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The search for a simple description of fundamental physical processes is an important part of quantum
theory. One example for such an abstraction can be found in the distance lab paradigm: if two separated
parties are connected via a classical channel, it is notoriously difficult to characterize all possible operations
these parties can perform. This class of operations is widely known as local operations and classical
communication. Surprisingly, the situation becomes comparably simple if the more general class of
separable operations is considered, a finding that has been extensively used in quantum information theory
for many years. Here, we propose a related approach for the resource theory of quantum coherence, where
two distant parties can perform only measurements that do not create coherence and can communicate
their outcomes via a classical channel. We call this class local incoherent operations and classical
communication. While the characterization of this class is also difficult in general, we show that the larger
class of separable incoherent operations has a simple mathematical form, yet still preserves the main
features of local incoherent operations and classical communication. We demonstrate the relevance of our
approach by applying it to three different tasks: assisted coherence distillation, quantum teleportation, and
single-shot quantum state merging. We expect that the results we obtain in this work also transfer to other
concepts of coherence that are discussed in recent literature. The approach we present here opens new ways
to study the resource theory of coherence in distributed scenarios.
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I. INTRODUCTION

The resource theory of quantum coherence is a vivid
research topic, and various approaches in this direction
have been presented over the past few years [1–6]. The
formalism proposed recently by Baumgratz et al. [5] has
triggered the interest of several authors, and a variety of
results have been obtained since then. One line of research
is the formulation and interpretation of new coherence
quantifiers [7–11], in particular, those arising from
quantum correlations such as entanglement [12,13]. The
study of coherence dynamics under noisy evolution is
another promising research direction [14–18]. The role of
coherence in biological systems [19–21], thermodynamics
[22–26], spin models [27–29], and other related tasks in
quantum theory [30–38] has also been investigated.
In the framework introduced by Baumgratz et al. [5],

quantum states that are diagonal in some fixed basis fjiig

are called incoherent: these are all states of the form
ρ ¼ P

kpkjkihkj. A quantum operation is called incoherent
if it can be written in the form ΛðρÞ ¼ P

lKlρK
†
l , with

incoherent Kraus operators Kl, i.e., Kljmi ∼ jni, where jmi
and jni are elements of the incoherent basis. Significant
progress within this resource theory has been achieved by
Winter and Yang [39]. In particular, they introduced the
distillable coherence and presented a closed formula for it
for all quantum states. Similar to the distillable entangle-
ment [40,41], the distillable coherence is defined as the
maximal rate for extracting maximally coherent single-
qubit states,

jΨ2i ¼
1ffiffiffi
2

p ðj0i þ j1iÞ; ð1Þ

from a given mixed state ρ via incoherent operations.
Another closely related quantity is the relative entropy of
coherence, initially defined as [5]

CrðρÞ ¼ min
σ∈I

Sðρ∥σÞ; ð2Þ

where Sðρ∥σÞ ¼ Tr½ρlog2ρ� − Tr½ρlog2σ� is the relative
entropy, and the minimum is taken over the set of
incoherent states I . Crucially, the relative entropy of
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coherence is equal to the distillable coherence and can be
evaluated exactly [5,39]:

CdðρÞ ¼ CrðρÞ ¼ S(ΔðρÞ) − SðρÞ; ð3Þ

where SðρÞ ¼ −Tr½ρ log2 ρ� is the von Neumann entropy
and ΔðρÞ ¼ P

khkjρjkijkihkj denotes dephasing of ρ in the
incoherent basis.
Recently, various alternative concepts of coherence have

been presented in the literature. We briefly review the most
important approaches in the following, and refer to
Refs. [6,42–44] and references therein for more details.
While all these notions agree on the definition of incoherent
states as states that are diagonal in a fixed reference basis,
they differ significantly in the definition of the correspond-
ing free operations. A notable approach in this context is
the notion of translationally invariant operations; these are
operations that commute with unitary translations e−iHt for
some HamiltonianH [2,3]. As was shown byMarvian et al.
[45], for nondegenerate Hamiltonians translationally invari-
ant operations are a proper subset of incoherent operations.
Moreover, translationally invariant operations have several
desirable properties, such as a free dilation: they can be
implemented by introducing an incoherent ancilla, per-
forming a global incoherent unitary followed by an
incoherent measurement on the ancilla, and postselection
on the outcomes [43]. As was also shown in Ref. [43],
incoherent operations introduced by Baumgratz et al. [5] in
general do not have such a free dilation. While the existence
of a free dilation is clearly appealing from the resource-
theoretic perspective, the question of whether every rea-
sonable resource theory should have a free dilation is still
not fully settled.
By a similar motivation, Chitambar and Gour [42]

introduced the concept of physical incoherent operations.
These operations have a free dilation if one allows incoherent
projective measurements on the ancilla followed by classical
processing of the outcomes. Interestingly, the resource theory
obtained in this way does not have a maximally coherent
state; i.e., there is no unique state from which all other states
can be obtained via physically incoherent operations. This is
also true for genuinely incoherent and fully incoherent
operations [44]. Genuinely incoherent operations are defined
as operations that preserve all incoherent states; they capture
the framework of coherence under additional constrains such
as energy preservation [44]. Moreover, all genuinely inco-
herent operations are incoherent regardless of a particular
experimental realization. Fully incoherent operations is the
most general set having this property [44].
An alternative approach to coherence was made by

Yadin et al. [46], who studied quantum processes that
do not use coherence. Such a process cannot be used to
detect coherence in a quantum state; i.e., an experimenter
who has access to those operations and incoherent von
Neumann measurements will not be able to decide if a

quantum state has coherence or not. These operations
coincide with strictly incoherent operations, which were
introduced earlier by Winter and Yang [39].
As has been shown in several recent works, quantum

coherence plays an important role in various tasks that are
based on the laws of quantum mechanics. One such task is
quantum state merging, which was first introduced and
studied in Reffs. [47,48]. The interplay between entangle-
ment and local coherence in this task was investigated very
recently in Ref. [49]. An important concept in this context
is the notion of local quantum-incoherent operations and
classical communication (LQICC) [50]. This class of
operations is similar to the class of local operations and
classical communication (LOCC) where Alice and Bob can
apply local measurements and share their outcomes via a
classical channel, with the only difference that Bob’s
measurements have to be incoherent [50].
In this paper, we consider the situation where both

parties, Alice and Bob, can perform only incoherent
measurement on their parts. The corresponding class is
called local incoherent operations and classical communi-
cation (LICC). Moreover, we also generalize these notions
to separable operations known from entanglement theory
[41,51,52], thus introducing separable incoherent (SI)
operations, and separable quantum-incoherent (SQI) oper-
ations. We study the relation of all these classes among
each other, and apply them to the task of assisted coherence
distillation, which was first introduced in Ref. [50]. We also
introduce and discuss the task of incoherent teleportation
and study the relation between our classes on single-shot
quantum state merging. As we discuss in Sec. VI, we
expect that the ideas we present in this work will find
applications beyond quantum information theory, most
prominently in quantum thermodynamics and related
research areas.

