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Abstract Recent studies suggest that cells make stochastic choices with respect to
differentiation or division. However, the molecular mechanism underlying such stochasticity is
unknown. We previously proposed that the timing of vertebrate neuronal differentiation is
regulated by molecular oscillations of a transcriptional repressor, HES1, tuned by a post-
transcriptional repressor, miR-9. Here, we computationally model the effects of intrinsic noise on
the Hes1/miR-9 oscillator as a consequence of low molecular numbers of interacting species,
determined experimentally. We report that increased stochasticity spreads the timing of
differentiation in a population, such that initially equivalent cells differentiate over a period of time.
Surprisingly, inherent stochasticity also increases the robustness of the progenitor state and lessens
the impact of unequal, random distribution of molecules at cell division on the temporal spread of
differentiation at the population level. This advantageous use of biological noise contrasts with the
view that noise needs to be counteracted.
DOI: 10.7554/eLife.16118.001

Introduction
The nervous system is a complex organ system with many different cell types. These are generated
by actively dividing progenitor cells in a sequential order during embryogenesis, while progenitor
cells themselves change their character along the way (Götz and Huttner, 2005). In cases where his-
togenesis of neural tissues has been examined, such as the mammalian cortex and the vertebrate
retina, a temporal order has been found such that certain cell types are generated early while others
are generated late (Franco et al., 2012; Bertrand et al., 2002; Boije et al., 2014; Greig et al.,
2013; Franco and Müller, 2013; Goetz et al., 2014; Shen et al., 2006; Gaspard et al., 2008). In
order to understand neural development it is essential to understand how the timing of differentia-
tion is regulated.

The predominant view is that the timing of differentiation is precise and tightly controlled.
Indeed, given that the final developed nervous system is consistently structurally organised, this is an
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intuitive assumption. Therefore, it was surprising that recent experiments based on single-cell line-

age mapping in the zebrafish retina have shown that the timing of differentiation can be a funda-
mentally stochastic process, although the collective behaviour of many progenitors forms a

reproducible retina (He et al., 2012). A similar conclusion was reached in a study where rat retinal
progenitor cells were cultured at single-cell density and constant extracellular environment

(Gomes et al., 2011). In addition to the retina, lineage tracing has also demonstrated that progeni-

tors produce a temporally ordered but variable number of neurons within the mouse neocortex
(Shen et al., 2006; Gaspard et al., 2008) although other studies reported a high degree of deter-

minism in this system (Gao et al., 2014). Nevertheless, inherent stochasticity may be a widespread
phenomenon in differentiation.

Previous models aiming to explain this phenomenon, such as the branching models of population
dynamics (Rué and Martinez Arias, 2015; Klein and Simons, 2011), take into account 3 types of

division: symmetric proliferative, asymmetric and symmetric differentiative. The probabilities of divi-
sion type are either fixed (e.g. in adult tissue homeostasis; reviewed in Simons and Clevers

(Simons and Clevers, 2011)) or change with time (e.g. in developing tissues (Slater et al., 2009)),

but are usually fitted to the data (He et al., 2012; Gomes et al., 2011). Such models are useful in
understanding population dynamics but lack a molecular mechanistic explanation.

At a molecular level, the balance between differentiation and the maintenance of progenitors in
the developing nervous system is regulated by transcriptional repressors such as the Hes gene fam-

ily, including Hes1 and Hes5 (Kageyama et al., 2007, 2008). When Hes genes are absent, neural
progenitors prematurely differentiate and cause a wide range of defects in brain formation

(Hatakeyama et al., 2004; Nakamura et al., 2000). Conversely, overexpression of Hes genes leads
to inhibition of neurogenesis and over-maintenance of neural progenitors (Ishibashi et al., 1995).

The development of live-cell imaging with unstable Luciferase (LUC) reporters has shown that the
dynamics of Hes1 gene expression changes during neural development (Imayoshi et al., 2013).

Hes1 is expressed in an oscillatory manner with a period of around 2 hr in neural progenitors
(Imayoshi et al., 2013; Shimojo et al., 2008) but is expressed at a low steady state in differentiated

neurons (Imayoshi et al., 2013; Sasai et al., 1992). Based on expression dynamics and the func-

tional studies mentioned above, it has been proposed that a Hes1 oscillatory state is necessary for
the maintenance of progenitors, while low, non-oscillatory levels are associated with a transition to

neuronal differentiation (Kageyama et al., 2008). The most direct evidence for the functional impor-
tance of oscillatory dynamics in general, comes from optogenetics studies of the Hes1 targets Ascl1

(Imayoshi et al., 2013) and Dll1 (Shimojo et al., 2016). It was shown that light-induced oscillatory

expression of Ascl1 increased the proportion of dividing cells in Ascl1-null neural progenitors,
whereas sustained Ascl1 expression increased the efficiency of neuronal differentiation

(Imayoshi et al., 2013). It has similarly been shown that light-induced sustained expression of the
Delta ligand Dll1 leads to higher levels of the cell cycle inhibitor p21 than oscillatory expression

(Shimojo et al., 2016). Together, these suggested that the expression dynamics of Ascl1 and Dll1

encode information for a choice between proliferation and differentiation within neural progenitors.
The hypothesis that gene expression dynamics change as cells make cell-state transitions in develop-

ment is consistent with previous studies in theoretical biology (Furusawa and Kaneko, 2012;
Huang, 2011; Garcia-Ojalvo and Martinez Arias, 2012; Rué and Martinez Arias, 2015). In these

studies, the interactions of multiple genes in regulatory networks can lead to the emergence of tran-

sient stem cell dynamics, which evolve to an attracting stable configuration of gene expression corre-
sponding to distinct cell types.

Experimental and theoretical work has shown that Hes1 oscillates in neural progenitors possibly
due to a combination of delayed negative self-repression and relatively fast degradation of Hes1

mRNA and HES1 protein, previously measured in fibroblasts (Jensen et al., 2003; Monk, 2003;
Hirata et al., 2002; Momiji and Monk, 2008). Until recently it was not understood how oscillations

of Hes1 could be terminated and the timing of differentiation controlled. Recent experimental
results have shown that Hes1 is a primary target of the microRNA miR-9, and HES1 also periodically

represses the transcription of miR-9, thus forming a double negative feedback loop (Bonev et al.,

2012). However, mature miR-9 is very stable and accumulates over time in a gradual manner. It has
been proposed that accumulating levels of miR-9 beyond a certain level can cause oscillations of

Hes1 to cease, leading to differentiation (Bonev et al., 2012; Tan et al., 2012). Experimentally it has
been shown that Hes1 is a target of miR-9, that depleting miR-9 prevents or delays differentiation
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and that Hes1 changes dynamics of expression as cells differentiate (Bonev et al., 2012;
Bonev et al., 2011; Imayoshi et al., 2013; Tan et al., 2012; Coolen et al., 2012). However, a theo-

retical approach unifying these phenomena was lacking.
The Hes1/miR-9 interaction has been mathematically modelled using deterministic delay differen-

tial equations (Goodfellow et al., 2014). This showed that interactions within the Hes1/miR-9 net-
work can lead to the emergence of bistability (alternative cell fates) and Hopf bifurcations
(separating stable states from an oscillatory regime). Computationally it was shown that indeed,

accumulation of miR-9 can lead to a transition from oscillatory to stable expression of HES1 protein
and that the timing of this transition is controlled by the parameters and the initial conditions of the
model. Although this mathematical model provided a useful starting point, a deterministic system is

not able to explain the stochastic nature of the differentiation process that has been reported in
vivo.

Here, we show that high cell-to-cell variability exists in the abundance of Hes1 mRNA and protein
in undifferentiated neural cells (progenitor and stem cells) as evidenced by quantitative single-mole-
cule Fluorescent in Situ Hybridisation (smFISH) and Fluorescence Correlation Spectroscopy (FCS),

respectively. Furthermore, the copy number of Hes1 mRNA, protein and miR-9 per cell is low,
(determined by smFISH, FCS and stem loop qRT-PCR, respectively) supporting the inclusion of ’finite
number’ intrinsic stochasticity in the computational model of the Hes1/miR-9 interaction. Oscillations

produced by a stochastic model match single-cell imaging data well and lead to systematic changes
in the dynamics and output of this network. In the deterministic model, equivalent cells (i.e clonal or
isogenic) that start from the same initial conditions terminate oscillations i.e. ’differentiate’ at exactly

the same time. However, in the stochastic framework the time-to-differentiation of such cells
becomes distributed, with the spread of the distribution inversely related to the absolute number of
interacting molecules. Due to the ability of intrinsic noise to induce oscillatory dynamics, Hes1 oscil-

lations are maintained for a greater range of parameters than in the deterministic system, which can
be interpreted as increased robustness of the progenitor state in the stochastic model. Computa-

tionally, the average time of differentiation can be shifted by varying the molecular copy number or
by varying the initial miR-9 levels. This supports the idea that the number of interacting molecules
within a cell is an important parameter that can be tuned to control the onset of differentiation. We

validate predictions of our stochastic model by measuring the time distribution of differentiation
when miR-9 is added to the system. Finally, we show that the stochastic network is able to better
’absorb’ noise attributable to unequal distribution of some molecular components at division, main-

taining its output as if the divisions were symmetric and thus giving a robust outcome at a popula-
tion level.

Together, our work demonstrates that randomness originating in the finite copy number within
transcriptional programmes provides a theoretical framework to understand the heterogeneity
observed in single-cell time series of neural stem (NS) cells and its consequences for neural develop-

ment. Developing systems may exploit stochasticity in gene regulatory networks to stagger differen-
tiation time, cope with noise introduced by unequal inheritance of components and safeguard the
progenitor state.

Results

Developing a stochastic model for the Hes1/miR-9 oscillator
Previous analysis focussed on a model of the Hes1/miR-9 network using delay differential equations
(Goodfellow et al., 2014), which are themselves an extension of earlier models by
Jensen et al. (2003) and Monk (2003); Momiji and Monk (2008), as outlined in the Materials and

methods.
A deterministic system relies on differential equations, making an assumption that variables such

as mRNA and protein can take a continuous range. This is very familiar to the biologist and such

equations are commonly used for modelling biological processes (Alon, 2007). However, in reality,
biochemical reactions are the result of random encounters between discrete numbers of molecules,

and some of these molecules may be present at low numbers. The finite number of molecules inter-
acting within the system leads to inherent randomness known as intrinsic stochasticity (Swain et al.,
2002).
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Thus, while the units of the deterministic differential equations are concentrations, a stochastic
model requires a description in terms of discrete numbers of molecules. To convert from concentra-

tion into the number of molecules we use the system size parameter, !, which can be seen as a mea-

sure of the volume of the biological system (Kaern et al., 2005; Elf and Ehrenberg, 2003).

Concentrations and copy numbers (i.e. number of molecules) are then related via

Copy number¼!"Concentration (1)

The copy number can increase when the system size (volume) increases and the concentration is
constant, or when the system size (volume) is constant and the concentration increases.

