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The theory of the asymptotic manipulation of pure bipartite quantum systems can be considered
completely understood: the rates at which bipartite entangled states can be asymptotically transformed into
each other are fully determined by a single number each, the respective entanglement entropy. In the
multipartite setting, similar questions of the optimally achievable rates of transforming one pure state into
another are notoriously open. This seems particularly unfortunate in the light of the revived interest in such
questions due to the perspective of experimentally realizing multipartite quantum networks. In this Letter,
we report substantial progress by deriving simple upper and lower bounds on the rates that can be achieved
in asymptotic multipartite entanglement transformations. These bounds are based on ideas of entanglement
combing and state merging. We identify cases where the bounds coincide and hence provide the exact rates.
As an example, we bound rates at which resource states for the cryptographic scheme of quantum secret
sharing can be distilled from arbitrary pure tripartite quantum states. This result provides further scope for
quantum internet applications, supplying tools to study the implementation of multipartite protocols over
quantum networks.
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Entanglement is the feature of quantum mechanics that
renders it distinctly different from a classical theory [1]. It is
at the heart of quantum information science and technology
as a resource that is used to accomplish task (and is
increasingly also seen as an important concept in condensed-
matter physics). Given its significance in protocols of
quantum information, it hardly surprises us that, already
early in the development of the field, questions were asked
how one form of entanglement could be transformed into
another. It was one of the early main results of the field of
quantum information theory to show that all pure bipartite
states could be asymptotically reversibly transformed to
maximally entangled states with local operations and
classical communication (LOCC) at a rate that is determined
by a single number [2]: the entanglement entropy, the von-
Neumann entropy of each reduced state. This insight makes
the resource character of bipartite entanglement most mani-
fest: the entanglement content is given simply by its content
of maximally entangled states, and each form can be
transformed reversibly into another and back.
The situation in the multipartite setting is significantly

more intricate, however [3–5]. The rates that can be
achieved when aiming at asymptotically transforming
one multipartite state into another with LOCC are far from
clear. It is not even understood what the “ingredients” of
multipartite entanglement theory are [4,6], so the basic

units of multipartite entanglement from which any other
pure state can be asymptotically reversibly prepared. This
state of affairs is unfortunate, and even more so since
multipartite states come again more into the focus of
attention in the light of the observation that elements of
the vision of a quantum network—or the “quantum
internet” [7]—may become an experimental reality in
the not too far future. It is not that multipartite entanglement
ceases to have a resource character. For example,
Greenberger-Horne-Zeilinger (GHZ) states are known to
constitute a resource for quantum secret sharing [8,9],
which is probably the best known multipartite crypto-
graphic primitive. Progress on stochastic conversion for
several copies of multipartite states was made recently
[10,11]. However, given a collection of arbitrary pure
states, it is not known at what rate such states could be
asymptotically distilled under LOCC.
In this Letter, we report substantial progress on the old

question of the rate at which GHZ and other multipartite
states can be asymptotically distilled from arbitrary pure
states. In this effort, much of the technical substance can be
delegated to the powerful machinery of entanglement
combing [12], putting it here into a fresh context, which
in turn can be seen to derive from quantum state merging
[13,14], assisted entanglement distillation [15,16], and
time-sharing, meaning, using resource states in different
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roles in the asymptotic protocol. The basic insight under-
lying the analysis is that entanglement combing provides a
reference, a helpful normal form rooted in the better
understood theory of bipartite entanglement, that can be
used in order to assess rates of asymptotic multipartite state
conversion. Basically, putting entanglement combing to
good work, therefore, we are in the position to make
significant progress on the question of entanglement trans-
formation rates in a general setting.
Multipartite state conversion.—We consider the pro-

blem of converting an n-partite state ρ into σ via n-partite
LOCC. In particular, we are interested in the optimally
achievable asymptotic rate for this procedure, which can be
formally defined as

Rðρ→σÞ¼ sup

�
r∶ lim

k→∞

 
inf
Λ

����Λðρ⊗kÞ−σ⊗brkc
����
1

!
¼0

)
:

ð1Þ

Here, Λ reflects an n-partite LOCC operation and jjMjj1 ¼
Tr

ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
denotes the trace norm. This problem has a

known solution in the bipartite case n ¼ 2 for conversion
between arbitrary pure states ψAB → ϕAB, rooted in
Shannon theory. The corresponding rate in this case can
be written as [2]