II. CLASSES OF INCOHERENT OPERATIONS
IN DISTRIBUTED SCENARIOS

The framework of local operations and classical com-
munication is one of the most important concepts in
entanglement theory, as it describes all transformations
that two separated parties (Alice and Bob) can perform if
they apply local quantum measurements and have access to
a classical channel [41,53]. These operations are difficult to
capture mathematically, since a general LOCC operation
can involve an arbitrary number of rounds of classical
communication [41,53]. However, in many relevant cases it
is enough to consider the informal definition given above.
In a similar fashion, we define the class of local incoherent
operations and classical communication: these are LOCC
operations with the additional constraint that the local
measurements of Alice and Bob have to be incoherent. We
also consider the case where Alice can perform arbitrary
quantum measurements, while Bob is restricted to incoher-
ent measurements only. The corresponding class of
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operations is called local quantum-incoherent operations
and classical communication [50].
Another important framework in entanglement theory is

separable operations. While this class is larger than LOCC
[54], it has a simple mathematical description, and still
preserves the main features of LOCC [41,53]. Separable
operations were initially introduced in Refs. [51,52] as
follows:

ΛS½ρAB� ¼
X
i

Ai ⊗ Biρ
ABA†

i ⊗ B†
i : ð4Þ

The product operators Ai ⊗ Bi are Kraus operators; i.e.,
they fulfill the completeness condition

X
i

A†
i Ai ⊗ B†

i Bi ¼ 1: ð5Þ

The set of all separable operations is called S. If all the
operators Ai and Bi are incoherent, i.e., if they satisfy the
conditions

AijkiA ∼ jliA; ð6Þ

BijmiB ∼ jniB; ð7Þ

we call the total operation separable incoherent [55]. In
the more general case where only Bob’s operators Bi are
incoherent—and, thus, only Eq. (7) is satisfied—the
corresponding operation is called separable quantum
incoherent.
Having introduced the notion of LICC, LQICC, SI,

and SQI operations, we now study the action of these
operations on the initial incoherent state j0iAj0iB. It is easy
to see that the set of states created from j0iAj0iB via LICC
and via SI operations is the same, and given by states of
the form

ρi ¼
X
k;l

pkljkihkjA ⊗ jlihljB: ð8Þ

States of this form are known as fully incoherent states
[12,14], and the set of all such states is denoted by I.
Similarly, the set of states created from j0iAj0iB via LQICC
and via SQI operations is the set of quantum-incoherent
states QI . These are states of the form [50]

ρQI ¼
X
j

pjσ
A
j ⊗ jjihjjB: ð9Þ

From the above results, we immediately see that SI
operations map the set of fully incoherent states I onto
itself, and the same is true for LICC operations. Similarly,
SQI operations and LQICC operations map the set of
fully incoherent states I onto the larger set of quantum-
incoherent states QI . These statements are summarized in
the following equalities:

ΛSI½I � ¼ ΛLICC½I � ¼ I ; ð10Þ

ΛSQI½I � ¼ ΛLQICC½I � ¼ QI : ð11Þ

In general, LICC is the weakest set of operations, and the
set of separable operations S is the most powerful set of
operations considered here. Thus, we get the following
inclusions:

LICC ⊂ SI ⊂ SQI ⊂ S; ð12aÞ

LICC ⊂ LQICC ⊂ SQI ⊂ S; ð12bÞ

LICC ⊂ LQICC ⊂ LOCC ⊂ S: ð12cÞ

For all of the above inclusions it is straightforward to see
the weaker form X⊆Y, where X and Y is the corresponding
set of operations. For most of these inclusions, X ⊂ Y can
then be proven by applying the corresponding sets of
operations to the set of fully incoherent states I . As an
example, SI ⊂ SQI follows from the fact that ΛSI½I � ¼ I
while ΛSQI½I � ¼ QI . The same arguments apply to all the
above inclusions apart from

LICC ⊂ SI; ð13Þ

LQICC ⊂ SQI; ð14Þ

and LOCC ⊂ S. As already noted above Eq. (4), the
inclusion LOCC ⊂ S was proven by Bennett et al. [54],
and the remaining two can be proven using very similar
arguments. In particular, Bennett et al. [54] presented a
separable operation that cannot be implemented via LOCC.
The corresponding product operators of this operation have
the following form [see Eq. (4) in Ref. [54]]:

Ai ⊗ Bi ¼ jiihαijA ⊗ jiihβijB: ð15Þ

The particular expressions for jαii and jβii were given in
Ref. [54] (see also the Appendix), but are not important for
the rest of our proof. However, it is important to note that
the states jiiA and jiiB are incoherent states of Alice and
Bob, respectively. It is straightforward to see that this
separable operation is also a SI operation. Moreover, since
this operation cannot be implemented via LOCC, it also
cannot be implemented via LICC. This completes the
proof of Eq. (13). The proof of Eq. (14) follows by the
same reasoning.
The hierarchy of the sets LICC, SI, LOCC, and S is

shown in Fig. 1. Note that the above reasoning also implies
that the sets LOCC and SI have an overlap, but one is not a
subset of the other. Moreover, the figure also depicts a
region of operations (crossed area) that are simultaneously
contained in LOCC and SI, but not in LICC. Such
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operations would have the property that they cannot create
any bipartite coherence. On the other hand, they can be
implemented via local operations and classical communi-
cation, but for that they require local coherent operations on
at least one of the parties. It remains an interesting open
question as to whether such operations exist at all. If the
answer to this question is negative, the intersection of
LOCC and SI is equal to LICC. We also mention that
similar questions arise if we consider the sets LQICC and
SQI. These sets are not included in Fig. 1 for simplicity.
Their inclusions are shown in Eq. (12). In the following
section, we apply the tools presented here to the task
of assisted coherence distillation, initially presented in
Ref. [50].