In order to investigate the effects of intrinsic noise on the dynamics of differentiation we reformu-
lated the Hes1/miR-9 model in a stochastic framework, which describes the system in terms of its

underlying microscopic reactions, namely the production and degradation of Hes1 mRNA, HES1

protein and microRNA miR-9. We use three complementary stochastic modelling approaches: simu-

lation of the Chemical Master Equation (CME) with the Stochastic Simulation Algorithm with delay

(dSSA), simulation of the Chemical Langevin Equation (CLE) and the Linear Noise Approximation

(LNA) as described fully in the Materials and methods.
Briefly, the CME uses the network of interactions and their associated rates to formulate how

each reaction acts to increase or decrease the likelihood of transitioning to a new state. For exam-

ple, if the number of protein molecules is very high, the next most likely reaction may be a protein

degradation event. Other reactions can still be triggered, however, and this leads to the heteroge-

neity over time.
Single realisations of the CME were simulated computationally using Gillespie’s Stochastic Simula-

tion Algorithm with delay (dSSA) (Gillespie, 1977; Anderson, 2007; Cai, 2007) which is a statisti-

cally exact solution of the master equation but can be computationally expensive, particularly at

high system size (!) because every reaction is simulated. Therefore, to investigate different parame-

ters and to understand the behaviour of a population of cells, both of which require a large number

of repeats, we used methods that are more computationally efficient such as Chemical Langevin

Equations (CLE) and the Linear Noise Approximation (LNA), which add a random fluctuating term by

bundling reactions together (Gillespie, 2000; Grima et al., 2011). The Linear Noise Approximation

(LNA) is a (semi-)analytical approach that does not require multiple simulations and is hence the fast-

est of all the methods for scanning parameter space. However, it can be less accurate at low system

size (Grima, 2012).

A ’finite number’ stochastically simulated network is justified by
experimental data
In our conceptual framework, the timing of differentiation corresponds to the time required to reach

a low stable HES1 state in the model, brought about by an increase in miR-9 over time

(Goodfellow et al., 2014). The increase of miR-9 over time in cultured neural progenitor cells has

been shown before (Bonev et al., 2012). Here, using a miR-9 sensor we show that the activity of

miR-9 increases specifically in neuronally differentiated cells (Figure 1—figure supplement 1).
In order to justify the finite-number approach in our modelling we used smFISH to determine the

absolute copy number of Hes1 mRNA in C17.2 neural progenitor cells and neural stem cells (NS)

expressing GFP from the Mapt (tau) locus (Tau-GFP NS cells). Multiple fluorescent probes were

designed to target the Hes1 transcript (Figure 1A) and the accuracy of smFISH for absolute quanti-

tation was validated in Figure 1—figure supplement 2. The Hes1 mRNA copy number was highly

variable between individual cells grown under identical conditions and also between cell lines

(Figure 1B and D), but generally quite low. In C17.2 neural progenitor cells, we detected an average

of 72 copies Hes1 mRNA/cell by smFISH (Figure 1C), and an average of 88 copies by qRT-PCR (data

not shown), confirming the result. In Tau-GFP NS cells grown under proliferative conditions (GFP

negative cells; Figure 1D and E), the average was only 11 copies of Hes1 mRNA/cell by smFISH.

The long-tail distribution of mRNA molecules in NS cells may be indicative of slow switching

between transcriptionally active and inactive promoter states (Munsky et al., 2012). Other studies

using smFISH have reported numbers of mRNA molecules ranging from a few copies to

103 (Neuert et al., 2013; Bahar Halpern et al., 2015; Battich et al., 2015). A few spontaneously dif-

ferentiated cells, identified by high-intensity GFP expression (Figure 1—figure supplement 3), were
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Figure 1. Absolute quantification of mRNA copy number and active transcription sites. (A) Schematic showing the mouse Hes1 primary transcript, with

29 smFISH probes targeting exonic sequence (red) and 38 smFISH probes targeting intronic sequence (blue). (B) smFISH for Hes1 mRNA (white) in

C17.2 cells; nuclei are stained with DAPI (blue). (C) Quantification of Hes1 mRNA number in C17.2 cells (n=103). (D) smFISH for Hes1 mRNA (white) in

Tau-GFP NS cells; nuclei are stained with DAPI (blue), and GFP protein is stained with rabbit anti-GFP > anti-rabbit Alexa Fluor 488 (green). The field

Figure 1 continued on next page
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mostly negative for Hes1 mRNA transcript, indicating that the gene is switched off upon differentia-

tion (average 0.8 copies per cell) (Figure 1D and F). This was confirmed by using an intronic probe

for Hes1 which showed transcription in GFP negative cells (Figure 1H, corresponding exonic shown

in G, I) but no transcription in GFP positive neuronally differentiated cells (Figure 1J).
For mature miR-9, we used a stem-loop Taqman qRT-PCR and synthetic miR-9 (Figure 1—figure

supplement 4) to estimate the absolute copy number of endogenous miR-9, expressed as a popula-

tion average copy number per cell in C17.2 cells. Mature miR-9 was present in an average copy num-

ber of 1100 ± 20 (S.E.M) molecules per cell, significantly lower than other reported microRNAs and

surprisingly low considering the hundreds of miR-9 targets (Bonev et al., 2011) (Figure 1—figure

supplement 5).
Finally, to quantify the abundance of endogenous HES1 protein per nucleus in NS cells we gener-

ated two stable HES1 reporter cell-lines: VENUS:HES1 driven either by the constitutive UbC pro-

moter or the 2.7 kb Hes1 promoter (Figure 2A,B). FCS was used to count the number of VENUS:

HES1 fluorophores (see Experimental methods). This gave an estimate of 3660 ± 120 (S.E.M) mole-

cules of VENUS:HES1 per nucleus when driven by the UbC promoter (Figure 2D and Figure 2—fig-

ure supplement 1). We next used western blotting to find the ratio of expression between VENUS:

HES1 and endogenous HES1 (Figure 2C) and subsequently normalised to the percentage of VENUS:

HES1 positive cells in the population. This gave variable ratios between experiments and showed an

approximate ratio of 1:0.8 ectopic to endogenous HES1. This suggests an average abundance of

endogenous HES1 of 2930 molecules per nucleus which is significantly lower than the median pro-

tein abundance of 50,000 copies per cell previously reported from global quantification studies

(Schwanhausser et al., 2011). Furthermore, FCS quantification of VENUS:HES1 driven by the Hes1

promoter gave a similar value, that is 2450 ± 190 (S.E.M) molecules per nucleus (Figure 2D). These

complementary approaches highlight the low average abundance and high variability of HES1 mole-

cules in the cell.
We then investigated whether a stochastic or deterministic simulation of the Hes1/miR-9 interac-

tion model is a better fit to the experimental data of HES1 protein and mRNA dynamics at the

Figure 1 continued

contains one GFP positive cell, as determined by GFP immunofluorescence intensity analysis (Figure 1—figure supplement 3). (E) Quantification of

Hes1 mRNA number in GFP negative NS cells (n=253). (F) Quantification of Hes1 mRNA number in GFP positive neuronal differentiated NS cells (n=49).

(G, H) Double smFISH for Hes1 mRNA (G) and Hes1 intron (H) in the same Tau-GFP NS cells; arrow indicates an active transcription site, marked by

colocalised exonic and intronic Hes1 smFISH signals in the nucleus. (I, J) Quantification of Hes1 active transcription sites in GFP negative NS cells (I,

n=253) and in GFP positive neuronal differentiated NS cells (J, n=49). Source data contained in Figure 1—source data 1.

DOI: 10.7554/eLife.16118.002

The following source data and figure supplements are available for figure 1:

Source data 1. mRNA counts by smFISH in C17.2 and NS cells.

DOI: 10.7554/eLife.16118.003

Source data 2. Quantification of miR-9 sensor activity.

DOI: 10.7554/eLife.16118.004

Source data 3. Validation of smFISH accuracy.

DOI: 10.7554/eLife.16118.005

Source data 4. Quantification of Tau-GFP signal intensity.

DOI: 10.7554/eLife.16118.006

Source data 5. Quantification of miR-9 copy number in C17.2 cells by qRT-PCR.

DOI: 10.7554/eLife.16118.007

Figure supplement 1. Quantification of miR-9 sensor activity in neural progenitor cells versus Tuj1 positive neurons.

DOI: 10.7554/eLife.16118.008

Figure supplement 2. Validation of smFISH accuracy.

DOI: 10.7554/eLife.16118.009

Figure supplement 3. Quantification of GFP signal intensity in Tau-GFP NS cells.

DOI: 10.7554/eLife.16118.010

Figure supplement 4. Method to quantify miR-9 copy number.

DOI: 10.7554/eLife.16118.011

Figure supplement 5. Quantification of miR-9 copy number.

DOI: 10.7554/eLife.16118.012
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single-cell and population level. We simulated the model of the Hes1/miR-9 network using the

default parameters of Goodfellow et al. (Goodfellow et al., 2014) (parameter set 1 – Appendix 1—

table 1) in both a deterministic and stochastic framework (using the dSSA algorithm). While oscilla-

tions in the deterministic model remain coherent (Figure 3B), the stochastic model shows variability

in its dynamics and period (Figure 3C). Single-cell luciferase imaging of primary NS cells containing

a Luciferase2-HES1 (LUC2:HES1) fusion BAC reporter (Imayoshi et al., 2013) shows a high degree

of noise evident as peak-to-peak variability in amplitude and period. This was also evident in our
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Figure 2. Quantifying HES1 protein number with FCS. Schematic and image of stably infected NS-E cells

containing (A) UbC-VENUS:HES1 reporter construct and (B) 2.7 kb-Hes1pr-VENUS:HES1 reporter construct.

VENUS:HES1 signal in yellow. Scale bars show 30 mm. (C) HES1 western blot with LAMIN B1 loading control.

Nuclear lysates of NS-E cells stably infected with UbC-VENUS:HES1 or control NS-E cells. Both cell-lines treated

with DMSO or 10 mM MG132 proteasome inhibitor for 3 hr. MG132 treated cells show increased HES1 and

VENUS:HES1. (D) FCS quantification of VENUS:HES1 molecules per nucleus in stable UbC-VENUS:HES1 and

2.7 kb-Hes1pr-VENUS:HES1 reporter NS-E cell-lines. 236 cells (mean 3660 ± 120 (S.E.M) molecules) and 98 cells

(mean 2450 ± 190 (S.E.M) molecules) were analysed in 4 and 2 experiments respectively. Error bars show S.D. FCS

data and Western blots at different exposures are contained in Figure 2—source data 1.

DOI: 10.7554/eLife.16118.013

The following source data and figure supplement are available for figure 2:

Source data 1. FCS data and Western blots.

DOI: 10.7554/eLife.16118.014

Figure supplement 1. Fluorescence Correlation Spectroscopy technique.

DOI: 10.7554/eLife.16118.015
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experiments (Figure 3A and Figure 3—figure supplement 1 and 2 for images and traces of multi-

ple cells). At the population level, analysed by qRT-PCR of serum synchronised C17.2 cells, oscilla-

tions in Hes1 mRNA quickly dampen, presumably because cells drift out of synchrony (Figure 3D).

The average expression of a population of 2000 stochastic simulations using the dSSA shows faster
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Figure 3. Stochastic simulations of HES1 oscillations match the experimental data better. (A) Time series of LUC2:

HES1 reporter protein expression in a single primary NS cell determined by bioluminescence imaging. (B)
Deterministic simulation of Hes1/miR-9 network at a single-cell level, plot shows HES1 protein concentration as a

function of time. (C) Stochastic simulation of Hes1/miR-9 network with the dSSA at a single cell level. (D) q-PCR
quantification of endogenous Hes1 mRNA in C17.2 cells at the population level following serum synchronization.

Error bars show S.E.M of 2 technical replicates of 2 biological experiments. (E) Population level deterministic

simulation of Hes1/miR-9 network through averaging 2000 single-cells, with Hes1 mRNA shown as a function of

time. (F) Population level stochastic simulation of Hes1/miR-9 network with the dSSA and averaging over 2000

cells, with Hes1 mRNA shown as a function of time. All simulations performed with parameter set 1 (Appendix 1—

table 1) with system size ! = 1 and initial conditions m(0) = p(0) = r(0) = 0. Note that the computational

simulations are less damped than the experimental data, presumably because other sources of variability in

experimental data lead to greater damping. MATLAB code and experimental data contained in Figure 3—source

data1.