RðψAB → ϕABÞ ¼ SðψAÞ
SðϕAÞ ; ð2Þ

where SðρÞ ¼ −Trðρlog2ρÞ is the von Neumann entropy.
Moreover, ψAB indicates that the state is shared between
parties referred to as Alice and Bob, while ψA reflects the
reduced state of Alice.
This simple picture ceases to hold in any setting beyond

the bipartite one. Indeed, significantly less is known in the
multipartite setting for n ≥ 3 [3]. Needless to say, the
bipartite solution (2) readily gives upper bounds on the
rates in multipartite settings. For example, for conversion
between tripartite pure states ψABC → ϕABC, it must be true
that

RðψABC → ϕABCÞ ≤ min

�
SðψAÞ
SðϕAÞ ;

SðψBÞ
SðϕBÞ ;

SðψCÞ
SðϕCÞ

�
: ð3Þ

This follows from the fact that any tripartite LOCC protocol
is also bipartite with respect to any of the bipartitions. If the
desired final state ϕABC is the GHZ state with state vector
jGHZi ¼ ðj0; 0; 0i þ j1; 1; 1iÞ= ffiffiffi

2
p

, the bound in Eq. (3) is
known to be achievable whenever one of the reduced states
ψAB, ψBC, or ψAC is separable [16].
We also note that for some states the bound in Eq. (3) is a

strict inequality. This can be seen by considering the
scenario where each of the parties holds two qubits,
respectively. Consider now the transformation

jGHZiA1B1C1 ⊗ jGHZiA2B2C2 →

jΦþiA1B1 ⊗ jΦþiA2C1 ⊗ jΦþiB2C2 ; ð4Þ

i.e., the parties aim to transform two GHZ states into Bell
state vectors jΦþi ¼ ðj0; 0i þ j1; 1iÞ= ffiffiffi

2
p

which are
equally distributed among all the parties. It is straightfor-
ward to check that in this case the bound in Eq. (3) becomes
R ≤ 1. However, the bound is not achievable, as the
aforementioned transformation cannot be performed with
unit rate [17].
Lower bound on conversion rates for three parties.—

The above discussion suggests that the bound in Eq. (3) is a
very rough estimate for general transformations and is
saturated only for very specific sets of states, having zero
volume in the set of all pure states. We will see below that
this is not the case: there exist large families of tripartite
pure states which saturate the bound (3). This will follow
from a very general lower bound on conversion rate, which
will be presented below in Theorem 1. The methods
developed here build upon and further develop the machi-
nery of entanglement combing, which has been introduced
and studied for general n-partite scenarios in Ref. [12]. In
the specific tripartite setting, entanglement combing aims to
transform the initial state ψABC into a state of the form
μA1B ⊗ νA2C with pure bipartite states μ and ν. The
following Lemma restates the results from Ref. [12] in a
form which will be suitable for the purpose of this Letter.
Lemma 1: conditions from tripartite entanglement

combing.—The transformation

ψABC → μA1B ⊗ νA2C ð5Þ

is possible via asymptotic LOCC if and only if

EðμA1BÞ þ EðνA2CÞ ≤ SðψAÞ; ð6aÞ

EðμA1BÞ ≤ SðψBÞ; ð6bÞ

EðνA2CÞ ≤ SðψCÞ; ð6cÞ

where EðϕXYÞ ≔ SðϕXÞ for pure states ϕXY . We refer to the
Supplemental Material [18] for the proof of the Lemma.
Using this result, we are now in position to present a tight
lower bound on the transformation rate between tripartite
pure states.
Theorem 1: lower bound for state transformations.—For

tripartite pure states ψABC and ϕABC, the LOCC conversion
rate is bounded from below as

RðψABC→ϕABCÞ≥min

�
SðψAÞ

SðϕBÞþSðϕCÞ ;
SðψBÞ
SðϕBÞ ;

SðψCÞ
SðϕCÞ

�
:

ð7Þ
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Proof.—We prove this bound by presenting an explicit
protocol achieving the bound, which is also summarized in
Fig. 1. In the first step, the parties apply entanglement
combing ψABC → μA1B ⊗ νA2C in such a way that the
following equalities are fulfilled for some r ≥ 0,