III. ASSISTED COHERENCE DISTILLATION

A. General setting

The task of assisted coherence distillation via bipartite
LQICC operations was introduced and studied in Ref. [50].
In this task, Alice and Bob share many copies of a given
state ρ ¼ ρAB. The aim of the process is to asymptotically
distill maximally coherent single-qubit states on Bob’s side.
In particular, we are interested in the maximal possible rate
for this procedure.
In the following, we extend this notion beyond LQICC

operations. For this we consider the maximal amount of
coherence that can be distilled on Bob’s side via the set of
operations X, where X is either LICC, LQICC, SI, or SQI
[56]. The corresponding distillable coherence on Bob’s side
is denoted by CX and can, in general, be given as follows:

CAjB
X ðρÞ¼ supfc∶ lim

n→∞
ð inf
Λ∈X

∥TrA½Λ½ρ⊗n��− jcihcj⊗n∥Þ¼ 0g;
ð16Þ

where jci ¼ jciB is a state on Bob’s subsystem with
distillable coherence CdðjciÞ ¼ c and ∥M∥ ¼ Tr½

ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
�

is the trace norm. For more details regarding this definition
of CX and for equivalent expressions, we refer the reader to

Sec. III D. The quantityCAjB
LQICC was introduced in Ref. [50],

where it was called distillable coherence of collaboration.
From Eqs. (12a) and (12b) we immediately see that all

quantities CX considered here are between CLICC and CSQI.
In the following, we also consider the QI relative entropy,
which was defined in Ref. [50] as follows:

CAjB
r ðρÞ ¼ min

σ∈QI
Sðρ∥σÞ: ð17Þ

As was also shown in Ref. [50], the QI relative entropy can
be written in closed form:

CAjB
r ðρÞ ¼ S(ΔBðρÞ) − SðρÞ: ð18Þ

Note that the QI relative entropy is additive and does not
increase under SQI operations. Thus, it does not increase
under any set of operations X considered here.
It is interesting to compare the QI relative entropy to

the basis-dependent quantum discord, which was initially
introduced in Ref. [57] and can be written as

δAjBðρÞ ¼ IA∶BðρÞ − IA∶BðΔB½ρ�Þ; ð19Þ

with the mutual information IA∶BðρÞ ¼ SðρAÞ þ SðρBÞ−
SðρABÞ. Recently, Yadin et al. [46] studied the role of this
quantity within the resource theory of coherence. Contrary
to the results presented in Ref. [57], the basis-dependent
discord vanishes on a larger set of states than the QI relative
entropy. While the latter is zero if and only if the
corresponding state is quantum incoherent, the basis-
dependent discord vanishes for all states of the form
ρ ¼ P

ipiρ
A
i ⊗ ρBi , where the states ρBi are perfectly dis-

tinguishable by measurements in the incoherent basis [46].
This is, in particular, the case if ρ is quantum incoherent
or a product state, and other examples have also been
presented in Ref. [46].
Quite remarkably, we see below that CSI is equal to CSQI

for all states ρ, and, moreover, all quantities CX are
bounded above by the QI relative entropy. The following
inequality summarizes these results:

CAjB
LICC ≤ CAjB

LQICC ≤ CAjB
SI ¼ CAjB

SQI ≤ CAjB
r : ð20Þ

The equality CAjB
SI ¼ CAjB

SQI is proven in the following

proposition, and the bound CAjB
SQI ≤ CAjB

r is proven in
Theorem 2.
Proposition 1.—For an arbitrary bipartite state ρ ¼ ρAB,

the following equality holds:

FIG. 1. Hierarchy of LICC, SI, LOCC, and separable oper-
ations S. The set of LICC operations is the weakest set, and S is
the most powerful set. The crossed region displays operations that
are in LOCC and SI, but not in LICC. It remains open if such
operations exist. For simplicity, we do not display the sets LQICC
and SQI.
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CAjB
SI ðρÞ ¼ CAjB

SQIðρÞ: ð21Þ

Proof.—In the first step of the proof we show that for any
state ρAB and an arbitrary SQI operation ΛSQI there exists a
SI operation ΛSI leading to the same reduced state of Bob:

TrA½ΛSI½ρAB�� ¼ TrA½ΛSQI½ρAB��: ð22Þ

The desired SI operation is given by

ΛSI½ρAB� ¼
X
i

ΠA
i ΛSQI½ρAB�ΠA

i ; ð23Þ

where ΠA
i ¼ jiihijA is a complete set of orthogonal pro-

jectors onto the incoherent basis of Alice. It is straightfor-
ward to see that the above operation satisfies Eq. (22) and is
indeed separable and incoherent.

Now, given a state ρ ¼ ρAB with CAjB
SQIðρÞ ¼ c, for any

ε > 0, there exists an integer n ≥ 1 and a SQI operation
ΛSQI acting on n copies of ρ such that

∥TrA½ΛSQI½ρ⊗n�� − jcihcj⊗n∥ ≤ ε; ð24Þ

where jci is a pure state with CdðjciÞ ¼ c. By using
Eq. (22), it follows that for any ε > 0 and some integer
n ≥ 1 there also exists a SI operation ΛSI with the same
property:

∥TrA½ΛSI½ρ⊗n�� − jcihcj⊗n∥ ≤ ε: ð25Þ

These arguments show that CSI is bounded below by CSQI.
The proof of the theorem is complete by noting that CSI is
also bounded above by CSQI since SI ⊂ SQI. ▪
This proposition shows that SQI operations do not

provide an advantage when compared to SI operations in
the considered task: both sets of operations lead to the same
maximal performance. This result is remarkable since the
sets SI and SQI are not equal. It is now tempting to assume

that the same method can also be used to prove thatCAjB
LICC is

equal to CAjB
LQICC, i.e., that quantum operations on Alice’s

side do not provide any advantage for assisted coherence
distillation. Note, however, that the above proof does not
apply to this scenario, and thus the question remains open
for general mixed states. However, as we see in the next

section, for pure states CAjB
LICC is indeed equal to CAjB

LQICC.
In the following theorem, we prove that CSQI is bounded

above by the QI relative entropy. This completes the proof
of the inequality Eq. (20).