DOI: 10.7554/eLife.16118.016

The following source data and figure supplements are available for figure 3:

Source data 1. MATLAB code to simulate the Hes1/miR-9 network with a deterministic or stochastic model (with

dSSA).

DOI: 10.7554/eLife.16118.017

Source data 2. Multiple time series examples of single-cell experimental data.

DOI: 10.7554/eLife.16118.018

Figure supplement 1. Bioluminescence images from a single primary LUC2:HES1 NS cell cultured in proliferative

conditions.

DOI: 10.7554/eLife.16118.019

Figure supplement 2. Multiple single-cell time series of LUC2:HES1 reporter protein expression in primary NS

cells determined by bioluminescence imaging.

DOI: 10.7554/eLife.16118.020
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dampening (Figure 3F) than deterministic simulations (Figure 3E). Thus, the stochastic simulation

matches the experimental data better, both at the single-cell and the population level.

Stochasticity spreads the timing of differentiation
By measuring the time taken to reach a low HES1 state in multiple simulations we can describe the

distribution of timing events expected in a population of cells. The contribution of stochasticity was

investigated by varying the system size parameter !, which changes the number of molecules in the

system. All analysis was performed using parameters for which the amplitude of oscillations is large

and the transition to the low HES1 state is very clear, (parameter set 2 – Appendix 1—table 1).

Once the HES1 protein expression reaches a low state we observed that it never again exceeds a

low threshold of 20x!. We therefore defined ’differentiation’ as the time taken for HES1 protein to

decrease below this threshold.
In deterministic simulations, all cells that start with the same parameters and conditions differenti-

ate at the same time. At a high system size (!=50), corresponding to high molecule number

(mRNA~500; protein and miR-9~30,000), there is low variability in the stochastic dynamics and oscil-

lations appear regular (Figure 4A). The time taken to reach the low HES1 protein threshold was cal-

culated for 2000 simulations using the dSSA, and the distribution of times to reach the low HES1

state is narrow for !=50 (Figure 4B), approaching the deterministic solution.
As the system size is decreased to !=5 (mRNA~50; protein and miR-9~3000) and then further to

!=1 (mRNA~10; protein and miR-9~600) molecular fluctuations cause increasingly varying amplitude

and period of HES1 oscillations within each simulation (Figures 4D and G, respectively). At the same

time, the distribution in the timing of differentiation of 2000 independent simulations becomes

increasingly broad as the system size decreases (Figures 4E and H). Similar results were obtained

with the CLE (Figures 4C-I). We conclude that the greater random molecular fluctuations caused by

decreased molecular copy number acts to increase the uncertainty in the timing to reach a low HES1

protein state in each cell, such that differentiation events become distributed in the population over

a longer period of time.

Stochasticity shifts the average onset of differentiation
When we reduced the system size we unexpectedly found that the average of the distribution also

became gradually shifted towards earlier times (e.g. compare Figure 4B with Figure 4E and H,

where scaling of mean with system size shown in Figure 4—figure supplement 1). This shift indi-

cates that stochasticity also causes a systematic change in timing, whereby the low HES1 state is

reached on average earlier at low system sizes, even though the parameters of the model remain

exactly the same. The origin of the systematic change in timing can be understood by considering

how the production of miR-9 changes in the presence of stochasticity.
Transcription of miR-9 is repressed by HES1 protein, and consequently the production of miR-9

(r) increases when HES1 protein levels are low, assuming activation in the absence of repression. The

production of miR-9 is therefore intrinsically linked to HES1 protein, and stochastic variability in

HES1 protein causes stochasticity in the production of miR-9 (Figure 5A, miR-9 production is blue

line). As the repression of miR-9 transcription by HES1 protein is modelled as a nonlinear Hill-type

function, the higher incidence of low HES1 troughs at lower system sizes gives rise to large spikes of

miR-9 production (compare blue line in Figure 5A with Figure 5B). In turn, this leads to a faster

increase of the stable mature miR-9 (red line in Figure 5A and B) and a reduction in the average

time to differentiation.
However, the systematic change in timing caused by stochasticity is not guaranteed to speed up

the system. Instead of low troughs in HES1 causing spikes in miR-9 production, in an alternative

parameter set the peaks in protein could cause a disproportionate repression in miR-9 production.

This occurs, for example, when the transcriptional repression threshold of miR-9 production is

roughly twice that of the Hes1 promoter (p1 = 750), as shown in Figure 5C. In this scenario the sys-

tematic effect of stochasticity on timing is reversed and the low system size simulations reach the

low HES1 state at a later time. Note that the relative effect on timing is smaller, but this may be

expected as HES1 is only weakly repressing miR-9 transcription for this parameter setting.
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Increased miR-9 concentration shifts timing and reduces the spread of
differentiation
The concentration of miR-9 is a key driver of the timing to differentiation of a single cell (single simu-

lation) in the deterministic model (Goodfellow et al., 2014). We therefore tested the effect of alter-

ing the concentration of this key component in the stochastic model and in a population-level

simulation.
In the stochastic model increasing the amount of miR-9 brought forward and reduced the spread

of time to differentiation events in a simulated population (Figure 6A–C). To experimentally validate

this theoretical finding we measured the timing and spread of differentiation in a population of

C17.2 and murine Tau-GFP NS cells transfected with miR-9 mimic. Increasing miR-9 in C17.2 neural

progenitor cells increased the number of Tuj1-positive neurons earlier than in control cultures after
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Figure 4. The distribution of time-to-differentiation widens at low system sizes. (A, D, G) Examples of stochastic simulations using the dSSA at !=50, 5

and 1, respectively. Blue, mRNA; green, protein; red, miR-9. (B, E, H) The distribution of times to reach the low HES1 protein state of 2000 simulations

using the dSSA. (C, F, I) The distribution of times to reach the low HES1 protein state of 2000 simulations using the CLE. Note that even at low system

size, the CLE is in excellent agreement with the Gillespie dSSA, which is consistent with previous studies showing that the CLE can be highly accurate

when reactions only involve the creation or degradation of one species and act to either increase or decrease the molecule number by one

(Grima et al., 2011) and confirms the results. All simulations performed with parameter set 2 (Appendix 1—table 1) and initial conditions m(0) = 20x!,

p(0) = 400x! and r(0) = 0. MATLAB code contained in Figure 4—source data 1.

DOI: 10.7554/eLife.16118.021

The following source data and figure supplement are available for figure 4:

Source data 1. MATLAB code for measuring time to differentiation and systematic shift in mean.

DOI: 10.7554/eLife.16118.022

Figure supplement 1. The mean of the time-to-differentiate as a function of the system size.

DOI: 10.7554/eLife.16118.023
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Figure 5. Stochasticity causes systematic changes to the mean time-to-differentiation. The time course of HES1

protein and miR-9 expression, compared with the production of miR-9 at a system size of (A) !=5 or (B) !=1 and

simulated with the CLE. Green, protein; red, miR-9; blue, production of miR-9. All simulations performed with

parameter set 2 (Appendix 1—table 1) and initial conditions m(0) = 20x!, p(0) = 400x! and r(0) = 0. (C) The
distribution of time to reach the low HES1 protein state when p1 = 700, ar = 0.25. Black, !=50; red, !=5, blue, ! =

1. Note that here differentiation is defined to reach a miR-9 high state (r>170), as the transition to the low protein

state is much less well defined. MATLAB code contained in Figure 5—source data 1.

DOI: 10.7554/eLife.16118.024

The following source data is available for figure 5:

Source data 1. MATLAB code to simulate Hes1/miR-9 network using the CLE with tracked miR-9 production and

noise-induced delayed differentiation.

DOI: 10.7554/eLife.16118.025
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several days, without affecting the total cell number (Figure 6—figure supplement 1). The shorter

time to differentiate was confirmed by FACS analysis of Tau-GFP NS cells treated again with miR-9

mimic (Figure 6—figure supplement 2). Transfecting the C17.2 cells with a control mimic and mea-

suring the number of Tuj1-positive neuronal cells showed a broad spread in the timing of differentia-

tion (standard deviation = 48 hr, Figure 6D), as expected from a stochastic process. When cells

were transfected with 50 nM or 100 nM of miR-9 mimic the average time to differentiation
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Figure 6. The spread of time-to-differentiation decreases in both the computational model and experiments with

increased initial miR-9. (A, B, C) The distribution of times to reach the low HES1 state of 3000 simulations using

initial conditions of miR-9 r(0) = 0, 40 and 80, respectively. The initial conditions of mRNA and protein were m(0) =

20x!, p(0) = 400x!. All simulations performed with parameter set 2 (Appendix 1—table 1) with system size ! = 1

and using the CLE. (D, E, F) Newly differentiated Tuj1 positive C17.2 cells compared to previous time point as a

percentage of the population. Cells were transfected with 100 nM control mimic or 50 nM and 100 nM miR-9

mimic, respectively. Cells were cultured in serum-free differentiation conditions for the time shown. 5 images

analysed per condition in at least 2 experiments. MATLAB code and experimental data contained in Figure 6—

source data 1.

DOI: 10.7554/eLife.16118.026

The following source data and figure supplements are available for figure 6:

Source data 1. MATLAB code to simulate timing to differentiation with different initial conditions of miR-9.

DOI: 10.7554/eLife.16118.027

Source data 2. Data for the speed up of differentiation in C17.2 cells with added miR-9.

DOI: 10.7554/eLife.16118.028

Source data 3. Data for the speed up of differentiation in NS cells measured with FACS.

DOI: 10.7554/eLife.16118.029

Figure supplement 1. Increased miR-9 shifts timing of differentiation earlier in C17.2 neural progenitor cells.

DOI: 10.7554/eLife.16118.030

Figure supplement 2. Increased miR-9 shifts timing of differentiation earlier in NS cells.

DOI: 10.7554/eLife.16118.031
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decreased and the spread became narrower in a miR-9 initial concentration dependent way (stan-

dard deviation = 24 hr and 17 hr respectively, Figure 6E and F). Thus, both computational predic-

tion and experimental validation suggest that the initial concentration of a single species, miR-9, is

sufficient to change the variance in the time to differentiation.

