the y axis.

C. Approximate imaginarity distillation

As discussed in Sec. II, it is always possible to perform ap-
proximate state transformations, even if neither deterministic
nor stochastic conversion is possible. For an initial state ρ we
are then interested in the maximal fidelity between �[ρ] and
the target state σ , maximized over all real operations �,

F (ρ → σ ) = max
�

{F (�[ρ], σ )}, (94)
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FIG. 1. State transformation via real operations for qubit sys-
tems. The plot shows the y-z projections of accessible states
for initial qubit states with Bloch vectors (0,0.6,0.4) (blue dot),
(0,−0.7, −√

0.51) (green dot), and (0,1,0) (red dot). Note that the
second and third states are pure. The corresponding accessible area
in the y-z plane is shown in blue, green, and red, respectively. The
full accessible area is obtained by rotation around the y axis.

where the fidelity F (ρ, σ ) is defined in Eq. (6). If the target
state is the maximally imaginary state |+̂〉 the corresponding
quantity is called the fidelity of imaginarity [21]:

FI(ρ) = F (ρ → |+̂〉〈+̂|). (95)

The following theorem gives a closed expression for the fi-
delity of imaginarity for any quantum state. This result was
announced in [21], and a complete proof is presented below.

Theorem 3. For any quantum state ρ the fidelity of imagi-
narity is given as

FI(ρ) = 1 + IR(ρ)

2
= 1

2
+ 1

4
||ρ − ρT ||1, (96)

where T denotes transposition and ||M||1 = Tr
√

M†M is the
trace norm.

Proof. From the definition of robustness of imaginarity IR

(see Sec. IV B), we can write ρ as

ρ = [1 + IR(ρ)]δ − IR(ρ)τ, (97)

with some quantum state τ and a real state δ. By applying a
real operation � on both sides we obtain

〈+̂|�(ρ)|+̂〉 = [1 + IR(ρ)]〈+̂|�(δ)|+̂〉
− IR(ρ)〈+̂|�(τ )|+̂〉. (98)

Since � is a real operation, we have �(δ) ∈ R. Applying
Proposition 2 we obtain

〈+̂|�(δ)|+̂〉 � 1
2 , (99)

which proves the bound

〈+̂|�(ρ)|+̂〉 � 1
2 [1 + IR(ρ)]. (100)

We now show that this bound is achievable by a real op-
eration �. If the dimension is even, we define � via the real
Kraus operators

Km = |1〉〈2m| + |0〉〈2m + 1|, m = 0, 1, . . . , d/2 − 1.

(101)
For odd dimension, the Kraus operators Km are defined in the
same way for m � �d/2� − 1, and we further define

K�d/2� = |0〉〈d − 1|. (102)

Let now O be a real orthogonal matrix such that OIm(ρ)OT

is block-diagonal as in Eq. (37). We see that �[ORe(ρ)OT ] is
a real single-qubit state, which by Proposition 2 implies that

〈+̂|�[ORe(ρ)OT ]|+̂〉 = 1
2 . (103)

Moreover, we have

�[OIm(ρ)OT ] =
(�d/2�−1∑

m=0

λm

)
(|1〉〈0| − |0〉〈1|). (104)

The fidelity of the final state with the maximally imaginary
state can now be evaluated as follows:

〈+̂|�[OρOT ]|+̂〉 = 〈+̂|�[ORe(ρ)OT ]|+̂〉
+ i〈+̂|�[OIm(ρ)OT ]|+̂〉

= 1

2
(1 + 2

∑
m

λm). (105)

To complete the proof, note that the robustness of imaginarity
can be expressed as (see Sec. IV B)

IR(ρ) = 1

2
||ρ − ρT ||1 = ||Im(ρ)||1 = 2

∑
m

λm. (106)

Using this result in Eq. (105), we obtain

〈+̂|�[OρOT ]|+̂〉 = 1
2 [1 + IR(ρ)]. (107)

In summary, we have proved that the fidelity 〈+̂|�(ρ)|+̂〉
is upper-bounded by Eq. (100) and that this upper bound is
achievable for any state ρ with a suitably chosen real opera-
tion �. This completes the proof of the theorem. �

The relation between the robustness measure and the
conversion fidelity—as given in Theorem 3—can also be ex-
tended to a general class of resource theories [41].

