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Entanglement quantification aims to assess the value of quantum states for quantum information
processing tasks. A closely related problem is state convertibility, asking whether two remote parties can
convert a shared quantum state into another one without exchanging quantum particles. Here, we explore
this connection for quantum entanglement and for general quantum resource theories. For any quantum
resource theory which contains resource-free pure states, we show that there does not exist a finite set of
resource monotones which completely determines all state transformations. We discuss how these
limitations can be surpassed, if discontinuous or infinite sets of monotones are considered, or by using
quantum catalysis. We also discuss the structure of theories which are described by a single resource
monotone and show equivalence with totally ordered resource theories. These are theories where a free
transformation exists for any pair of quantum states. We show that totally ordered theories allow for free
transformations between all pure states. For single-qubit systems, we provide a full characterization of state
transformations for any totally ordered resource theory.
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Entangled quantum systems can exhibit features which
seem to contradict our intuition, based on our “classical”
perception of nature [1]. Even Einstein was puzzled by
some of the consequences of entanglement, concluding that
quantum theory cannot be complete [2]. Today, entangled
quantum systems are actively explored as an important
ingredient of the emerging quantum technologies [1]. This
includes applications such as quantum key distribution [3],
where entangled systems are used to establish a provably
secure key for communication between distant parties.
Another groundbreaking application of entanglement is
quantum teleportation [4], allowing us to send the state of a
quantum system to a remote party by using shared
entanglement and classical communication.
The development of a resource theory of entanglement

[1] made it possible to study the role of entanglement for
technology in a systematic way. This theory introduced the
distant lab paradigm, with two remote parties (Alice and
Bob) being equipped with local quantum laboratories and
connected via a classical communication channel [5–7]. It
has been noticed that entanglement between Alice and Bob
cannot be created in this setting. Thus, entangled states
become a valuable resource, allowing the remote parties to
perform tasks which are not possible without it.
In recent years, it became clear that not all quantum

technological tasks are based on entanglement, but can
make use of other quantum features, such as quantum
coherence [8,9], contextuality [10–12], or imaginarity
[13–16]. This has led to the development of general
quantum resource theories [17]. In analogy to entangle-
ment, a quantum resource theory is based on the set of free

states fρfg and free operations fΛfg. All states which are
not free are called resource states. A free operation cannot
create resource states from free states. The sets of free states
and operations can be motivated by physical constraints, as
is done, e.g., in the resource theory of quantum thermo-
dynamics [18,19], where the free state is the Gibbs state,
and the free operations preserve the total energy of the
system and a heat bath [20]. Another motivation for a
resource theory can arise from symmetries, where the free
states and operations are symmetric with respect to some
physical transformations. An example for such theory is the
resource theory of asymmetry [21]. Also, the resource
theory of coherence can be formulated in this framework, if
the free states are diagonal in a reference basis and the free
operations are dephasing covariant [22–26]. Similarly, the
resource theory of imaginarity has free states which have
only real elements in a reference basis, and the free
operations are covariant with respect to transposition [27].
Two fundamental problems in any quantum resource

theory are state convertibility and resource quantification.
The state convertibility problem is asking whether for two
quantum states there exists a free operation converting one
state into the other. The goal of resource quantification is to
quantify the amount of the resource in a quantum state. In
general, there is no unique quantifier which captures all
aspects of a resource theory, and a suitable quantifier
depends on the concrete problem under study.
There are some elementary properties which are

common to all resource quantifiers [17]. Recalling that
resource states cannot be created from free states via free
operations, it is intuitive to assume that the degree of the
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resource in a quantum system cannot increase under free
operations, even if the initial state is not free. Thus, every
meaningful resource quantifier should not increase under
free operations [6,17,28,29]:

RðΛf½ρ�Þ ≤ RðρÞ; ð1Þ

for any state ρ and any free operation Λf. Quantifiers
having this property are also called resource monotones.
Both problems mentioned above—state convertibility

and resource quantification—are in fact closely connected.
A state ρ can be converted into σ via free operations if and
only if