Stochasticity increases the robustness of the progenitor state
The progenitor state needs to be robust to avoid premature depletion of progenitors during the

lengthy course of development. In order to investigate the robustness of the Hes1/miR-9 regulatory

network we compared the termination of HES1 oscillations in stochastic and deterministic frame-

works. This comparison was carried out systematically in the space of the parameters r1 and m1 using

the linear noise approximation (LNA) (see Appendix for details). These control how much miR-9 is

required to repress Hes1 mRNA translation by half, and how nonlinear (sigmoidal) the translational

repression is as a function of miR-9. We have previously shown that translational repression of Hes1

mRNA by miR-9 is particularly important in terminating the Hes1 oscillator with a low HES1 protein

level (Goodfellow et al., 2014).
Different behaviours between the deterministic and the stochastic model are shown in this param-

eter space (Figures 7A and B). In the first region, where translational repression is highly nonlinear

(high m1) and translational repression strength is low (high amount of miR-9 required; high r1), miR-9

never accumulates to the levels required to terminate oscillations (Figure 7A area 1). As a result,

deterministic simulations in this parameter region show self-sustained limit cycle oscillations (m1 =

3.5, r1 = 900) (Figure 7C). The equivalent stochastic simulations using the dSSA also display sus-

tained periodic behaviour (Figure 7D). This shows that when the translational repressive effect of

miR-9 is weak, oscillations are not terminated in either deterministic or stochastic settings.
In the second region, (Area 2 in the deterministic model; Figure 7A), defined by highly nonlinear

translational repression (high m1) and high translational repression strength (low amount of miR-9

required to repress translation; low r1), both deterministic and stochastic models produce HES1 pro-

tein levels that decrease and reach a steady state (Figure 7E and F, respectively). The power spec-

trum of the stochastic simulations at m1 = 3.5, r1 = 600 shows no peak, and hence the coherence

(defined in Materials and methods, Figure 7—figure supplement 1) is zero (Figure 7—figure sup-

plement 2A) The resulting behaviour of such a process is aperiodic (Figure 7—figure supplement

2B); therefore even though HES1 protein still shows some fluctuations (Figure 7F), the lack of peri-

odicity allows us to conclude that oscillations are terminated in the stochastic setting. Thus, in this

area oscillations are terminated in both models.
Of particular interest is the third region (Area 3 in the stochastic model; Figure 7B), which is char-

acterised by less nonlinear repression (low m1) and low translational repression (i.e. high amount of

miR-9 to repress translation by half, high r1). In this area of parameter space the periodic behaviour

is distinct between the deterministic and stochastic framework. The deterministic solution in this

regime exhibits damped protein oscillations that eventually reach a steady state (Figure 7G). In con-

trast, the time series of a stochastic simulation using the dSSA at this parameter configuration shows

that even though miR-9 accumulates over time, it is unable to terminate protein oscillations

(Figure 7H). When the system oscillates in the stochastic regime (m1 = 1.5, r1 = 600), there is a well-

defined peak in the power spectrum (Figure 7—figure supplement 2C). The peak at 0.04 min#1 cor-

responds to a period of 160 min in the time series (Figure 7—figure supplement 2D). Thus, this

region represents an expansion of the range of parameters in which HES1 protein oscillates.
We propose that stochasticity has made the oscillatory state more robust to an increase in miR-9

in the sense that the stochastic HES1 oscillator continues to operate under conditions (i.e. parameter

values) where the deterministic equivalent will have stopped. It is still possible for the accumulation

of miR-9 to terminate HES1 oscillations in the stochastic model but the parameter space in which

this happens is reduced.

Robustness of timing to perturbations from asymmetric inheritance at
cell division
Having seen that stochastic oscillations are inherently more robust in that they are observed for an

increased parameter space, we also tested whether they would show increased robustness to exter-

nal perturbations. Such perturbations can arise by the unequal distribution of molecules during cell
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Figure 7. Stochasticity increases the parameter space where HES1 oscillates. (A) The areas of HES1 protein oscillations in the deterministic system, as a

function of translation repression Hill co-efficient (m1) and translation repression threshold (r1). (B) The areas of HES1 protein oscillations in the

stochastic system at the steady state as calculated by the LNA. The colour scale represents the coherence of the stochastic oscillations. (C, E, G)
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Protein; red, miR-9. (D, F, H) Stochastic simulations (dSSA) of the system for point 1 (m1 = 3.5, r1 = 900), point 2 (m1 = 3.5, r1 = 600) and point 3 (m1 =

1.5, r1 = 600), respectively. All simulations performed with parameter set 1 (Appendix 1—table 1) and initial conditions m(0) = 20x!, p(0) = 400x! and r

(0) = 0. MATLAB code contained in Figure 4—source data 1.

DOI: 10.7554/eLife.16118.032

The following source data and figure supplements are available for figure 7:

Source data 1. MATLAB code to scan parameters for deterministic and stochastic oscillations.

DOI: 10.7554/eLife.16118.033

Source data 2. MATLAB code to generate power spectra of examples.

DOI: 10.7554/eLife.16118.034

Figure supplement 1. Coherence of a power spectrum.

DOI: 10.7554/eLife.16118.035

Figure supplement 2. Random fluctuations are distinct from stochastic oscillations.

DOI: 10.7554/eLife.16118.036
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division and can be modelled by changing the initial conditions of the simulations. We consider two

models of cell division: one where molecular constituents are distributed equally between daughter

cells (and hence initial conditions are the same at 50% of the parent cell) and another where mole-

cules are randomly inherited.
First, we investigated how Hes1 mRNA is actually partitioned in NS cells that are undergoing fate

symmetric divisions (i.e. grown under proliferative divisions). Very few of these divisions partitioned

Hes1 mRNA equally and some showed a highly asymmetric distribution (Figure 8A–D). The majority

of cell divisions (36/51) were mostly consistent with a binomial mode of division (p-value>0.05, bino-

mial distribution with Bonferroni multiple testing adjusted p-value), with a few outliers. A binomial

distribution would be expected if each mRNA molecule is partitioned independently into the two

daughter cells and where the probability of inheriting an mRNA is equal to the ratio of the cell areas

of the daughter cells. Previous studies in bacteria have also shown that partitioning is approximately

binomial (Golding et al., 2005).
Using the binomial distribution we then calculated the impact of partitioning noise into the per-

formance of the HES1 oscillator under deterministic and stochastic conditions. To generate initial

DAPI
Hes1

Aurora-B kinase

ratio = 1.2 ratio = 2.4

ratio = 11.3

C D

10um

10um
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Figure 8. Hes1 mRNA is inherited unequally at cell division. (A, B, C) smFISH with an exonic Hes1 probe showing

asymmetry in Hes1 mRNA number (white) between sister NS cells, just prior to their complete separation at

cytokinesis. Aurora-B kinase antibody staining (red) marks the midbody at cytokinesis; nuclei are DAPI stained

(blue). (D) Quantification of Hes1 mRNA to cell area ratios between sister cells from 51 NS cell divisions at

cytokinesis, from one experiment. Dark blue area represents the 90% confidence bounds that the ratios are drawn

from a binomial distribution, where the average amount of mRNA received by each cell is normalised to the

relative cell areas. Light blue represents multiple testing Bonferroni corrected 90% confidence bounds that the

ratios are drawn from a binomial distribution. mRNA count data contained in Figure 8—source data 1.

DOI: 10.7554/eLife.16118.037

The following source data is available for figure 8:

Source data 1. smFISH mRNA counts of cells at cell division.

DOI: 10.7554/eLife.16118.038
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conditions we simulated a parent cell deterministically for 12 hr, starting with parameter set 2 and

initial conditions mRNA = 20x!, protein = 400x!, miR-9 = 0. Using these parent cell conditions, we

then generated daughter cells assuming either equal 50/50 inheritance (no heterogeneity) or a bino-

mial distribution of inheritance for each species (schematic shown Figure 9A). Figure 9 shows the

0 2000 4000 6000
0

500

1000

1500

2000

Time (mins)

F
re

q
u
e
n
cy

D

σ = 191

50/50 division + stoch dynamics

0 2000 4000 6000
0

500

1000

1500

2000

Time (mins)

F
re

q
u
e
n
cy

E

σ = 181

Binomial division + stoch dynamics

0 2000 4000 6000
0

500

1000

1500

2000

2500

3000

Time (mins)

F
re

q
u
e
n
cy

C

σ = 8.58

Binomial division + det dynamics

0 2000 4000 6000
0

200

400

600

800

1000

Time (mins)

F
re

q
u
e
n
cy

σ = 444

0 2000 4000 6000
0

200

400

600

800

1000

Time (mins)

F
re

q
u
e
n
cy

σ = 459

0 2000 4000 6000
0

500

1000

1500

2000

2500

3000

Time (mins)

F
re

q
u
e
n
cy

σ = 70.4

0 2000 4000 6000
0

200

400

600

800

1000

Time (mins)

F
re

q
u
e
n
cy

σ = 358

0 2000 4000 6000
0

200

400

600

800

1000

Time (mins)

F
re

q
u
e
n
cy

σ = 377

0 2000 4000 6000
0

500

1000

1500

Time (mins)

F
re

q
u
e
n
cy

σ = 165

0 2000 4000 6000
0

500

1000

1500

2000

2500

3000

3500

Time (mins)

F
re

q
u
e
n
cy

Ω = 50

B
50/50 division + det dynamics

0 2000 4000 6000
0

500

1000

1500

2000

2500

3000

3500

Time (mins)

F
re

q
u
e
n
cy

Ω = 1

0 2000 4000 6000
0

500

1000

1500

2000

2500

3000

3500

Time (mins)

F
re

q
u
e
n
cy

Ω = 0.2

Symmetric division
mRNA, protein, miR-9

Asymmetric division
mRNA, protein, miR-9

A

Figure 9. Stochastic system is robust to the binomial distribution of constituents at cell division. (A) Schematic to show the difference between

symmetric and asymmetric division. (B) The distribution of time to reach the low HES1 state with 50/50 initial conditions using deterministic dynamics as

system size of ! = 50, 1 and 0.2, respectively. (C) The distribution of times to reach the low HES1 state of 3000 simulations with binomial initial

conditions using deterministic dynamics at system size of ! = 50, 1 and 0.2, respectively. (D) The distribution of times to reach the low HES1 state of

3000 simulations with 50/50 initial conditions using the CLE at system size of ! = 50, 1 and 0.2, respectively. (E) The distribution of times to reach the

low HES1 state of 3000 simulations with binomial initial conditions using the CLE at system size of ! = 50, 1 and 0.2, respectively. All simulations

performed with parameter set 2 (Appendix 1—table 1) and initial conditions m(0) = 20x!, p(0) = 400x! and r(0) = 0. The standard deviation of the

distribution is denoted with s. In the simulations shown, parent cells were simulated deterministically for 12 hr prior to ’division’ however, the

distributions remained statistically the same (p-value>0.05) when either 11 or 13 hr deterministic simulations prior to division were used (data not

shown). MATLAB code contained in Figure 9—source data 1.

DOI: 10.7554/eLife.16118.039

The following source data is available for figure 9:

Source data 1. MATLAB code for deterministic and stochastic dynamics with wither 50/50 or binomial division.

DOI: 10.7554/eLife.16118.040
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difference in the time distribution of differentiation assuming equal or binomial partitioning, with
deterministic (Figure 9B,C) or stochastic (Figure 9D,E) dynamics.

With 50/50 inheritance at cell division (i.e. no heterogeneity) and deterministic dynamics there is
no randomness in the system and hence all cells ’differentiate’ at the same time (Figure 9B). The
time is the same for all system sizes, as the number of molecules has no effect on the dynamics.
Next, we introduce heterogeneity in the starting conditions of the cell, occurring only through ran-
dom partitioning and using a binomial distribution. At a high system size, the distribution of time-to-
differentiation is very narrow (standard deviation = 8.58) (Figure 9C). This makes sense, because the
relative variance of a binomial distribution is lower at high copy number and hence at large molecule
number the daughter cells have similar inheritance and therefore similar timing to differentiation. As
the system size is lowered (!=1 and 0.2), the variance increases and the variability in the daughter
cell initial conditions causes the time-to-differentiation to become more spread out, compared either
to the high system size (either mode of partitioning) or the low system size with equal partitioning
(standard deviation = 165, p-value<0.05 for Kolmogorov-Smirnov test between ! = 0.2 and 50)
(Figure 9C). This finding denotes a lack of robustness to partitioning errors when one looks at the
outcome of the HES1 oscillator at the population level.

We now consider the effect of unequal inheritance in the case of stochastic dynamics. At both
high and low system size (low and high intrinsic noise, respectively) there is little difference between
the distribution created with 50/50 (constant) or unequal (binomial) initial conditions as indicated by
a low value of the Kolmogorov-Smirnov distance between the two distributions and a p-value indi-
cating a non-significant difference (Figure 9D and E).