EðμA1BÞ ¼ rSðϕBÞ; EðνA2CÞ ¼ rSðϕCÞ: ð8Þ

The significance of this specific choice will become clear in
a moment. In the next step, Alice and Charlie apply LOCC
for transforming the state νA2C into the desired final state
ϕA2A3C. Since this is a bipartite LOCC protocol, the rate for
this process is given by EðνA2CÞ=SðϕCÞ. Note that, due to
Eqs. (8), this rate is equal to r.
In a next step, Alice applies what is called Schumacher

compression [19] to her register A3. The overall compre-
ssion rate per copy of the initial state ψABC is given as

r̃ ¼ rSðϕA3Þ ¼ rSðϕBÞ; ð9Þ

where in the last equality we used the fact that
SðϕA3Þ ¼ SðϕBÞ. Due to Eqs. (8), this rate interestingly
coincides with the entanglement of the state μA1B,

r̃ ¼ EðμA1BÞ: ð10Þ

In a final step, Alice and Bob distill the states μA1B into
maximally entangled bipartite singlets, and use them to
teleport [20,21] the (compressed) particle A3 to Bob. Due to
Eq. (10), Alice and Bob share exactly the right amount of
entanglement for this procedure, i.e., the process is possible
with rate one and no entanglement is left over. In summary,
the overall protocol transforms the state ψABC into ϕABC at
rate r.

To complete the proof, we will now show that r can be
chosen such that

r ¼ min

�
SðψAÞ

SðϕBÞ þ SðϕCÞ ;
SðψBÞ
SðϕBÞ ;

SðψCÞ
SðϕCÞ

�
: ð11Þ

This can be seen directly by inserting Eqs. (8) into Eqs. (6).
In particular, the rate r can attain any value which is
simultaneously compatible with inequalities

r≤
SðψAÞ

SðϕBÞþSðϕCÞ ; r≤
SðψBÞ
SðϕBÞ ; r≤

SðψCÞ
SðϕCÞ : ð12Þ

This completes the proof of the theorem.
We stress some important aspects and implications of

this theorem. Whenever the minimum in Eq. (7) is attained
on the second or third entry, the lower bound coincides with
the upper bound in Eq. (3). This means that in all these
instances the conversion problem is completely solved,
giving rise to the rate

RðψABC → ϕABCÞ ¼ min

�
SðψAÞ
SðϕAÞ ;

SðψBÞ
SðϕBÞ ;

SðψCÞ
SðϕCÞ

�
: ð13Þ

Moreover, the bound in Eq. (7) can be immediately
generalized by interchanging the roles of the parties, i.e.,

RðψABC→ϕABCÞ≥min

�
SðψBÞ

SðϕAÞþSðϕCÞ ;
SðψAÞ
SðϕAÞ ;

SðψCÞ
SðϕCÞ

�
;

ð14Þ

RðψABC→ϕABCÞ≥min

�
SðψCÞ

SðϕAÞþSðϕBÞ ;
SðψAÞ
SðϕAÞ ;

SðψBÞ
SðϕBÞ

�
:

ð15Þ

The best bound is obtained by taking the maximum of
Eqs. (7), (14), and (15).
Our results also shed new light on reversibility questions

for tripartite state transformations. In general, a trans-
formation ψ → ϕ is said to be reversible if the conversion
rates fulfill the relation

Rðψ → ϕÞ ¼ Rðϕ → ψÞ−1: ð16Þ

Let now ψ and ϕ be two states for which the bound in
Theorem 1 is tight, e.g., Rðψ → ϕÞ ¼ SðψAÞ=SðϕAÞ. Due
to Eq. (3) it must be that SðψAÞ=SðϕAÞ ≤ SðψBÞ=SðϕBÞ in
this case. If this inequality is strict (which will be the
generic case), we obtain for the inverse transformation
ϕ → ψ

Rðϕ → ψÞ ≤ SðϕBÞ
SðψBÞ <

SðϕAÞ
SðψAÞ ¼ Rðψ → ϕÞ−1; ð17Þ

FIG. 1. Conversion of a multipartite resource state ρ (a) into the
desired final state σ (d). The conversion is achieved via
entanglement combing, i.e., via transforming the initial state ρ
into singlets [black solid lines in (b)]. One of the singlets is then
converted into the desired final state σ [gray dotted lines in (c)].
The remaining singlets [black solid line in (c)] are then used for
teleporting the parts of σ to the remaining parties.
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where the first inequality follows from Eq. (3). These
results show that those states that saturate the bound (3) do
not allow for reversible transformations in the generic case.
We will now comment on the limits of the approach