VI. IMAGINARITY AS A RESOURCE
IN OPTICAL EXPERIMENTS

In this section, we show that imaginarity can be regarded as
a resource in linear optical experiments. We focus on optical
setups with the following assumptions: (1) The quantum infor-
mation is encoded in polarization or path degrees of freedom.
(2) The optical elements we can use are limited to standard
linear optical elements, i.e., half-wave (quarter-wave) plates
and beamsplitters.

Under the above assumptions, real operations can be im-
plemented more economically, compared to general quantum
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FIG. 2. Linear optical implementation of real and general qubit
operations with polarized photons. Green and yellow rectangles rep-
resent unset wave plates, while gray ones represent fixed wave plates
that we do not need to control. Thin strips denote beamsplitters which
can separate the horizontally polarized photons from vertically polar-
ized ones. Round nodes represent orthogonal or unitary operations,
and boxes represent the operations Sj , which have two outcomes.
For general real operations we only need to control half-wave plates,
while for complex ones we have to add quarter-wave plates for
manipulating the imaginary part of the photonic states.

operations. We begin with a simple observation, that imple-
menting a general unitary on photon polarization requires
controlling at least three wave plates (this is due to a qubit
unitary being specified by three parameters), whereas only
one half-wave plate is needed if the unitary has only real
components, e.g., rotations with respect to the y axis. When
restricting the optical elements to half-wave (quarter-wave)
plates, a rotation about the z axis needs two additional quarter-
wave plates compared to a rotation about the y axis. This
observation is the first evidence that the set of real operations
is potentially easier to implement in terms of the number of
optical elements, compared to the set of complex quantum
operations.

We then consider single-qubit measurement with n out-
comes. As illustrated in Fig. 2, any such measurement can
be implemented with 8n − 5 unset wave plates. If n = 2, we
have two Kraus operators K0 and K1 with

K†
1 K1 = 1 − K†

0 K0. (108)

By singular value decomposition, there are unitaries Ui and
Vi such that Kj = UjS jVj , and S j are diagonal matrices with
nonnegative entries. By Eq. (108) we obtain

V †
1 S2

1V1 = V †
0

(
1 − S2

0

)
V0, (109)

which implies that V0 = V1 and S1 = (1 − S2
0 )1/2. In sum-

mary, a general two-outcome measurement can be performed
by applying a unitary V0, followed by a two-outcome
measurement with diagonal Kraus operators S0 and S1, and—
depending on the measurement outcome—completed by a
conditional unitary U0 or U1. A setup realizing this procedure
on photon polarization is shown in Fig. 2. The unitaries V0,
U0, and U1 on the polarization-encoded qubit can be realized

by three wave plates per unitary, while the measurement with
diagonal Kraus operators {S0, S1} can be realized with three
beam displacers and five wave plates, of which two are unset.
This amounts to 11 unset wave plates in total. By using the
same procedure repeatedly, this setup can be extended to n
Kraus operators; see also [42]. For each additional Kraus
operator we need eight unset wave plates, giving 8n − 5 unset
wave plates in total, as claimed.

If all Kraus operators are real, fewer wave plates are
needed. This can be seen from the fact that the singular value
decomposition of each Kj can be done with real Uj and Vj .
Thus, a real measurement with two outcomes can be imple-
mented with five unset wave plates, and each additional real
Kraus operator requires four additional wave plates; see also
Fig. 2. The number 4n − 3 is optimal, since it corresponds
to the number of independent real parameters for n real Kraus
operators. Compared to 8n − 5 unset wave plates for a general
n-outcome measurement via the method presented above, in
the limit n → ∞ we can save approximately half of the optical
elements if we restrict ourselves to real measurements.