We conclude that the stochastic system is more robust than the deterministic system to noise
introduced at cell division because it produces the same distribution of differentiation at the popula-
tion level irrespective of whether the cells distribute molecules randomly or equally at cell division,
at all system sizes. In other words, the stochastic system shows tolerance to the unequal distribution
of species at division and maintains its performance. By contrast, in the deterministic framework the
distribution of differentiation events is changed significantly by random partitioning of molecules,
and this change increases as the system size is lowered.

Discussion
At the molecular level, gene expression involves discrete reaction steps that result in the birth and
death of individual molecules and it is therefore subject to the intrinsic noise generated by the ran-
dom encounters of a finite number of interacting molecules (Lestas et al., 2010). It is widely
assumed that such noise is detrimental to the robust performance of biological systems and indeed,
a number of mechanisms to filter noise have been described (Arias and Hayward, 2006;
Bahar Halpern et al., 2015). It remains an open question whether biological systems exploit noise,
as is the question of whether noise optimization itself is an evolvable trait in development (reviewed
in Rao et al., 2002; Kaern et al., 2005; Balázsi et al., 2011). Here, we have considered the influ-
ence of intrinsic noise generated by a low molecular number of interacting species, on the output of
HES1 protein oscillations that are generated by delayed negative feedback and are tuned by miR-9.
Our findings led us to propose that stochasticity generated by intrinsic noise offers a number of
advantages to the differentiation process.

Modelling the differentiation process as an exit from the oscillatory state with low HES1 protein
(Goodfellow et al., 2014), we found that in the stochastic framework the time taken to exit HES1
oscillations varied from cell to cell, even though they started from identical conditions. Hence, there
was a distribution in the timing of differentiation. This is an important feature of the stochastic
model, as it predicts that it is possible for an initially equivalent population of cells (e.g. clonally
related, with the same transcriptional profile and under identical conditions) to change cellular iden-
tity at different times as a result of internal noise alone and not as a consequence of any other exter-
nal influences; at the population level this would create a distribution in the timing of differentiation
(Gomes et al., 2011; Boije et al., 2014). We suggest that it may be advantageous for differentiation
events to have a broad distribution, as this could be used to generate cell-type diversity, if coupled
with mechanisms of cell-type specification (Qian et al., 2000; Temple, 2001). However, a distribu-
tion in timing of differentiation is not only linked to the generation of different cell types, because
when one considers the generation of a single particular cell type, there is again a distribution in the
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timing of birth of this cell type (Gaspard et al., 2008; Gomes et al., 2011). This suggests that a dis-

tribution in the timing of differentiation is a widespread property, which is perhaps advantageous in
allowing a time window for feedback control such that the right cell numbers are produced.

Our modelling also showed that there is a continuum of behaviours since the spread of the timing
distribution is a function of the system size, where high system size gives rise to a narrow distribution

and low system size to a broad distribution. We speculate that this may partly explain the existence
of differentiation models that are highly deterministic, as for example in Drosophila neuroblasts

which generate cells with a rigidly programmed sequence of fates (Pearson and Doe, 2004;

Kohwi and Doe, 2013; Rué and Martinez Arias, 2015) and others that are highly stochastic, as the
above mentioned example of vertebrate retinal development.

Our findings suggest that the incorporation of stochasticity into the HES1 oscillator model is
advantageous because it increases the robustness of the progenitor state to intrinsic and extrinsic

noise. The robustness to increased intrinsic noise is demonstrated by the increase in the region of
the parameter space within which HES1 oscillates. This happens because in the parameter space

near the oscillatory regime (Hopf bifurcation), the deterministic solution would exhibit damped oscil-

lations but noise keeps pushing the system away from the steady state. This is consistent with previ-
ous reports that described noise induced oscillations (McKane and Newman, 2005; Barrio et al.,

2006; Galla, 2009). However, while previous studies have looked at whether noise can induce oscil-
lations in systems at steady state (statistically stationary), we have used LNA to look at whether initial

transient oscillations are eventually terminated. In this way, we showed that miR-9 accumulation can

terminate stochastic oscillations if the threshold of miR-9 required for translational repression is suffi-
ciently low, and the Hill coefficient of repression is sufficiently high. This is important, as normal neu-

ral development relies on the balance of prolonged progenitor maintenance (i.e. robust HES1

oscillations) and differentiation (i.e. the ability to terminate these).
The outcome of deterministic dynamics is very different in symmetric versus randomly asymmetric

divisions, meaning that deterministic dynamics are not robust to heterogeneities introduced at cell

division. In particular, the narrow spread of differentiation that is produced by a deterministic molec-

ular network would be impossible to maintain if the distribution of molecules at division is random
and the system size low, both of which are experimentally observed. By contrast, the stochastic sys-

tem has a more robust performance to extrinsic noise introduced by cell-division asymmetries, as

the outcome does not change between equal or random division. Interestingly, at low system size
the random partitioning of molecules at division produces a distributed time of differentiation, even

when oscillations are modelled in a deterministic framework. We interpret this to mean that noise
due to cell-division asymmetries has a similar effect to noise due to low system size on the outcome

of the HES1 oscillator. This fits well with previous data on stochasticity introduced by partitioning

errors (Huh and Paulsson, 2011). Our findings agree that noise introduced in this way is very difficult
to distinguish from other sources of noise (Huh and Paulsson, 2011) and both could contribute in

the heterogeneity of timing of clonal cells, although the effect does not appear to be additive.
In addition to the spread of differentiation events, the mean time-to-differentiation was also sys-

tematically affected in the stochastic framework, which can be explained by the dynamics of HES1
and miR-9 production in conjunction with the parameterisation of the system. This shows that in

addition to parameters and initial conditions (Goodfellow et al., 2014), the average time-to-differ-

entiation can also be tuned by the absolute number of molecules reacting in the system through the
system size. The mean time-to-differentiation is important as it controls the total cellular number of

a developed organ, along with other quantities such as the proliferation rate.
Here, we have assumed that the intrinsic noise is a result of low interacting numbers of molecules

in the Hes1/miR-9 network. Indeed, this was experimentally supported by the absolute quantitation
of Hes1 mRNA, protein and miR-9. The average but absolute Hes1 mRNA, protein and miR-9 num-

bers are consistent with a medium to low system size between !=5 and !=1, with variability

observed both between cells and between different cell lines. In particular, while the Hes1 mRNA
copy number is close to the reported global median of 17 copies per cell, the HES1 protein abun-

dance is well below the median value of 50,000 copies per cell (Schwanhäusser et al., 2011). The
average measured miR-9 copy number (1100 copies) in C17.2 cells is also on the low side of the pre-

viously reported range of 10 to more than 30,000 copies per cell (Chen et al., 2005). We consider

the abundance of HES1 protein and miR-9 to be low not only compared to average global abundan-
cies, but also considering the number of their predicted molecular targets (3,074 for HES1,
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(Margolin et al., 2009); and more than 500 for miR-9, (Bonev et al., 2011)). However, the low

molecular copy number is not an exclusive source of cell-to-cell heterogeneity. The Hes1 gene is

also involved in the Notch signalling pathway of cell-cell communication, and other studies have con-

sidered the effect of noise in the Notch pathway (Jenkins et al., 2015). Additionally, spatial models

of Notch signalling have considered the effect of stochastic motions of the nucleus within a gradient

of Notch signalling molecules (Aggarwal et al., 2016). Such sources of heterogeneity are not mutu-

ally exclusive, and future studies may extend the model to include these effects.
In our model there is inherent stochasticity in every reaction controlling the birth and death of

each species but the transcription rate can take a continuous range of values. Other studies of the

Hes1/Her1 network have considered binary promoter noise, where the transcription rate switches

discontinuously between an ON and OFF state (Lewis, 2003; Sturrock et al., 2013; Jenkins et al.,

2015). In the promoter ON/OFF model, periods of gene activity are interspersed by transcriptional

silence, leading to bursty behaviour (Suter et al., 2011). Bursting models of transcription have been

shown to fit the statistics of mRNA distributions measured by smFISH in multiple different systems

(Munsky et al., 2012; Neuert et al., 2013; Bahar Halpern et al., 2015), and have also been fitted

to live time series of transcription (Harper et al., 2011; Corrigan and Chubb, 2014; Zechner et al.,

2014). Other recent studies have explicitly modelled the coupling of the Hes1 system to the cell

cycle (Pfeuty, 2015a, 2015b), but carry the disadvantage that they contain many parameters that

are not reliably known.
The challenge is to integrate these different phenomena, each potentially contributing a different

source of noise, with the ultimate goal of connecting mechanistic explanations of developmental

gene expression programmes with models of population dynamics. Our model provided an experi-

mentally grounded and molecularly explicit theoretical framework to understand the underlying het-

erogeneity in the differentiation of clonal isogenic stem or progenitor cells, which have been

uncovered by lineage tracing experiments in vivo, or in vitro cultures under the same conditions

(Rapaport et al., 2004). Our work has also highlighted the need for integrated computational

modelling and the value of an absolute quantitation in the experimental approach.

Materials and methods

Computational methods
Previous analysis focussed on a model of the Hes1/miR-9 network using delay differential equations

(Goodfellow et al., 2014), which are themselves an extension of earlier models by Monk et al

(2003), as follows

dm

dt
¼Gðpðt# tÞÞ# SðrÞmðtÞ; (2)

dp

dt
¼ FðrÞmðtÞ#

lnð2Þ

!p

pðtÞ; (3)

dr

dt
¼GrðpðtÞÞ#

lnð2Þ

!r

rðtÞ; (4)

where m, p and r are the concentrations of Hes1 mRNA, HES1 protein and miR-9 respectively. The
model parameters !p and !r are the half-lives of HES1 protein and miR-9 degradation, respectively.

The quantities Gðpðt# tÞÞ, SðrðtÞÞ, FðrðtÞÞ and GrðpðtÞÞ are Hill-type functions that control the rates of

synthesis and degradation. The variable t indicates the time delay in the repression of Hes1 tran-

scription by HES1 protein, accounting for the total time taken from mRNA transcriptional initiation

to HES1 protein returning to the nucleus to repress transcription. For a given set of initial conditions

and parameters the solution of these differential equations is always the same, and they are there-

fore described as deterministic.
HES1 protein represses Hes1 mRNA production through binding to the promoter, and this is

modelled with a monotonically decreasing Hill function. In the model it takes the form

Gðpðt# tÞÞ ¼
am

1þðpðt# tÞ=P0Þ
n0 ; (5)
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where am is the basal transcription rate of Hes1 mRNA in the absence of HES1 protein (previously
set to 1; [Goodfellow et al., 2014]).

The Hill function is characterized by two parameters: the repression threshold p0, which repre-
sents the amount of protein required to repress transcription to half of basal levels, and the Hill coef-

ficient n0, which controls how steep (sigmoidal) the repression is as a function of protein

concentration.
The degradation of Hes1 mRNA is dependent on the levels of miR-9 through the Hill function SðrÞ

SðrÞ ¼ bl þ
ðbu # blÞ

1þðr=r0Þ
m0
; (6)

The function SðrÞ represents an effective degradation rate of Hes1 mRNA, and bl and bu impose
lower and upper bounds for Hes1 mRNA half-life, respectively, which are set using half-lives mea-

sured in Bonev et al. (Bonev et al., 2012).
The function FðrÞ represents translation repression of HES1 protein by miR-9, and the functional

form is also a Hill-type function, as previously assumed in Osella et al. (Osella et al., 2011).