Theorem 2.—For any bipartite state, ρ ¼ ρAB holds:

CAjB
SQIðρÞ ≤ CAjB

r ðρÞ: ð26Þ

Proof.—This proof goes along similar lines of reasoning
as the proof of Theorem 3 in Ref. [50]. From the definition
of CSQI in Eq. (16), it follows that for any ε > 0 there exists
a state jϕi, an integer n > 1, and a SQI protocol ΛSQI acting
on n copies of ρ ¼ ρAB such that

CAjB
SQIðρÞ − CrðjϕiÞ ≤ ε; ð27Þ

∥ΛSQI½ρ⊗n� − ρ⊗n
f ∥ ≤ ε; ð28Þ

with the final state ρf ¼ j0ih0jA ⊗ jϕihϕjB.
Equation (28) together with the continuity of QI relative

entropy [58] implies that for any 0 < ε ≤ 1=2 there exists
an integer n ≥ 1 and a SQI protocolΛSQI acting on n copies
of ρ, such that

CAjB
r ðΛSQI½ρ⊗n�Þ ≥ CAjB

r ðρ⊗n
f Þ − 2nε log2 d − 2hðεÞ; ð29Þ

where hðxÞ ¼ −x log2 x − ð1 − xÞ log2ð1 − xÞ is the
binary entropy and d is the dimension of AB. Now,
we use the fact that the QI relative entropy is additive
[50] and does not increase under SQI operations. This
means that for any 0 < ε ≤ 1=2 there exists an integer
n ≥ 1 such that

CAjB
r ðρÞ ≥ CAjB

r ðρfÞ − 2ε log2 d −
2

n
hðεÞ: ð30Þ

The above inequality together with the fact CAjB
r ðρfÞ ¼

CrðjϕiÞ and Eq. (27) implies that for any 0 < ε ≤ 1=2
there exists an integer n ≥ 1 such that

CAjB
r ðρÞ ≥ CAjB

SQIðρÞ − ε − 2ε log2 d −
2

n
hðεÞ: ð31Þ

This completes the proof of the theorem. ▪
Proposition 1 and Theorem 2 in combination imply

Eq. (20). It remains an open question of whether the
inequalities in Eq. (20) are strict. As we see in the next
section, this is not the case for a pure state: in this case, all
quantities are equal to the von Neumann entropy of the
fully decohered state of Bob ΔðρBÞ.
Before we turn our attention to this question, we first

characterize all quantum states that are useful for assisted
coherence distillation via the sets of operations X consid-
ered above. Note that a quantum-incoherent state cannot be
used for extraction of coherence on Bob’s side via any set
of operations X. On the other hand, as we show in the
following theorem, any state that is not quantum incoherent
can be used for extracting coherence via LICC.
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Theorem 3.—A state ρ ¼ ρAB has CAjB
LICCðρÞ > 0 if

and only if it is not quantum incoherent.
Proof.—As CAjB

LICCðρABÞ ¼ 0 for any quantum-incoherent
state ρAB, the claim follows if we show that ρAB is not QI

implies CAjB
LICCðρABÞ > 0. Without loss of generality, let the

non-QI state be given as

ρAB ¼
X
i;j

jeiihejjA ⊗ NB
ij; ð32Þ

where fjeiiAg is an orthonormal basis for Alice’s Hilbert
space [59] and NB

ij are some operators on Bob’s space. By
the non-QI assumption, at least one of the fNijg has off-
diagonal elements.
We note that Nii ≥ 0, so Nii ≠ 0⇔ Tr½Nii� > 0. If an

Nii has off-diagonal elements, then the state of Bob
after Alice’s incoherent measurement with Kraus operator
KA

i ¼ jiiheijA is ρBi ∼ Nii, with nonzero probability

Tr½Nii� > 0. Hence, CAjB
LICCðρABÞ > 0.

We now assume that all Nii are diagonal. In this case—
by the non-QI assumption—some of the operatorsNkl must
have off-diagonal elements for some k ≠ l. If one of the
operators Nkl (by Hermiticity of ρ, we can assume k < l
without loss of generality) has some off-diagonal elements,
then at least one of the operators P ≔ Nkl þ N†

kl, Q ≔
iðNkl − N†

klÞ will also have off-diagonal elements.
Depending on which is the case, Alice performs an
incoherent measurement containing the Kraus operator
KP ≔ j0ihePj or KQ ≔ j0iheQj, where we define jePi ≔
cos θjeki þ sin θjeli, jeQi ≔ cos θjeki þ i sin θjeli, and the
unknown parameter θ will be determined soon. In the first
case, the postmeasurement state of Bob is given by

ρBθ ∼ cos2 θNkk þ sin2 θNll þ cos θ sin θðNkl þ N†
klÞ;

ð33Þ

which, by assumption, has off-diagonal elements. Note that
since sin2θ, cos2θ, sin θ cos θ are linearly independent
functions, there is always some 0 < θ < π=2 for which
the trace of the right-hand side is nonzero; i.e., with
nonzero probability ρBθ is coherent. Similarly, in the other
case, where iðNkl − N†

klÞ is assumed to have off-diagonal
elements, the postmeasurement state of Bob is coherent
with nonzero probability.
Thus, whenever ρAB is not QI, with nonzero probability

Alice can steer Bob’s state to a coherent one, which Bob
can distill by using the methods presented by Winter and

Yang [39], so CAjB
LICCðρABÞ > 0. ▪

Since LICC is the weakest set of operations considered
here, this theorem also means that a state that is not
quantum incoherent can be used for coherence distillation
on Bob’s side via any set of operations presented above.

B. Pure states

In the following we study the scenario where the state
shared by Alice and Bob is pure, and the aim is to distill
coherence at maximal rate on Bob’s side via the sets of
operations presented above. Before we study this task, we
recall the definition of coherence of assistance given in
Ref. [50]:

CaðρÞ ¼ max
X
i

piCrðjψ iiÞ; ð34Þ

where the maximum is performed over all pure state
decompositions of ρ. We now prove the following lemma.
Lemma 4.—For any pure state jΨiAB there exists an

incoherent measurement on Alice’s side such that

X
i

piCrðjψ iiBÞ ¼ CaðρBÞ; ð35Þ

where jψ iiB are Bob’s postmeasurement states with cor-
responding probability pi.
Proof.—Note that any pure state can be written as

jΨiAB ¼
X
i

ffiffiffiffiffi
pi

p jeiiAjψ iiB; ð36Þ

where the states jeiiA are mutually orthogonal (but not
necessarily incoherent), and the states jψ iiB together with
probabilities pi fulfill Eq. (35). The desired incoherent
measurement on Alice’s side now consists of the following
incoherent Kraus operators: KA

i ¼ jiiheijA. It can be veri-
fied by inspection that Bob’s postmeasurement states
indeed fulfill Eq. (35). This completes the proof of
the lemma. ▪
Lemma 4 implies that for any pure state CAjB