RðρÞ ≥ RðσÞ ð2Þ

holds true for all resource monotones [30]. On the other
hand, the fact that Eq. (2) holds for some resource mono-
tone R does not guarantee that the transformation ρ → σ is
possible via free operations. There might however exist a
complete set of resource monotones fRig which com-
pletely characterizes all state transformations; i.e., a trans-
formation ρ → σ is possible if and only if RiðρÞ ≥ RiðσÞ
holds true for all i. The first such complete set of
monotones has been presented for bipartite pure states in
entanglement theory [31,32], and it was shown that there is
no finite set of faithful and strongly monotonic entangle-
ment monotones which can capture transformations
between all mixed states [33]. Complete sets of monotones
for concrete resource theories have been studied [34–38],
and constructions for general quantum resource theories
have been presented in Ref. [30]. It is worth noting that
quantum resource theories that are completely governed by
amajorization relation have a finite set ofmonotones [39,40].
Finite sets of resource monotones cannot be complete.—

In this Letter we show that a finite complete set of resource
monotones does not exist for a large class of quantum
resource theories. Our results make only minimal assump-
tions on the resource monotones: additionally to Eq. (1) we
require that the resource monotones are continuous
[a resource monotone R is continuous if for all states ρ
and ε > 0 there exists a δ > 0 such that for all σ that
satisfies kρ − σk1 < δ we have jRðρÞ − RðσÞj < ε, where
kMk1 ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
is the trace norm] and faithful [a

resource monotone R is faithful if RðρÞ ¼ 0 if and only
if ρ is a free state]. Continuity is a very natural assumption
which is fulfilled for most resource monotones studied in
the literature—it guarantees that the value of a resourceful
state is robust to perturbations. In fact, in many cases the
monotones fulfill continuity in an even stronger form; e.g.,
many entanglement monotones are asymptotically continu-
ous [41,42]. Similarly, faithful monotones are often pre-
ferred since they detect some value in any nonfree state. We
also use the standard assumptions that the set of free states
is convex and compact, that the identity operation is free,

and that any free state can be obtained from any state via
free operations [this is fulfilled by resource theories that
“admit a tensor product structure” [17], since for any free
state σ the following measure-and-prepare channel is also
free: ΛðρÞ ¼ TrðρÞσ]. The latter assumption implies that
any resource monotone is minimal and constant on all free
states—without loss of generality we set it to zero. We
further say that a state ρ can be converted into a state σ via
free operations if for any ε > 0 there is a free operation Λf

such that kΛfðρÞ − σk1 < ε. Clearly, the trivial resource
theory where all states and all operations are free admits a
complete set of continuous monotones. Therefore, we say
that a resource theory is nontrivial if there exists a free state
and a nonfree state. With these assumptions, we are now
ready to prove the first main result of this Letter.
Theorem 1.—For any nontrivial resource theory which

contains free pure states, there does not exist a finite complete
set of continuous and faithful resource monotones.
Proof.—By contradiction, let there be a complete finite

set of continuous resource monotones fRig. Let ρ be a
nonfree state. Since the set of free states is compact (and
therefore closed), without loss of generality we can assume
that ρ is full rank—otherwise we take a mixture with the
completely mixed state. Since Ri is faithful, we have
RiðρÞ > 0 for all i. Moreover, we define the pure state,

jψεi ¼
ffiffiffiffiffiffiffiffiffiffi
1 − ε

p
jϕfi þ

ffiffiffi
ε

p jϕ⊥
f i; ð3Þ

with some free pure state jϕfi and 0 < ε < 1. Using again
the fact that the set of free states is closed, the state jψεi can
be chosen such that it is not free for all small ε > 0; i.e., we
choose jϕfi to be on the boundary of the set of free states.
Since Ri is continuous and Riðψε¼0Þ ¼ 0, we can choose
εi > 0 such that RiðρÞ ≥ RiðψεiÞ for each i. Take
ε ¼ miniεi, which must be strictly positive since there
are a finite number of Ri. Using again the continuity of Ri,
we have RiðρÞ ≥ RiðψεÞ for all i. If fRig form a complete
set of monotones, there must be a free operation converting
ρ into jψεi. Note that jψεi is a resource state and that ρ is
full rank. It is however not possible to convert a full rank
state into a pure resource state via free operations [43,44];
see also Supplemental Material [45]. We thus arrive at a
contradiction, and the proof is complete. ▪
The above theorem applies to the resource theory of

entanglement, both in bipartite and multipartite setting.
Moreover, the resource theories of coherence, asymmetry,
and imaginarity also contain resource-free pure states,
which makes our theorem applicable also to these theories.
The theorem also applies to the resource theory of quantum
thermodynamics in the limit T → 0 if the ground state of
the corresponding Hamiltonian is not degenerate, since the
Gibbs state is pure in this case.
As a particular example, this means that no finite