FðrÞ ¼
1

1þðr=r1Þ
m1
; (7)

Finally, the HES1 protein represses miR-9 production through binding to the promoter, and this is
again modelled with a Hill function

GrðpÞ ¼
1

1þðp=p1Þ
n1 ; (8)

All analyses and simulations were performed using MATLAB 7.12 (RRID:SCR_001622)(MathWorks,
US), and code is provided as associated figure source files. For deterministic simulations of the

model, we used the MATLAB function ‘dde23’ with options ‘RelTol’ = 10#5 and ‘AbsTol’ = 10#8. For

history vectors we used a single value repeated over prior time points. Numerical bifurcation analysis

was performed using DDE-BIFTOOL (Engelborghs et al., 2002).

Developing a stochastic model for the Hes1/miR-9 oscillator
In order to investigate the effects of intrinsic noise on the dynamics of differentiation we reformu-

lated the Hes1/miR-9 model in a stochastic framework, which describes the system in terms of its

underlying microscopic reactions. The numbers of molecules are increased or decreased through six

reactions, namely the production and degradation of mRNA, protein and microRNA as follows:

;¼)
G

M mRNA transcription (9)

;#!
Gr

R miR-9 transcription (10)

M#!
F
MþP Hes 1 translation (11)

M#!
S
; mRNA degradation (12)

P #!
lnð2Þ=!p

; protein degradation (13)

R #!
lnð2Þ=!r

; miR-9 degradation (14)

The transcription reaction involves a delay, indicated by a double arrow, while all other reactions
are assumed to occur instantaneously with the rates of reaction indicated above the arrows. The sto-

chastic dynamics of the Hes1/miR-9 reaction system were captured by the chemical master equation

(CME) for the number nm of mRNA molecules, np of protein molecules and nr of miR-9 molecules.
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The CME describes how the probability of the copy number n¼ ðnm;np;nrÞ of the different molecular

species evolves over time.
The six reactions in the system result in a stochastic process described by the CME

d

dt
Pðn; tÞ ¼ !ðEm# 1Þ½Sðnr=!Þðnm=!ÞPðn; tÞ(þ!

lnð2Þ

!p

ðEp # 1Þ½ðnp=!ÞPðn; tÞ(

þ!ðE#1

p # 1Þ½Fðnr=!Þðnm=!ÞPðn; tÞ(þ!
X

n
0

Gðn0p=!ÞðE
#1

m # 1Þ½Pðn; t;n0; t# tÞ(

þ!
lnð2Þ

!r

ðEr # 1Þ½ðnr=!ÞPðn; tÞ(þ!ðE#1

r # 1Þ½Grðnp=!ÞPðn; tÞ(

(15)

where Pðn; tÞ is the probability of finding the system in state n at time t, and Pðn; t;n0; t0Þ is the proba-
bility for the system to be in state n at t and in state n

0 at time t0. Em, Ep and Er are raising operators

acting on functions of nm, np and nr via Emgðnm;np;nrÞ ¼ gðnmþ 1;np;nrÞ, Epgðnm;np;nrÞ ¼ gðnm;npþ 1;nrÞ

and Ergðnm;np;nrÞ ¼ gðnm;np;nr þ 1Þ. E
#1 stands for the inverse operation. In the case of two-time

quantities, e.g. Pðn; t;n0; t0Þ the raising applies with respect to the second argument n0.
We have also developed a set of Chemical Langevin Equations (CLE) (Brett and Galla, 2014),

where zðtÞ is a rapidly fluctuating random term. The CLE is more computationally efficient at large

system sizes, because it does not keep track of every reaction, as they are effectively bundled into

time steps.

dm

dt
¼!ðGðpðt# tÞÞ# SðrÞmðtÞÞþ!1=2zmðtÞ; (16)

dp

dt
¼!ðFðrÞmðtÞ#

lnð2Þ

!p

pðtÞÞþ!1=2zpðtÞ; (17)

dr

dt
¼!ðGrðpðtÞÞ#

lnð2Þ

!r

rðtÞÞþ!1=2zrðtÞ; (18)

This random term is assumed to have a Gaussian distribution with zero mean, and the fluctuations
added at two consecutive time points are uncorrelated (white noise). The variance of the white noise

terms are given by

hzmðtÞzmðt
0Þi ¼ ðGðpðt# tÞÞþ SðrÞmÞdðt# t0Þ;

hzpðtÞzpðt
0Þi ¼ ðFðrÞmþ

lnð2Þ

!p

pÞdðt# t0Þ;

hzrðtÞzrðt
0Þi ¼ ðGrðpðtÞÞþ

lnð2Þ

!r

rÞdðt# t0Þ;

hzmðtÞzpðt
0Þi ¼ hzpðtÞzmðt

0Þi¼ 0;

hzmðtÞzrðt
0Þi ¼ hzrðtÞzmðt

0Þi¼ 0;

hzpðtÞzrðt
0Þi ¼ hzrðtÞzpðt

0Þi¼ 0

(19)

The CLE was simulated numerically using an Euler-Maruyama scheme with time steps of 0.1 mins.
For history vectors we used a single value repeated over prior time points.

To perform parameter scans, which requires a large number of repeats, we used the Linear Noise
Approximation (LNA) because it does not require multiple simulations and is therefore much faster.

The LNA is obtained through performing a system size expansion on the CME (Galla, 2009). The

system size expansion decomposes the time evolution of each species into a deterministic and sto-

chastic contribution, where the relative amplitude of stochastic fluctuations decreases with the

inverse of the square root of the system size (i.e. relative fluctuations decrease with higher molecule

number)

ni ¼fi þ!#1=2"i (20)

Where ni is the number of molecules of species i, fi is the concentration of species i as deter-
mined by the deterministic rate equations, and "i is the random fluctuation with continuous degrees

of freedom around the deterministic solution.
After performing the system size expansion, the deterministic equations are recovered when the

system size is infinite (no stochasticity). The linear noise approximation (LNA) refers to the next level
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of approximation from the system size expansion, valid in the limit of large (but not infinite) system

size. The LNA describes stochastic fluctuations around the deterministic trajectory. However, there is

a trade-off with accuracy, and the system size expansion can be less accurate than either the dSSA

or CLE at low system sizes (Grima et al., 2011; Thomas et al., 2012). The full detailed description

of the system size expansion for the Hes1/miR-9 model is shown in Appendix. Even though the CLE

and LNA are less accurate than the CME at low system sizes, good agreement between them was

observed.
Finally, in addition to the assumptions of the deterministic model (Goodfellow et al., 2014),

which mostly refer to unknown kinetic parameter values, the stochastic model makes several concep-

tual assumptions. We assume the chemical system is in well-mixed conditions and the system size is

a fixed value. We also assume that the cells are of the same size (volume), and hence the system size

parameter is the same within a population of cells and after cell division. When cell division is

included in the model, the time of cell division is not constrained and can occur at any point of the

HES1 oscillation. Transcription of Hes1 and miR-9 is controlled by negative feedback and we assume

that it is constitutively active when not inhibited. Note that both Hes1 mRNA and miR-9 are tran-

scribed from DNA, which is assumed to be at constant concentration, and hence both Hes1 mRNA

and miR-9 are produced from the void. In order to make direct comparisons with the previous deter-

ministic description, we do not explicitly model the noise associated with bursting transcription

(Suter et al., 2011), which is therefore not explicitly distinguished from other sources of inherent

noise.

Comparison of population level simulations with different modes of
division
We simulated the time to differentiation in 3000 cells using the CLE, with different system sizes rang-

ing from 0.2 to 50 and looked at the outcome of 50/50 or binomial partitioning at division. The tim-

ing distributions using constant or random initial condition models were compared using the

Kolmogorov-Smirnov distance, which quantifies the distance between two empirical distributions

and can take values between 0 and 1, with lower values indicating higher similarity,

KS¼ sup
t
jFbðtÞ#FeðtÞj (21)

where FbðtÞ is the cumulative distribution function of the timing with binomial initial conditions, and
FeðtÞ is the cumulative distribution function of the timing with equal 50/50 initial conditions.

Evaluation of oscillatory dynamics
Central to oscillations is the notion of periodicity. In a stochastic setting, it becomes desirable to be

able to distinguish oscillations from random fluctuations, which are dynamic in time but aperiodic. A

common method for detecting periodicity is the Fourier transform, which decomposes a given signal

into simple sinusoidal oscillating functions. The simple sinusoidal oscillating functions are described

by their frequency, and so a Fourier transform takes data in the time domain and represents them in

the frequency domain. The Fourier transform is then squared to obtain the power spectrum, and an

oscillator is now defined as any process with a peak in its power spectrum at a particular (non-zero)

frequency. If the peak is high and sharp, the time series will exhibit high quality oscillations at the

dominant frequency with little variability in the peak-to-peak in the time series. However, if the peak

in the power spectrum is shallow and broad, there can be significant variation in the peak-to-peak

times. When there is no peak in the power spectrum at a non-zero frequency, the process will no

longer oscillate and will instead consist of aperiodic fluctuations. A continuum of behaviours is possi-

ble, and a suitable metric needs to be defined to measure how sharp the peak in the power spec-

trum is.
One such measure is the coherence, which is defined as the area under the curve within 20% of

the peak frequency as a fraction of the total area under the curve (Alonso et al., 2007), as shown in

Figure 7—figure supplement 1. The coherence is easily calculated, since the power spectrum of a

stochastic process can be approximated efficiently using the LNA. Unlike the CLE, the LNA is a linear

stochastic differential equation, and it is therefore possible to directly calculate the power spectrum

of the stochastic dynamics, even with delay (as described in Appendix).
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Experimental methods
Cell culture
C17.2 cells (RRID:CVCL_4511)(07062902, Sigma, UK) were grown in DMEM (ThermoFisher Scientific,
UK ) with 10% FBS. Primary NS cells were isolated from dissected forebrains of E13.5–15.5 embryos

from LUC2:HES1 BAC reporter mice (RRID:IMSR_RBRC06013) and cultured as previously described
(Pollard, 2013). LUC2:HES1 BAC reporter mice were provided by the RIKEN BRC through the
National Bio-Resource Project of the MEXT, Japan (Imayoshi et al., 2013). Tau-GFP NS cells were
generated from ES cells expressing GFP from the Mapt (tau) locus (Bibel et al., 2004) as previously

described (Conti et al., 2005). Tau-GFP ES and NS-E (NS derived from E14 ES cells) cells were a gift
from Jennifer Nichols (Cambridge Stem Cell Institute, UK). All reported cell lines tested negative for
mycoplasma.