LICC is
bounded below by the regularized coherence of assistance
of Bob’s reduced state:

C∞
a ðρBÞ ≤ CAjB

LICCðjΨiABÞ; ð37Þ

where the regularized coherence of assistance is defined as
[50] C∞

a ðρÞ ¼ limn→∞Caðρ⊗nÞ=n. To prove this statement,
consider the situation where Alice and Bob share n ·m
copies of the pure state jΨi ¼ jΨiAB. Using Lemma 4, it
follows that in the limit of large m Alice and Bob can use n
copies of jΨi to extract coherence at rate Caðρ⊗n

B Þ on Bob’s
side, and thus

Caðρ⊗n
B Þ ≤ CAjB

LICCðjΨi⊗nÞ: ð38Þ

The proof of Eq. (37) is complete by dividing this inequal-
ity by n and taking the limit n → ∞. Equipped with these
results, we are now in position to prove the following
theorem.
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Theorem 5.—For any bipartite pure state jΨi ¼ jΨiAB
the following equality holds:

CAjB
LICCðjΨiÞ ¼ CAjB

LQICCðjΨiÞ ¼ CAjB
SI ðjΨiÞ

¼ CAjB
SQIðjΨiÞ ¼ CAjB

r ðjΨiÞ ¼ S(ΔðρBÞ): ð39Þ

Proof.—Combining Eqs. (20) and (37), we arrive at the
inequality

C∞
a ðρBÞ ≤ CAjB

X ðjΨiÞ ≤ CAjB
r ðjΨiÞ; ð40Þ

where X is one of the sets considered above. The proof is
complete by using the following equality, which holds for
all pure states [50]:

CAjB
r ðjΨiÞ ¼ C∞

a ðρBÞ ¼ S(ΔðρBÞ): ð41Þ

▪
This result is surprising: it implies that the performance

of the protocol does not depend on the particular set of
operations performed by Alice and Bob. In particular, the
optimal performance can already be reached by the weakest
set of operations LICC, which restricts both Alice and
Bob to local incoherent operations and classical commu-
nication. A better performance cannot be achieved if Alice
is allowed to perform arbitrary quantum operations on her
side (LQICC), and even if Alice and Bob have access to the
most general set of operations considered here (SQI). This
statement is true whenever Alice and Bob share a pure state.

C. Maximally correlated states

Here, we consider assisted coherence distillations for
states of the form

ρAB ¼
X
i;j

ρijjiiihjjjAB: ð42Þ

States of this form are known as maximally correlated
states [60]. However, note that the family of states given in
Eq. (42) does not contain all maximally correlated states,
since jiiA and jjiB are incoherent states of Alice and Bob,
respectively. We call these states maximally correlated in
the incoherent basis. As we show in the following propo-
sition, also for this family of states the inequalities Eq. (20)
become equalities.
Proposition 6.—For any state ρ ¼ ρAB that is maximally

correlated in the incoherent basis, the following equality
holds:

CAjB
LICCðρÞ ¼ CAjB

LQICCðρÞ ¼ CAjB
SI ðρÞ ¼ CAjB

SQIðρÞ
¼ CAjB

r ðρÞ ¼ S(ΔBðρÞ) − SðρÞ: ð43Þ

Proof.—To prove this statement it is enough to prove the
equality

CAjB
LICCðρÞ ¼ S(ΔBðρÞ) − SðρÞ: ð44Þ

For this, we present a LICC protocol achieving the above
rate. In particular, we show that there exists an incoherent
measurement on Alice’s side such that every postmeasure-
ment state of Bob has coherence equal to S(ΔBðρÞ) − SðρÞ.
The corresponding incoherent Kraus operators of Alice
are given by KA

j ¼ jjihψ jjA, where the states jψ ji are
mutually orthogonal, maximally coherent, and form a
complete basis [61]. Since the states jψ ji are all maximally

coherent, they can be written as jψ ji ¼ 1=
ffiffiffiffiffi
dA

p P
ke

iϕj
k jki,

with some phases ϕj
k, and dA is the dimension of A. The

corresponding postmeasurement states of Bob are then
given by

ρBj ¼
X
k;l

eiðϕ
j
l−ϕ

j
kÞρkljkihljB: ð45Þ

If we now introduce the incoherent unitary Uj ¼P
ke

iϕj
k jkihkj, we see that this unitary transforms the state

ρBj to the state

Ujρ
B
j U

†
j ¼

X
k;l

ρkljkihljB: ð46Þ

Since the relative entropy of coherence is invariant under
incoherent unitaries, it follows that all states ρBj have the
same relative entropy of coherence:

CrðρBj Þ ¼ CrðUjρ
B
j U

†
jÞ ¼ Cr

�X
k;l

ρkljkihljB
�
: ð47Þ

It is straightforward to verify that the right-hand side of this
expression is equal to S(ΔBðρÞ) − SðρÞ, which completes
the proof of the proposition. ▪
The above proposition can also be generalized to states

of the form

ρAB ¼
X
i;j

ρijUjiihjjAU† ⊗ jiihjjB; ð48Þ

where the unitary U acts on the subsystem of Alice. In this
case, the proposition can be proven in the same way, by
applying the incoherent Kraus operators KA

j ¼ jjihψ jjAU†

on Alice’s side.
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These results show that the inequality Eq. (20) reduces to
equality in a large number of scenarios, including all pure
states, states that are maximally correlated in the incoherent
basis, and even all states that are obtained from the latter
class by applying local unitaries on Alice’s subsystem.
However, it remains open if Eq. (20) is a strict inequality for
any mixed state.