presented here. In particular, it is important to note that the
lower bound in Theorem 1 is not optimal in general. This
can be seen in the most simple way by considering the
trivial transformation which leaves the state unchanged,
i.e., ψABC → ψABC. Clearly, this can be achieved with
unit rate R ¼ 1. However, if we apply the lower bound
in Theorem 1 to this transformation, we get R ≥
SðψAÞ=½SðψBÞ þ SðψCÞ�. Due to subadditivity, it follows
that our lower bound is in general below the achievable unit
rate in this case. As an example, consider the family of state
vectors

jψiABC ¼ cos αj0; 0; 0i þ sin α sin βj0; 1; 1i
þ sin α cos βj1; 0; 1i; ð18Þ

for real α, β which we aim to convert into the GHZ state.
The solid line in Fig. 2 shows our lower bound, taking the
maximum of Eqs. (7), (14), and (15) as a function of α for
β ¼ 1=2. The dashed line in Fig. 2 depicts the difference
between the upper bound (3) and our lower bound. Note
that the bounds coincide for a large parameter range of α,
implying that our bound gives the exact conversion rate in
these cases. To the best of our knowledge, this outperforms
any previously known bounds, such as the longstanding
one of Smolin et al. [22] as they consider only one-way
broadcasting protocols while ours is not limited to a
particular class of LOCC.
Multipartite pure states.—In the discussion so far, we

have focused on tripartite pure states. However, the
presented tools can readily be applied to more general
scenarios involving an arbitrary number of parties. In this
more general setup the parties will be called Alice (A) and
N Bobs ðBiÞ with 1 ≤ i ≤ N. The aim of the process in this
case is the asymptotic conversion of the (N þ 1)-partite

pure state ψ ¼ ψAB1;…;BN into the state ϕ ¼ ϕAB1;…;BN . The
general idea for this procedure follows the same line of
reasoning as in the tripartite scenario discussed above. In
the first step, entanglement combing is applied to the state
ψ , i.e., the transformation

ψ → μA1B1

1 ⊗ μA2B2

2 ⊗ � � � ⊗ μANBN
N ð19Þ

with pure states μi. In the next step, Alice and the first Bob
B1 transform their state μA1B1

1 into the desired final state ϕ
via bipartite LOCC. In the final step, Alice applies
Schumacher compression to parts of her state ϕ, and sends
these parts to each of the remaining Bobs B2;…; BN by
using entanglement obtained in the first step of this
protocol. As in the tripartite case, this protocol can be
further optimized by interchanging the roles of the parties
and applying timesharing.
Theorem 2: lower bound for multipartite state conver-

sion.—For N þ 1-partite pure states ψAB1;…;BN and
ϕAB1;…;BN , the LOCC conversion rate is bounded from
below as

RðψAB1;…;BN → ϕAB1;…;BN Þ ≥ min
X

�
SðψAXÞP
Bi∉XSðϕBiÞ

�
; ð20Þ

where X denotes a subsystem of all Bobs, including the
empty set.
The theorem is proven in the Supplemental Material

[18]. By using similar arguments as below Eq. (3), an upper
bound to the conversion rate is found to be

RðψAB1;…;BN → ϕAB1;…;BN Þ ≤ min
i

SðψBiÞ
SðϕBiÞ : ð21Þ

The bounds in Eqs. (20) and (21) coincide if the following
equality holds true for some 1 ≤ i ≤ N,

SðψBiÞ
SðϕBiÞ ¼ min

X

�
SðψAXÞP
Bj∉XSðϕBjÞ

�
: ð22Þ

In those instances, Theorem 2 leads to a full solution of the
conversion problem, and the corresponding rate is given by

RðψAB1;…;BN → ϕAB1;…;BN Þ ¼ min
i

SðψBiÞ
SðϕBiÞ : ð23Þ

As in the tripartite case, the bound of Eq. (20) can be
generalized by interchanging the roles of Alice and
different Bobs.
Generalization to multipartite mixed states.—We will

now show that the ideas which led to lower bounds on
conversion rates in the previous sections can also be used in
this mixed-state scenario. We will demonstrate this on a
specific example, considering the transformation