Cell transfection, differentiation and generation of lentivirus reporter
cell lines
C17.2 cells were transfected with Lipofectamine 2000 (ThermoFisher Scientific, UK) and Tau-GFP NS
cells with Lipofectamine 3000 (ThermoFisher Scientific, UK) as per manufacturers’ instructions. 24 hr

following transfection, C17.2 cells were differentiated by culture in DMEM with 0.2% FBS
(Lundqvist et al., 2013) whereas Tau-GFP NS were differentiated towards neurons by gradual
removal of the EGF and FGF2 growth factors (Pollard, 2013). miRVana miR-9 mimic and control
mimic were obtained from ThermoFisher Scientific, UK. pDsRed-miR9 Sensor was a gift from Lynn

Hudson (Addgene plasmid # 22742) (Lau et al., 2008) and control sensor was pDsRed (Clontech,
France). pEGFP N1 (Clontech, France) was used as a transfection control plasmid. To generate the
VENUS:HES1 reporter constructs the mouse Hes1 coding (Accession Number NM008235) and
3’UTR sequence was synthesised with flanking Gateway! att recombination sites and inserted into

pUC57 vector, resulting in the pUC57-Hes1 vector. The Hes1 gene was then transferred to the 3rd
generation ‘pLNT-Venus:#’ lentiviral transfer by LR clonase recombination reaction (Bagnall et al.,
2015). The resultant vector is termed pLNT UbC-VENUS:HES1 and allows for constitutive expression

of N-terminally fused HES1 using Ubiquitin-ligase C promoter (UbC). Additionally, the UbC pro-
moter was replaced with a 2.7 kb sequence of the Hes1 promoter (upstream of the start codon)
using Pac1 and Nhe1 restriction enzymes; the derived vector is termed pLNT 2.7 kb-Hes1pr-VENUS:
HES1. Lentivirus production and transduction protocols were performed as described before

(Bagnall et al., 2015). NS-E -UbC-VENUS:HES1 cells were FACS sorted on BD Influx Cell Sorter (BD
Biosciences, UK) to maximize the VENUS:HES1 positive population.

qRT-PCR
For synchronised population qRT-PCR, C17.2 cells were serum-starved for 24 hr. Following activa-
tion with 10% FBS and at time-points of 30 min, cells were lysed and RNA extracted with TRizol
(ThermoFisher Scientific, UK). cDNA was prepared using Superscript III (Invitrogen, UK) as per manu-
facturers’ instructions and qRT-PCR for Hes1 and Gapdh was performed with Taqman gene expres-

sion assays (Hes1 - Mm01342805 m1, Gapdh-Mm03302249 g1, ThermoFisher, Scientific, UK). In
order to obtain an absolute measurement of miR-9 copy numbers we compared miR-9 content of
total RNA extractions of C17.2 cells with a standard curve of known miR-9 dilutions. The standard

curve was generated using the following synthetic mature miR-9 sequences (Eurogentec); 23nt UC
UUUGGUUAUCUAGCUGUAUGA, 22 nt UCUUUGGUUAUCUAGCUGUAUG, 21 nt UCUUUGGUUA
UCUAGCUGUAU, 20 nt UCUUUGGUUAUCUAGCUGUA, 19 nt UCUUUGGUUAUCUAGCUGU (in
order of abundance according to miRBase). Synthetic microRNA was 10X serially diluted to enable a

standard curve of 1x105 – 10 copies (5 data points). C17.2 cells were grown in four T25 cm2 tissue

culture flasks (Corning, UK) in DMEM with 10% FBS to approx. 80% confluency ( 6x105 cells). One

flask was trypsinised (Trypsin EDTA Sigma, UK) and total cell number counted. The remaining flasks
were lysed and total RNA extracted using Ambion miR-Vana kit (AM1561, ThermoFisher, UK) as per
manufacturers’ instructions. The efficiency of RNA extraction was calculated as 67% and this was

incorporated into subsequent copy number calculations. The standard curve samples and 50ng of
each total RNA sample were reverse transcribed with the Applied Biosystems TaqMan microRNA
Reverse Transcription kit (4366596) as per the manufacturers’ protocol. The primers used for reverse
transcription and Taqman qRT-PCR were the stem-loop primer set for mouse miR-9-5p (product
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4427975, assay ID 001089, ThermoFisher, UK). TaqMan qRT-PCR was performed using TaqMan Fast

Advanced master mix reagent (Applied Biosystems 4444557) on Applied Biosystems Step-ONE plus
real time PCR system.

Bioluminescence imaging
200000 primary LUC2:HES1 NS cells up to passage 15 were plated on laminin (Sigma, UK) coated
35 mm glass-bottom dishes (Greiner-Bio One) and imaged in NS proliferation media containing

1 mM D-luciferin (Promega, UK) using a 40x oil objective on an Olympus UK LV200 inverted biolumi-
nescence microscope. 10-minute exposure and 2x2 binning were used. Dishes were maintained at

37˚C in 5% CO2. Bioluminescent movies were analysed on Imaris (RRID:SCR_007370)(Version 7.2.2,
Bitplane). Images were first subjected to a 3x3 median filter to remove bright spot artefacts from

cosmic rays, then individual cells were tracked manually using the ’spots’ function.

Single-molecule Fluorescent In Situ Hybridization (smFISH) and
immunofluorescence
A set of 29 Quasar 570 5’ end labeled 20 nt smFISH probes were designed against Hes1 exonic

sequence, and 38 Quasar 670 5’ end labeled 18 nt smFISH probes designed against Hes1 intronic
sequence (Biosearch Technologies, US). Tau-GFP NS cells were grown on coverslips in NS cell media

(Pollard, 2013) for 72 hr at 37˚C with 5% CO2. Coverslips were washed with 1XPBS, fixed for 20

min with 4% formaldehyde in 1XPBS, washed with 1XPBS, and permeabilized in 70% EtOH at 4˚C
for 1 hr. Cells were then washed for 5 min in 2XSSC+10% deionized formamide. smFISH probes

were diluted to 100 nM in 200 ul hybridization buffer per coverslip (2XSSC, 10% deionized formam-

ide, 10% dextran sulphate). Probes were hybridized for 5 hr in a humidified chamber at 37˚C, then
cells washed in 2XSSC+10% deionized formamide at 37˚C for 30 min. Immunofluorescence was per-

formed post hybridization, incubating with primary antibodies at 4˚C for 15 hr, and with secondary

antibody at room temperature for 1 hr. Coverslips were mounted using ProLong diamond antifade
mountant with DAPI (P36962, ThermoFisher Scientific, UK). Primary antibodies: anti-Tuj1 (RRID:AB_

444319)(ab18207, Abcam, UK), rabbit anti-GFP (RRID:AB_10073917)(A11122, ThermoFisher Scien-
tific, UK) and rabbit anti-Aurora-B kinase (RRID:AB_302923)(ab2254 Abcam, UK). Secondary anti-

body: goat anti-rabbit Alexa Fluor 488 (RRID:AB_143165)(A11008, ThermoFisher Scientific, UK).

smFISH imaging and analysis
Z-stack images were acquired at 0.2 mm z-increments by Delta Vision widefield microscopy (Olympus

IX71 microscope body, Coolsnap HQ CCD camera (Photometrics, US), API XYZ stage), using a 60X

(1.42NA) objective. Image stacks were viewed using Imaris (Version 7.2.2, Bitplane), and cell areas
segmented manually using background auto-fluorescence in the Quasar 570 channel on a maximum

projection of the image. Hes1 mRNA spots per cell were counted by a semi-automated method,
using the inbuilt ’analyze spots’ function in Imaris. The following settings were used: estimated XY

diameter = 0.3 mM, estimated Z diameter = 0.6 mM, background subtraction = yes, filter type =
maximum intensity. The threshold cutoff between signal and background was placed manually at the

‘trough’ in the spots profile for the maximum intensity filter. Active transcription sites were identified
manually, defined as Hes1 intronic smFISH spots within the nucleus that colocalised with exonic

Hes1 smFISH spots.

Flow cytometry
Tau-GFP NS cells were harvested at 96 hr, 120 hr, 144 hr and 168 hr of neuronal differentiation fol-

lowing transfection with 40 nM of miR-9 mimic or control mimic. Cells were dissociated using accu-

tase (Sigma, UK) and washed in DMEM-F12 supplemented with 0.2% BSA. Flow cytometry analysis
for GFP detection was performed on LSR Fortessa (BD Biosciences, UK) and data were analysed with

the FlowJo software (RRID:SCR_008520)(TreeStar, US).

Fluorescence Correlation Spectroscopy (FCS) protein quantitation
FCS was used to count the number of fluorescent protein molecules expressed in live NS-E cells that

were transduced with lentiviral VENUS:HES1 constructs. FCS involves laser excitation and data col-
lection in a tightly focused microscopic region known as the confocal volume. Fluorescent particles
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diffusing in the confocal volume give rise to fluorescent intensity fluctuations FðtÞ (example shown in
Figure 2—figure supplement 1A) which are analysed over lag time t > 0 to produce the normalised

autocorrelation function (Figure 2—figure supplement 1B):

RðtÞ ¼
hFðtþ tÞFðtÞi

hFðtÞi2
# 1 (22)

The amplitude of the autocorrelation function is proportional to 1/c where c represents the num-
ber of molecules detected in the confocal volume, i.e. molecule concentration. The shape of RðtÞ
can be explained by models taking into consideration multiple species of fluorescent particles char-
acterised by different diffusion constants. Preliminary model selection indicated that two compo-
nents were required to explain the variability in our data (results not shown) and a non-fluorescent

component was added to account for transitions of fluorescent particles to a triplet state. Normal-
ised autocorrelations were fitted with a two component model with triplet state previously used for
live cells (Dross et al., 2009; Bagnall et al., 2015).

FCS experiments were carried out using a Zeiss LSM880 microscope with a Plan-Apochromat
40x, 1.4 NA oil-immersion objective on cells cultured and maintained at 37oC and 5% CO2. Venus
(EYFP) fluorescence was excited with 514 nm laser light and emission collected between 516 and
570 nm. Data from individual cell nuclei was collected using 5 x 5 s runs at 0.2 to 0.3% laser power

for each measurement using Zen 2.1 (RRID:SCR_013672)(Zeiss) software. We used custom Matlab
(RRID:SCR_001622) routines to fit the autocorrelation data (Figure 2—figure supplement 1B) and
obtain protein concentration in the confocal volume. Measurements collected from cells with count
per molecule lower than 500 kHz were excluded from the final results. Single-cell data of number of

molecules in the cell nucleus was obtained by adjusting concentration to the average volumetric
ratio between nuclear volume and confocal volume. NS-E cells have a nuclear volume of mean
721 fL ± 105 fL (S.D.) estimated using nuclear staining and 3D reconstruction from z-stack images in

Imaris. The confocal volume had been previously determined with mean 0.57fL ± 11 fL (S.D.)
(Bagnall et al., 2015).

Western blotting
Nuclear extracts of UbC-VENUS:HES1 NS-E cells treated with DMSO or MG132 (MerckMillipore,
UK) for 3 hr were generated as described in Schreiber et al. (1989). Western blots were performed
using 10% NUPAGEBis-Tris gels (ThermoFisher, UK) and Whatman Protran nitrocellulose membrane
(Sigma, UK) according to manufacturer’s instructions. Antibodies used were anti-HES1 (RRID:AB_

590682)(D134-3, MBL, Japan), anti-LAMIN B1 (RRID:AB_443298)(ab16048, Abcam, UK), HRP-linked
anti-rat IgG (RRID:AB_10694715)(7077, CST, UK) and HRP-linked anti-rabbit IgG (RRID:AB_2099233)
(7074, CST, UK).