D. Remarks on the definition of CX

Here, we provide some remarks on the definition of CX,
where the set of operations X is either LICC, LQICC, SI, or
SQI. First, we note that the definition of CX given in
Eq. (16) is equivalent to the following:

CAjB
X ðρÞ ¼ supfR∶ lim

n→∞
ð inf
Λ∈X

∥TrA½Λ½ρ⊗n�� −Ψ⊗⌊Rn⌋
2 ∥Þ ¼ 0g;

ð49Þ

where ⌊x⌋ is the largest integer below or equal to x and
Ψ2 ¼ jΨ2ihΨ2jB is a maximally coherent single-qubit state
on Bob’s side. To see that the expressions (16) and (49) are
indeed equivalent, it is enough to note that every set of
operations X includes all incoherent operations on Bob’s
side, and that the theory of quantum coherence is asymp-
totically reversible for pure states; i.e., a state jψ1i with
distillable coherence c1 can be asymptotically converted
into any other state jψ2iwith distillable coherence c2 at rate
c1=c2 [39].
In the above discussion we implicitly assume that the

Hilbert space of Alice and Bob has a fixed finite
dimension, and that the incoherent operations performed
by the parties preserve their dimension. One might
wonder if the performance of any of the assisted dis-
tillation protocols X discussed above changes if this
assumption is relaxed, i.e., if Alice and Bob have access
to additional local incoherent ancillas. This amounts to
considering operations on the total state of the form
ρAB ⊗ σA

0 ⊗ σB
0
, where

σA
0 ¼ j0ih0jA0

and σB
0 ¼ j0ih0jB0 ð50Þ

are additional incoherent states of Alice and Bob,
respectively. As we see below, local incoherent ancillas
cannot improve the performance of the procedure as long
as SI and SQI operations are considered. For this, we first
prove the following lemma.
Lemma 7.—For any SI operation ~ΛSI acting on the

state ρAB ⊗ σA
0 ⊗ σB

0
there exists another SI operation

ΛSI acting on ρAB such that the resulting state of AB is
the same:

ΛSI½ρAB� ¼ TrA0B0 ½ ~ΛSI½ρAB ⊗ σA
0 ⊗ σB

0 ��: ð51Þ

Proof.—This can be seen explicitly, by considering the
form of a general SI operation ~ΛSI acting on ρAB ⊗
σA

0 ⊗ σB
0
:

~ΛSI½ρAB ⊗ σA
0 ⊗ σB

0 �
¼

X
i

~Ai ⊗ ~BiðρAB ⊗ σA
0 ⊗ σB

0 Þ ~A†
i ⊗ ~B†

i ; ð52Þ

where the operators ~Ai and ~Bi act on AA0 and BB0,
respectively. The corresponding SI operation ΛSI satisfying
Eq. (51) is then given by

ΛSI½ρAB� ¼
X
k;l;m

Aklm ⊗ BklmðρABÞA†
klm ⊗ B†

klm: ð53Þ

The incoherent operators Aklm and Bklm depend on the
operators ~Ai and ~Bi and have the following explicit form:

Aklm ¼ TrA0 ½ ~Akð1A ⊗ j0ihljA0 Þ�; ð54Þ

Bklm ¼ TrB0 ½ ~Bkð1B ⊗ j0ihmjB0 Þ�; ð55Þ

where fjliA0 g is a complete set of incoherent states on A0,
and fjmiB0g is a complete set of incoherent states on B0.
Using the fact that ~Ak and ~Bk are incoherent, it is
straightforward to verify that the operators Aklm and
Bklm are also incoherent. Equation (51) can also be verified
by inspection. ▪
The above lemma implies that local incoherent ancillas

on Alice’s or Bob’s side cannot improve the performance of
the protocol if SI operations are considered. This can be
seen by contradiction, assuming that by using a state ρAB

and local incoherent ancillas Bob can extract maximally

coherent single-qubit states at rate R > CAjB
SI . Applying

Theorem 2 and noting that the QI relative entropy does not
change under attaching local incoherent ancillas, it follows

that the rate R is bounded above by CAjB
r , which is again

bounded above by log2 dB, where dB is the dimension of
Bob’s subsystem:

log2 dB ≥ CAjB
r ðρÞ ≥ R > CAjB

SI ðρÞ: ð56Þ

The inequality log2 dB ≥ R means that if additional inco-
herent ancillas would improve the procedure at all, they are
not needed at the end of the protocol and can be discarded
[62]. These results together with Lemma 7 imply that the
rate R is also reachable without additional ancillas as long
as SI operations are considered.
Very similar arguments can also be applied to the case of

SQI operations. In this case, one can prove an equivalent
statement to Lemma 7: for any SQI operation acting on
ρAB ⊗ σA

0 ⊗ σB
0
there exists a SQI operation acting on ρAB

such that the final state of AB is the same. This implies that
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local incoherent ancillas cannot improve the performance
in this case as well. It remains unclear if incoherent ancillas
can provide advantage for LICC or LQICC operations.
However, if Alice and Bob share a pure state, incoherent
ancillas cannot provide any advantage also in this case due
to Theorem 5.

IV. INCOHERENT TELEPORTATION

In standard quantum teleportation introduced by Bennett
et al. [63], Alice aims to transfer her single-qubit state to
Bob by using LOCC together with one singlet. We now
consider the task of incoherent teleportation, which is the
same as standard teleportation up to the fact that LOCC is
replaced by LICC. This means that Alice and Bob are
allowed to apply only incoherent operations locally, and
share their outcomes via a classical channel.
It seems that the restriction to local incoherent operations

provides a severe constraint, and it is tempting to assume
that Alice and Bob will not be able to achieve perfect
teleportation in this way, at least if they have no access to
additional coherent resource states. As we show in the
following theorem, this intuition is not correct.
Theorem 8.—Perfect incoherent teleportation of an

unknown state of one qubit is possible with one singlet
and two bits of classical communication.
Proof.—To prove this statement, recall that in the

standard teleportation protocol Alice applies a Bell meas-
urement on her qubits A and A0 of the total initial state

jΨi ¼ jψiA0 ⊗ jϕþiAB; ð57Þ

where jϕþiAB ¼ ðj00i þ j11iÞ= ffiffiffi
2

p
is a maximally

entangled state and jψi is the desired state subject to
teleportation. Alice then communicates the outcome of her
measurement to Bob. Depending on the outcome of Alice’s
measurement, either Bob finds his particle B in the desired
state jψi or he has to additionally apply one of the Pauli
matrices σ1, iσ2, or σ3.
It is now crucial to note that all Pauli matrices are

incoherent: σijmi ∼ jni. This means that Bob can perform
his conditional rotation in an incoherent way. We now show
that Alice’s Bell measurement can also be performed in a
locally incoherent way. For this, let jϕii denote the four
Bell states and consider the Kraus operators defined as
Ki ¼ j00ihϕijAA0

. Note that these operators are local in
Alice’s lab, and, moreover, they are incoherent with respect
to the bipartite incoherent basis of Alice. Finally, note that
these Kraus operators lead to the same postmeasurement
states of Bob as the projectors jϕiihϕijAA0

. This completes
the proof of the theorem. ▪
The above theorem shows that LICC operations are

indeed powerful enough to allow for perfect teleportation.
Since LICC is the weakest set of operations considered
here, the same is also true for all the other sets LQICC, SI,

and SQI: all these sets allow for perfect teleportation of an
unknown qubit with one additional singlet. These results
can be immediately extended to any system of n qubits, in
which case n additional singlets are required.