We now go one step further and consider implementation
of quantum operations of arbitrary dimension. Note that every
real operation acting on a system of dimension d has a real
dilation [22],

�A
RO[ρA] = TrB

[
OAB

(
ρA ⊗ |0〉〈0|B)

OT
AB

]
, (110)

where OAB is a d3×d3 real orthogonal matrix. Correspond-
ingly, a general quantum operation admits a dilation with a
general d3×d3 unitary matrix. Implementing an m×m unitary
in path degree requires at least m2 − 1 unset wave plates,
corresponding to the number of real parameters of the unitary.
On the other hand, an m×m real orthogonal matrix can be
decomposed into (m2 − m)/2 real orthogonal matrices, each
acting on two levels. This can be proven in the same way
as for unitary matrices; see, e.g., [43, p. 189]. There, an
explicit construction is presented for decomposing an m×m
unitary matrix U into (m2 − m)/2 two-level unitaries. If U
is additionally real, all two-level unitaries constructed in the
proof are also real. Since a real orthogonal two-level matrix
can be implemented with a single wave plate, any real orthog-
onal m×m matrix can be implemented by using (m2 − m)/2
unset wave plates. Thus, implementing a real operation can
be achieved with (d6 − d3)/2 unset wave plates. Instead,
implementing a general quantum operation in the same way
requires at least d6 − 1 unset wave plates. For large d , restrict-
ing ourselves to real operations reduces the number of unset
wave plates by 1/2, compared to the number of wave plates
for a general quantum operations implemented via a unitary
dilation.

In summary, our results show that restricting ourselves to
real operations in optical experiments allows us to reduce the
number of unfixed wave plates by 1/2, in the limit of large
system dimension. Similar results are found for single-qubit
measurements with n outcomes: in the limit n → ∞ restrict-
ing ourselves to real qubit measurements allows us to reduce
the number of unfixed wave plates by 1/2. These results
equip the resource theory of imaginarity with an operational
meaning in optical experiments.
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VII. IMAGINARITY IN LOCAL STATE DISCRIMINATION

We now discuss the role of imaginarity for discrimination
of quantum states. For two mixed states ρAB

1 and ρAB
2 to be

perfectly distinguishable via LOCC, there must exist a POVM
with elements {M1, M2} of the form [44]

Mj =
∑

k

A j,k ⊗ Bj,k (111)

with Hermitian Aj,k and Bj,k , and moreover,

Tr
[
M1ρ

AB
1

] = Tr
[
M2ρ

AB
2

] = 1, (112a)

Tr
[
M1ρ

AB
2

] = Tr
[
M2ρ

AB
1

] = 0. (112b)

As shown in [45] such perfect discrimination is indeed
possible if ρAB

1 and ρAB
2 are pure and orthogonal.

Here, we consider state discrimination via local real op-
erations and classical communication (LRCC) [21]. The set
LRCC is defined in the same way as LOCC, but with the
constraint that both Alice and Bob perform only real opera-
tions locally. Then, for two states ρAB

1 and ρAB
2 to be perfectly

distinguishable via LRCC there must exist a POVM fulfilling
Eqs. (112), with POVM elements of the form (111) and real
symmetric Aj,k and Bj,k .

As we see in the following, perfect discrimination via
LRCC is possible for any pair of pure orthogonal real states.

Proposition 6. Two real orthogonal pure quantum states
|ψ〉AB and |φ〉AB can be perfectly distinguished via local real
operations and classical communication.

Proof. The proof follows similar lines of reasoning as in
Ref. [45]. Any two real pure states can be expanded as

|ψ〉AB =
d−1∑
j=0

| j〉|a j〉, (113a)

|φ〉AB =
d−1∑
j=0

| j〉|b j〉, (113b)

where |a j〉 and |b j〉 are (unnormalized) real states and d = dA

is Alice’s dimension. Without loss of generality we assume
that dA � dB, where dB is Bob’s dimension.