FIG. 2. Lower bound for the conversion rate from the state
vector jψiABC in Eq. (18) into a GHZ state, obtained by taking the
maximum of Eqs. (7), (14), and (15) [solid line] and the
difference between upper bound (3) and lower bound [dashed
line] for β ¼ 1=2.
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jGHZihGHZj → σ; ð24Þ

where jGHZi ¼ ðj0i⊗Nþ1 þ j1i⊗Nþ1Þ= ffiffiffi
2

p
denotes an

(N þ 1)-partite GHZ state vector, and σ ¼ σAB1;…;BN is
an arbitrary (N þ 1)-partite mixed state. As we show in the
Supplemental Material [18], by using similar methods as
in previous sections, we obtain a lower bound on the
transformation rate,

RðjGHZihGHZj→σÞ≥ 1

EAjB1;…;BN
c ðσÞþPN

j¼3SðσBjÞ
;

ð25Þ

where EAjB1;…;BN
c denotes the entanglement cost [23]

between Alice and all the other Bobs.
The upper bound (21) for the transformation rate R can

be generalized as [see Eq. (146) in Ref. [1] ]

Rðρ → σÞ ≤ min
P

EPjP̄
∞ ðρÞ

EPjP̄
∞ ðσÞ

: ð26Þ

Here, E∞ðρÞ ¼ limn→∞Erðρ⊗nÞ=n is the regularized rela-
tive entropy of entanglement [24,25], and PjP̄ denotes a
bipartition of all the N þ 1 subsystems [26].
Applications in quantum networks.—It should be clear

that the results established here readily allow us to assess
how resources for multipartite protocols can be prepared
from multipartite states given in some form. Specifically,
our techniques lead to optimal GHZ distillation rates for
various classes of pure states and the lower bound can be
computed easily for states of low dimension, rendering
them useful for any quantum information processing tasks
relying on GHZ states. In particular, GHZ states readily
provide a resource for quantum secret sharing [8,9] in
which a message is split into parts so that no subset of
parties is able to access the message, while at the same time
the entire set of parties is. It also gives rise to an efficient
scheme of quantum secret sharing requiring purely classical
communication during the reconstruction phase [27].
One motivation of our endeavor stems from the need to

establish how multipartite resources for protocols beyond
point-to-point schemes in quantum networks can be pre-
pared and manipulated. Indeed, point-to-points schemes
focus on the formation of Bell states through a network
to perform bipartite applications such as quantum key
distribution. However, distributing multipartite resources is
mandatory for quantum protocols such as quantum secret
sharing [8,9], quantum voting [28], or distributed quantum
computing [29] which exploit the natural multipartite
entanglement of a quantum network. We expect the study
of multipartite resources to be particularly important when
thinking of applications such as transforming resources into
the desired form in quantum networks [7]. Here, multipartite
entanglement is conceived to be created by local processes

and bipartite transmissions involving pairs of nodes,
followed by steps of entanglement manipulation, which
presumably involve instances of classical routing techniques.
Creating entanglement is undeniably costly in quantum
networks. It has already been established on the single-shot
level that nodes of a quantum network allow for quicker
communication with fewer requirements concerning the
channel capacity and memory than sharing bipartite pairs
between nodes [30–32], specifically in networks featuring
bottlenecks such as in the butterfly network. Building on
these findings, it seems imperative that previously distributed
states are reused as much as possible by converting them into
desired resources rather than using more precious entangle-
ment, in schemes involving more than one copy at a time.
The bounds above can, e.g., be readily applied to the setting
in which the preparation of smaller graph states has been
successful [30–32], but from which larger GHZ states are
still to be built up without wanting to discard previously
prepared steps. We hope that our established bounds provide
meaningful guidance as to how to manage and recycle
resources for quantum networks.
Conclusions.—In this Letter, we have reported substan-

tial progress on asymptotic state transformation via multi-
partite local operations and classical communication,
tackling an important long-standing problem that to a large
extent remained open since the early development of
quantitative entanglement theory [4]. Similar techniques
may also prove helpful in the study of other quantum
resource theories different from entanglement, such as the
resource theory of quantum coherence [33] and quantum
thermodynamics [34,35]. Putting notions of entanglement
combing into a fresh light, we have been able to derive
stringent bounds on multipartite entanglement transforma-
tions. This progress seems particularly relevant in the light
of the advent of quantum networks and the quantum
internet in which multipartite features are directly exploited
beyond point-to-point architectures. It is the hope that the
present work stimulates further progress in the under-
standing of multipartite protocols.
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