V. SUPERIORITY OF SQI OPERATIONS IN
SINGLE-SHOT QUANTUM STATE MERGING

In the discussion so far, and in particular in Eqs. (12), we
see that the set SQI is strictly larger than LICC, LQICC,
and SI. At this point it is important to note that a larger set
of operations is not automatically more useful for real
physical applications. Nevertheless, the results presented
above indeed imply the existence of such physical tasks
where the set SQI is more useful, when compared to the
other sets individually. For completeness, we review these
results in the following.

(i) SQI is superior to SI and LICC in the task of
quantum state preparation. In particular, by starting
from an initial state j00iAB, SQI operations can
prepare all quantum-incoherent states, while only
fully incoherent states can be prepared by SI and
LICC operations; see Eqs. (10) and (11).

(ii) SQI is superior to LICC and LQICC in the task of
quantum state discrimination. In particular, there
exists a set of bipartite states that can be discrimi-
nated via SQI (and also via SI), but not via LICC
and LQICC. This is discussed in detail in Sec. II;
see Eq. (15).

It is now interesting to note that these two arguments are
unrelated, and each of the arguments does not automati-
cally imply the other one. In particular, the first argument
for the superiority of SQI in comparison to SI and LICC
cannot be used to show superiority in comparison to
LQICC, since the set of states that can be prepared via SQI
and LQICC is the same. On the other hand, the second
argument showing superiority of SQI in comparison to
LICC and LQICC cannot be used to show superiority in
comparison to SI, since both SQI and SI are equally well
suited for the considered task; see also Sec. II for more
details. It is thus natural to ask for the existence of a
quantum technological task that shows superiority of
SQI operations with respect to all the other sets
simultaneously.
In the following, we present such an application, which

is based on the well-known task of quantum state merging.
The latter task was introduced and studied in Refs. [47,48],
and extended to the framework of coherence in Ref. [49]. In
this task, three parties, Alice, Bob, and a referee, share a
tripartite state ρRAB. The aim of the process is to send Bob’s
system to Alice [64] while keeping the overall state intact.
In contrast to Refs. [47–49], we do not allow Alice and Bob
to share any singlets, and, moreover, restrict them to the
sets of operations considered in this paper, i.e., LICC,
LQICC, SI, or SQI.
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We consider the merging of the following tripartite state:

ρRAB ¼ 1

9

X
i

jiihijR ⊗ jψ iihψ ijAB; ð58Þ

where jψ ii ¼ jαii ⊗ jβii are nine 3 × 3 product states
chosen as in Eq. (3) in Ref. [54] (see also the
Appendix). Moreover, Alice has access to an additional
register A0 of dimension 3 in an incoherent initial state j0iA0

.
Alice uses this register to store Bob’s system. The total final
state is given by

ρRAA
0B

f ¼ ΛX½ρRAB ⊗ j0ih0jA0 �; ð59Þ

where X denotes one of the four sets of operations we
consider here. The process is successful if ρRAA

0
f is the same

as ρRAB up to relabeling B and A0. Here, we consider the
single-shot scenario; i.e., the corresponding operation is
applied to one copy of the state only.
As we now show, this task can be performed via SQI, but

not via any of the other three sets. For proving that the task
can be performed via SQI, it is enough to recall that SQI
operations can be used to distinguish the states jψ ii. For
each outcome i Alice can then locally prepare her system
AA0 in the state jψ iiAA0

, which again can be achieved via
SQI operations [65]. In the next step, we show that this task
cannot be performed via LQICC operations. This can be
seen by contradiction, assuming that LQICC operations can
perform merging in this scenario, i.e., that

TrB½ΛLQICC½ρRAB ⊗ j0ih0jA0 �� ¼ 1

9

X
i

jiihijR ⊗ jψ iihψ ijAA0
;

ð60Þ

for some LQICC protocol ΛLQICC. By linearity, it must be
that

jψ iihψ ijAA0 ¼ TrB½ΛLQICC½jψ iihψ ijAB ⊗ j0ih0jA0 ��; ð61Þ

i.e., Alice and Bob could use the protocol to transfer Bob’s
part of jψ iiAB to Alice. Since the states jψ iiAB form an
orthonormal basis, this would imply that Alice and Bob
could distinguish the states jψ iiAB via LQICC (and thus
also via LOCC), which is a contradiction to the main result
of Ref. [54]. This also proves that the task cannot be
performed via LICC operations.
It now remains to show that the task cannot be performed

via SI operations. We prove this statement by using general
properties of QI relative entropy given in Eq. (17) and its
closed expression in Eq. (18). In particular, recall that the
QI relative entropy cannot increase under SI operations,
which implies that

CRBjAA0
r ðρRAA0B

f Þ ≤ CRBjAA0
r ðρRAB ⊗ j0ih0jA0 Þ; ð62Þ

where ρf is the final state given in Eq. (59). In the next step,
we use the following relations:

CRjAA0
r ðρRAA0

f Þ ≤ CRBjAA0
r ðρRAA0B

f Þ; ð63Þ

CRBjA
r ðρRABÞ ¼ CRBjAA0

r ðρRAB ⊗ j0ih0jA0 Þ; ð64Þ

which can be proven directly from the properties of QI
relative entropy. Combining these results we arrive at the
following inequality:

CRjAA0
r ðρRAA0

f Þ ≤ CRBjA
r ðρRABÞ: ð65Þ

In the final step of the proof, assume that SI operations
allow us to perform the aforementioned task. We now show
that this assumption leads to a contradiction. In particular,
by our assumption the final state ρRAA

0
f must be the same

as ρRAB, up to relabeling B and A0. Thus, Eq. (65) is
equivalent to

CRjAB
r ðρRABÞ ≤ CRBjA

r ðρRABÞ: ð66Þ

By applying Eq. (18) together with the expression for the
state ρRAB in Eq. (58) and using the states jψ ii in Eq. (3) of
Ref. [54] (see also the Appendix), we can now evaluate
both sides of this inequality:

CRjAB
r ðρRABÞ ¼ 8

9
; ð67Þ

CRBjA
r ðρRABÞ ¼ 4

9
; ð68Þ

which is the desired contradiction. This finishes the proof
that the task we consider here can be performed with SQI
operations, but not with any other set LICC, LQICC, or SI.
Thus, we present the first example for a quantum

technological application that can be performed via SQI
operations, but cannot be performed with any of the other
sets of operations considered in this paper.