We now consider the matrix C with elements

Cjk = 〈a j |bk〉. (114)

Since |ψ〉AB and |φ〉AB are orthogonal, we have

TrC = 0. (115)

If we apply a real orthogonal matrix O on Alice’s side, the two
states are transformed as

(O ⊗ 1)|ψ〉AB =
d−1∑
k=0

|k〉
d−1∑
j=0

Ok j |a j〉, (116a)

(O ⊗ 1)|φ〉AB =
d−1∑
k=0

|k〉
d−1∑
j=0

Ok j |b j〉. (116b)

If Alice now applies a local von Neumann measurement in
the computational basis, Bob is left with a (possibly unnor-

malized) state of the form

|ãk〉 =
∑

j

Ok j |a j〉 or |b̃k〉 =
∑

j

Ok j |b j〉. (117)

This allows us to define a matrix C̃ as

C̃mn = 〈ãm|b̃n〉 =
∑

kl

Omk〈ak|bl〉Onl =
∑

kl

OmkCkl (O
T )ln,

(118)
so we have C̃ = OCOT .

In the next step we show that there exists a real orthogonal
matrix O such that all diagonal elements of C̃ become 0.
This will complete the proof: if Alice applies O locally and
performs a von Neumann measurement in the computational
basis, Bob will find his system in either state |ã j〉 or state |b̃ j〉.
Bob can distinguish these states perfectly, since

C̃j j = 〈ã j |b̃ j〉 = 0. (119)

Note that for any 2×2 real matrix C, there always exists a
real orthogonal 2×2 matrix O such that the diagonal elements
of OCOT are equal to each other. Assume now that the dimen-
sion of Alice is a power of 2, i.e., dA = 2k . This implies that
C is a 2k×2k real matrix. Our goal is to make all the diagonal
elements of C equal to 0 by applying two-level real orthogonal
rotations. Recalling that the trace of C is 0, our goal can be
achieved by making all the diagonal elements equal.

To this end, we first group all diagonal elements of C into
2k−1 pairs and apply 2k−1 real orthogonal transformations,
each acting on two levels. In this way we can obtain a new
matrix C′ with the property TrC′ = TrC and the diagonal
elements of C′ are pairwise equal. Now consider two pairs
of diagonal elements, e.g.,

C′
00 = C′

11, C′
22 = C′

33. (120)

We can now apply two real orthogonal transformations, one
acting on levels 0 and 2 and the other acting on levels 1
and 3. In this way, with a suitable choice of real orthogonal
transformations, we can obtain a new matrix C′′ with the
properties TrC′′ = TrC and

C′′
00 = C′′

11 = C′′
22 = C′′

33. (121)

Proceeding in this way, we can make all diagonal elements
equal to 0. This completes the proof for the case that the
dimension of Alice’s system is a power of 2.

If the dimension of Alice’s system is not a power of 2, we
can extend the dimension of Alice to be of the form 2k , thus
extending the correlation matrix C with additional rows and
columns having 0 as all entries. All parts of the proof remain
the same, which proves the statement for any dimension of
Alice.

As we discuss in [21], the situation is very different when
mixed states are considered: there exist pairs of mixed real
states ρAB

1 and ρAB
2 which can be distinguished perfectly with

LOCC but which cannot be distinguished via LRCC with any
nonzero probability. We refer to [21] for more details, where
we also report results on experimental state discrimination
with linear optics.
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VIII. CONCLUSION

In this work we have investigated the role of complex num-
bers in quantum mechanics, using the framework of quantum
resource theories. We have discussed imaginarity quantifica-
tion, focusing on the geometric imaginarity and the robustness
of imaginarity, proving that both measures have an operational
meaning for state conversion. We have presented a full solu-
tion for stochastic state conversion via real operation for pure
states and for deterministic state conversion for all states of a
single qubit. We have also found optimal fidelity for approxi-
mate imaginarity distillation in the single-copy regime.

Our results show that imaginarity can be regarded as a
resource in optical experiments: under certain assumptions
commonly used in experiments, realizing a real operation
reduces the number of optical elements by 1/2, compared
to the number of elements for a general quantum operation.
We also discuss the role of imaginarity in local discrimination
of quantum states. The methods presented here are also used
in the companion article [21], where several of the results
have been initially announced. Our work can stimulate new
research on quantum resource theories and is important for
a deeper understanding of the role of complex numbers in
quantum mechanics.
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