Statistical analysis
Data were analysed using pairwise hypothesis testing methods and multiple hypothesis tests as indi-
cated in the figure legends using Prism 7 (RRID:SCR_002798 )(GraphPad, U.S.A). Statistical signifi-

cance is reported for p-values <0.05 (*), <0.01(**) and <0.001 (***). Errors are reported as standard
error of the mean (S.E.M) calculated from pooled data taking into account standard deviation (S.D)
and sample size (n) as S.E.M=S.D./sqrt(n).
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Harper CV, Finkenstädt B, Woodcock DJ, Friedrichsen S, Semprini S, Ashall L, Spiller DG, Mullins JJ, Rand DA,
Davis JR, White MR. 2011. Dynamic analysis of stochastic transcription cycles. PLoS Biology 9:e1000607. doi:
10.1371/journal.pbio.1000607

Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R. 2004. Hes genes regulate
size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation.
Development 131:5539–5550. doi: 10.1242/dev.01436

He J, Zhang G, Almeida AD, Cayouette M, Simons BD, Harris WA. 2012. How variable clones build an invariant
retina. Neuron 75:786–798. doi: 10.1016/j.neuron.2012.06.033

Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R. 2002. Oscillatory expression of
the bHLH factor Hes1 regulated by a negative feedback loop. Science 298:840–843. doi: 10.1126/science.
1074560

Huang S. 2011. Systems biology of stem cells: three useful perspectives to help overcome the paradigm of linear
pathways. Philosophical Transactions of the Royal Society B: Biological Sciences 366:2247–2259. doi: 10.1098/
rstb.2011.0008

Huh D, Paulsson J. 2011. Non-genetic heterogeneity from stochastic partitioning at cell division. Nature Genetics
43:95–100. doi: 10.1038/ng.729

Huh D, Paulsson J. 2011. Random partitioning of molecules at cell division. PNAS 108:15004–15009. doi: 10.
1073/pnas.1013171108

Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, Fujiwara T, Ishidate F, Kageyama R. 2013.
Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342:
1203–1208. doi: 10.1126/science.1242366

Ishibashi M, Ang SL, Shiota K, Nakanishi S, Kageyama R, Guillemot F. 1995. Targeted disruption of mammalian
hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors,
premature neurogenesis, and severe neural tube defects. Genes & Development 9:3136–3148. doi: 10.1101/
gad.9.24.3136

Jenkins RP, Hanisch A, Soza-Ried C, Sahai E, Lewis J. 2015. Stochastic Regulation of her1/7 Gene Expression Is
the Source of Noise in the Zebrafish Somite Clock Counteracted by Notch Signalling. PLoS Computational
Biology 11:e1004459. doi: 10.1371/journal.pcbi.1004459

Jensen MH, Sneppen K, Tiana G. 2003. Sustained oscillations and time delays in gene expression of protein
Hes1. FEBS Letters 541:176–177. doi: 10.1016/S0014-5793(03)00279-5

Kaern M, Elston TC, Blake WJ, Collins JJ. 2005. Stochasticity in gene expression: from theories to phenotypes.
Nature Reviews. Genetics 6:451–464. doi: 10.1038/nrg1615

Kageyama R, Ohtsuka T, Kobayashi T. 2007. The Hes gene family: repressors and oscillators that orchestrate
embryogenesis. Development 134:1243–1251. doi: 10.1242/dev.000786

Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I. 2008. Dynamic Notch signaling in neural progenitor cells and a
revised view of lateral inhibition. Nature Neuroscience 11:1247–1251. doi: 10.1038/nn.2208

Klein AM, Simons BD. 2011. Universal patterns of stem cell fate in cycling adult tissues. Development 138:3103–
3111. doi: 10.1242/dev.060103

Kohwi M, Doe CQ. 2013. Temporal fate specification and neural progenitor competence during development.
Nature Reviews Neuroscience 14:823–838. doi: 10.1038/nrn3618

Phillips et al. eLife 2016;5:e16118. DOI: 10.7554/eLife.16118 28 of 33

Research article Computational and Systems Biology Developmental Biology and Stem Cells



Lau P, Verrier JD, Nielsen JA, Johnson KR, Notterpek L, Hudson LD. 2008. Identification of dynamically regulated
microRNA and mRNA networks in developing oligodendrocytes. The Journal of Neuroscience : The Official
Journal of the Society for Neuroscience 28:11720–11730. doi: 10.1523/JNEUROSCI.1932-08.2008

Lestas I, Vinnicombe G, Paulsson J. 2010. Fundamental limits on the suppression of molecular fluctuations.
Nature 467:174–178. doi: 10.1038/nature09333

Lewis J. 2003. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis
oscillator. Current Biology 13:1398–1408. doi: 10.1016/s0960-9822(03)00534-7

Lundqvist J, El Andaloussi-Lilja J, Svensson C, Gustafsson Dorfh H, Forsby A. 2013. Optimisation of culture
conditions for differentiation of C17.2 neural stem cells to be used for in vitro toxicity tests. Toxicology in Vitro
27:1565–1569. doi: 10.1016/j.tiv.2012.04.020

Margolin AA, Palomero T, Sumazin P, Califano A, Ferrando AA, Stolovitzky G. 2009. ChIP-on-chip significance
analysis reveals large-scale binding and regulation by human transcription factor oncogenes. PNAS 106:244–
249. doi: 10.1073/pnas.0806445106

McKane AJ, Newman TJ. 2005. Predator-prey cycles from resonant amplification of demographic stochasticity.
Physical Review Letters 94:218102. doi: 10.1103/PhysRevLett.94.218102

Momiji H, Monk NA. 2008. Dissecting the dynamics of the Hes1 genetic oscillator. Journal of Theoretical Biology
254:784–798. doi: 10.1016/j.jtbi.2008.07.013

Monk NA. 2003. Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays.
Current Biology 13:1409–1413. doi: 10.1016/s0960-9822(03)00494-9

Munsky B, Neuert G, van Oudenaarden A. 2012. Using gene expression noise to understand gene regulation.
Science 336:183–187. doi: 10.1126/science.1216379

Nakamura Y, Sakakibara S, Miyata T, Ogawa M, Shimazaki T, Weiss S, Kageyama R, Okano H. 2000. The bHLH
gene hes1 as a repressor of the neuronal commitment of CNS stem cells. Journal of Neuroscience 20:283–293.

Neuert G, Munsky B, Tan RZ, Teytelman L, Khammash M, van Oudenaarden A. 2013. Systematic identification of
signal-activated stochastic gene regulation. Science 339:584–587. doi: 10.1126/science.1231456
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Appendix

Model parameters
Appendix 1—table 1. Parameters of the model and their values.
Parameter Set 1 Set 2 Interpretation Reference

t 29 min 29 min
Time delay in HES1 protein produc-
tion

(Lewis, 2003)

am 1 min#1 1 min#1 Hes1 transcription rate in absence of
Hes1 protein

ap 1 min#1 2 min#1 Translation rate

ar 1 min#1 1 min#1 miR-9 transcription rate in absence of
Hes1 protein

p0 390 390
Amount of protein required to reduce
Hes1 transcription by half

Fitted in
(Goodfellow et al.,
2014)

n0 5 5 Quantifies the step-like nature of G (Monk, 2003)

r0 100 80
Amount of miR-9 required to reduce
Hes1 degradation by half

m0 5 5 Quantifies the step-like nature of S

bl lnð2Þ=20min#1 lnð2Þ=20 min#1 Lower bound for Hes1 mRNA half-life (Bonev et al., 2012)

bu lnð2Þ=35min#1 lnð2Þ=35 min#1 Upper bound for Hes1 mRNA half-life (Bonev et al., 2012)

r1 300 100
Amount of miR-9 required to reduce
HES1 protein translation by half

m1 5 5 Quantifies the step-like nature of F

n1 5 5 Quantifies the step-like nature of Gr

!p 22 min 22 min Half-life of HES1 protein (Hirata et al., 2002)

p1 260 280
Amount of protein required to reduce
miR-9 production rate by half

!r 1000 min 1000 min Half-life of miR-9

DOI: 10.7554/eLife.16118.041

Deterministic dynamics
Starting with the microscopic dynamics of the Hes1/miR-9 described in the Materials and
Methods, we apply the system size expansion as described in Brett and Galla (Brett and

Galla, 2013) and Galla (Galla, 2009). To lowest order in !#1=2, one recovers the
deterministic dynamics described in Goodfellow et al. (Goodfellow et al., 2014)

dm

dt
¼Gðpðt# tÞÞ# SðrÞm; (23)

dp

dt
¼ FðrÞm#

lnð2Þ

!p

p; (24)

dr

dt
¼GrðpÞ#

lnð2Þ

!r

r: (25)
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Linear noise approximation
The next-to-leading order in !#1=2 represents the LNA and recovers the probability
distribution describing random deviations in molecule numbers around the deterministic
trajectory. The fluctuations in mRNA, protein and miR-9 molecule number are denoted "m, "p
and "r, respectively. In order to account for noise induced dynamics below the Hopf
bifurcation, we assume that the deterministic dynamics reach a fixed-point. When the
deterministic dynamics have reached a fixed-point (i.e. after large time), the dynamics of the
fluctuations can be approximated by the linear Langevin equations

d"m
dt

¼G0ðp)Þ"pðt# tÞ# Sðr)Þ"mðtÞ# S0ðr)Þm)"rðtÞþ zmðtÞ; (26)

d"p
dt

¼ Fðr)Þ"mðtÞþF0ðr)Þm)"rðtÞ#
lnð2Þ

!p

"pðtÞþ zpðtÞ; (27)

d"r
dt

¼G0
rðp

)Þ"pðtÞ#
lnð2Þ

!r

"rðtÞþ zrðtÞ; (28)

where G0ðp)Þ, S0ðr)Þ, F0ðr)Þ and G0
rðp

)Þ represent are linearisations of the Hill functions G; S

and Gr around the deterministic fixed point, and where zðtÞ represents white noise. Within
the linear-noise approximation this noise is assumed to be additive. At the deterministic
fixed point, the noise correlators are given by

hzmðtÞzmðt
0Þi ¼ ðGðp)Þþ Sðr)Þm)Þdðt# t0Þ;

hzpðtÞzpðt
0Þi ¼ ðFðr)Þm) þ

lnð2Þ

!p

p)Þdðt# t0Þ;

hzrðtÞzrðt
0Þi ¼ ðGrðp

)Þþ
lnð2Þ

!r

r)Þdðt# t0Þ;

hzmðtÞzpðt
0Þi ¼ hzpðtÞðzmðt

0Þi¼ 0;

hzmðtÞzrðt
0Þi ¼ hzrðtÞzmðt

0Þi¼ 0;

hzpðtÞzrðt
0Þi ¼ hzrðtÞzpðt

0Þi¼ 0

(29)

The LNA therefore describes a process with linear delay relaxation dynamics supplemented
by additive noise. This constitutes a multivariate Ornstein-Uhlenbeck process (with delay). To
analyse this further, we carry out a Fourier transform (with respect to time), and obtain

i!~"mð!Þ ¼G0ðp)Þ~"pð!Þe
#i!t # Sðr)Þ~"mð!Þ# S0ðr)Þm)~"rð!Þþ~zmð!Þ; (30)

i!~"pð!Þ ¼ Fðr)Þ~"mð!ÞþF0ðr)Þm)~"rð!Þ#
lnð2Þ

!p

~"pð!Þþ~zpð!Þ; (31)

i!~"rð!Þ ¼G0
rðp

)Þ~"pð!Þ#
lnð2Þ

!r

~"rð!Þþ~zrð!Þ: (32)

In matrix form this can be represented as

Mð!Þ~eð!Þ ¼ ~zð!Þ; (33)

where

Mð!Þ ¼

i!þ Sðr)Þ #G0ðp)Þe#i!t S0ðr)Þm)

#Fðr)Þ i!þ lnð2Þ
!p

#F0ðr)Þm)

0 #G0
rðp

)Þ i!þ lnð2Þ
!r

0

B

B

@

1

C

C

A

: (34)

Phillips et al. eLife 2016;5:e16118. DOI: 10.7554/eLife.16118 32 of 33

Research article Computational and Systems Biology Developmental Biology and Stem Cells



It is now useful to introduce the matrix of spectra, Sð!Þ, with Sijð!Þ ¼ h~"ið!Þ~"jð!Þ
†i, where i; j

represent the variables m; p and r above. One then has

Sð!Þ ¼Mð!Þ#1h~zð!Þ~zð!Þ†iMð!Þ†#1; (35)

where h~zð!Þ~zð!Þ†i is

h~zð!Þ~zð!0Þ†i¼

ðGðp)Þþ Sðr)Þm)Þ 0 0

0 ðFðr)Þm) þ lnð2Þ
!p

p)Þ 0

0 0 ðGrðp)Þþ
lnð2Þ
!r

r)Þ

0

B

B

@

1

C

C

A

dð!þ!0Þ: (36)

The further analysis is then based on a numerical evaluation of Equation 35.
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