VI. CONCLUSIONS

In this paper, we study the resource theory of coherence
in distributed scenarios. In particular, we focus on the
following four classes of operations: local incoherent
operations and classical communication (LICC), local
quantum-incoherent operations and classical communica-
tion (LQICC), separable incoherent operations (SI), and
separable quantum-incoherent operations (SQI). We show
that these classes obey inclusion relations very similar to
those between LOCC and separable operations known from
entanglement theory.
We further study the role of these classes for the task of

assisted coherence distillation, first introduced in Ref. [50].
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Regardless of the particular class of operations, we prove
that a bipartite state can be used for coherence extraction on
Bob’s side if and only if the state is not quantum incoherent.
We also show that the relative entropy distance to the set of
quantum-incoherent states provides an upper bound for
coherence distillation on Bob’s side, a result that again does
not depend on the class of operations under scrutiny.
Remarkably, both the SI and the SQI operations lead to
the same performance in this task for all mixed states. For
pure states an even stronger result is proven: in this case, all
classes of operations we consider here are equivalent for
assisted coherence distillation. We also study the task of
incoherent teleportation, which arises from standard quan-
tum teleportation by restricting the parties to LICC oper-
ations only. We show that in this situation LICC operations
do not provide any restriction: perfect teleportation of an
unknown qubit can be achieved with LICC and one
additional singlet. Finally, we compare these classes on
the task of single-shot quantum state merging. In this task,
SQI operations provide an advantage with respect to all the
other classes we consider here.
The tools we present here can be regarded as a first step

towards a full resource theory of coherence in distributed
scenarios. Indeed, while in the course of this work we
focused on the coherence framework of Baumgratz et al.
[5], it is important to note that the presented ideas are
significantly more general. As an example, our tools can be
directly applied to the situation where local incoherent
operations are replaced by another well-justified set, such
as strictly incoherent [39,46], translationally invariant
[2,3,43,45], or physical incoherent operations [42].
These alternative frameworks have been extensively stud-
ied in recent literature, and each of them captures the
concept of coherence in a different scenario [6]. Because of
the close connection between all these frameworks, it is
clear that the ideas we present in this work also carry over
to these concepts. In particular, the results we present here,
in general, serve as bounds for other concepts of coherence.
We also expect that these bounds are tight in several
relevant situations, e.g., for pure states. While the inves-
tigation of these questions is beyond the scope of this
work, it has the potential to provide a unified view for
all frameworks of coherence, and ultimately put the
resource theory of coherence on equal footing with other
quantum resource theories, most prominently the theory of
entanglement [41].
Future research in this direction is also important in light

of the recent progress towards understanding the role of
coherence in quantum thermodynamics [24,25]. Here, the
framework of thermal operations turned out to be very
useful [66]. These operations arise from the first and second
law of thermodynamics, and are known to be translation-
ally invariant [24,25]. Because of this, the tools we develop
in our work can also be applied to quantum thermody-
namics. This research direction has the potential to reveal

new surprising effects, similar to well-known phenomena
such as bound entanglement [67,68] in quantum informa-
tion theory or the work-locking phenomenon [22,24,26,69]
in quantum thermodynamics.
Recently, quantum coherence in multipartite systems has

also been discussed by other authors [46,70,71]. While
these works also study the role of coherence for quantum
state manipulation, their motivation is significantly differ-
ent from the concept we present here. In particular, the
framework of coherence in multipartite systems is naturally
suited for studying general nonclassical correlations such as
quantum discord, as discussed in Refs. [46,70]. Another
important research direction pursued in Refs. [70,71] is the
role of coherence for deterministic quantum computation
with one qubit (DQC1) [72]. This quantum protocol allows
for efficient evaluation of the trace of a unitary, provided
that the unitary has an efficient description in terms of two-
qubit gates. Remarkably, this protocol does not require
entanglement, while showing an exponential speed-up over
the best known classical procedure [73]. The authors of
Ref. [70] present a figure of merit for this task, which is
related to the consumption of coherence in this protocol.
Interestingly, while their figure of merit vanishes for
unitaries of the form U ¼ eiϕ1, it is unclear if a classical
algorithm can evaluate the trace of this unitary efficiently
[70]. In light of these results, we expect that the tools we
present in our work can also find applications for the DQC1
protocol and quantum computation in general. This is
beyond of the scope of the current work, and we leave
it open for future research.
We also note that the class of LICC operations was

introduced independently by Chitambar and Hsieh [74].
They study the tasks of asymptotic state creation and
distillation of entanglement and coherence via LICC
operations; i.e., local coherence is considered as an addi-
tional resource. They also independently obtain the results
of our Theorems 3 and 5 and for LICC operations.
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APPENDIX: THE NINE PRODUCT STATES
FROM REF. [54]

Here, we list the states jψ ii ¼ jαii ⊗ jβii from Eq. (3) of
Ref. [54]:

jψ1i ¼ jα1i ⊗ jβ1i ¼ j1i ⊗ j1i;

jψ2i ¼ jα2i ⊗ jβ2i ¼ j0i ⊗ 1ffiffiffi
2

p ðj0i þ j1iÞ;

jψ3i ¼ jα3i ⊗ jβ3i ¼ j0i ⊗ 1ffiffiffi
2

p ðj0i − j1iÞ;

jψ4i ¼ jα4i ⊗ jβ4i ¼ j2i ⊗ 1ffiffiffi
2

p ðj1i þ j2iÞ;

jψ5i ¼ jα5i ⊗ jβ5i ¼ j2i ⊗ 1ffiffiffi
2

p ðj1i − j2iÞ;

jψ6i ¼ jα6i ⊗ jβ6i ¼
1ffiffiffi
2

p ðj1i þ j2iÞ ⊗ j0i;

jψ7i ¼ jα7i ⊗ jβ7i ¼
1ffiffiffi
2

p ðj1i − j2iÞ ⊗ j0i;

jψ8i ¼ jα8i ⊗ jβ8i ¼
1ffiffiffi
2

p ðj0i þ j1iÞ ⊗ j2i;

jψ9i ¼ jα9i ⊗ jβ9i ¼
1ffiffiffi
2

p ðj0i − j1iÞ ⊗ j2i:
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