collection of continuous and faithful monotones can char-
acterize the state transitions in positive partial transpose
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(PPT) theory. This is despite the fact that for any given two
states ρ, σ, checking whether there exists a PPT operation
that achieves the transition ΛðρÞ ¼ σ is a semidefinite
programming problem.
Surpassing the limitations: Discontinuous monotones,

infinite sets, and resource catalysis.—Does the result in
Theorem 1 also hold if we take discontinuous monotones
into account? As we will see in the following, there exist
resource theories which have a finite complete set of
resource monotones in this case, at least for qubit systems.
This holds for the theories of coherence and imaginarity in
the single-qubit setting. For the theory of coherence, all
transformations for a single qubit are described by the
robustness of coherence CR and the Δ robustness of
coherence CΔ;R, which are given as [22–24,51–53]

CRðρÞ ¼ min
τ

�
s ≥ 0∶

ρþ sτ
1þ s

∈ I
�
; ð4Þ

CΔ;RðρÞ ¼ min
Δ½σ�¼Δ½ρ�

�
s ≥ 0∶

ρþ sσ
1þ s

∈ I
�
; ð5Þ

where I is the set of incoherent states, i.e., states which are
diagonal in a reference basis. Note that in the single-qubit
setting both measures can be evaluated as CRðρÞ ¼ 2jρ0;1j
and CΔ;RðρÞ ¼ jρ0;1j= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ0;0ρ1;1
p

[23,24,51]. From this we
see that CΔ;RðρÞ ¼ 1 for all pure states which have
coherence. Since CΔ;RðρÞ ¼ 0 for all incoherent states,
this implies that CΔ;R is not continuous.
For the resource theory of imaginarity we can construct a

complete set of monotones for the single-qubit setting in
terms of the Bloch coordinates ðrx;ry;rzÞ of the states
[14,15]:

I1ðρÞ ¼ r2y; ð6Þ

I2ðρÞ ¼
r2y

1 − r2x − r2z
: ð7Þ

As has been shown in Refs. [14,15], I1 and I2 do not
increase under real operations, and fully describe the
transformations in the single-qubit setting. Moreover, I2
is not continuous, since I2ðρÞ ¼ 1 for all pure states which
have imaginarity and I2ðρÞ ¼ 0 on all real states.
Note that in the resource theory of asymmetry [21,54,55]

a complete set of monotones can also be constructed for
single-qubit settings (see the Supplemental Material for
more details [45]). While the resource theory of quantum
thermodynamics [56] in general does not contain resource-
free pure states, we demonstrate in the Supplemental
Material that a complete set of monotones can also be
found in quantum thermodynamics in the qubit setting [45].
Another way to surpass the limitations of Theorem 1 is to

allow for an infinite set of resource monotones [30]. The
following is a simple construction of an infinite complete
set of resource monotones:

RνðρÞ ¼ inf
Λf

kΛf½ν� − ρk
1
; ð8Þ

where ν is a quantum state which at the same time serves as
a parameter of the monotone Rν. To prove that Rν is a
resource monotone, let Λ̃f be a free operation such that
RνðρÞ ≥ kΛ̃f½ν� − ρk1 − ε for some ε > 0 (note that such
Λ̃f exists for any ε > 0). Then, for any free operationΛf we
find

RνðρÞ ≥ kΛ̃f½ν� − ρk
1
− ε ≥ kΛf∘Λ̃f½ν� − Λf½ρ�k1 − ε

≥ RνðΛf½ρ�Þ − ε; ð9Þ

where we have used the fact that the trace norm does not
increase under quantum operations. Since the above
inequality holds true for any ε > 0, we conclude that
RνðρÞ ≥ RνðΛf½ρ�Þ, as claimed. To prove that Rν form a
complete set, consider two states ρ and σ such that RνðρÞ ≥
RνðσÞ for all states ν. By choosing ν ¼ ρ and noting that
RρðρÞ ¼ 0, it follows that RρðσÞ ¼ 0. This implies that ρ
can be converted into σ via free operations. The above
arguments also imply that the set of all resource monotones
is complete in any quantum resource theory; i.e., ρ can be
converted into σ via free operations if and only if RðρÞ ≥
RðσÞ for all resource monotones. We also note that different
construction of a complete set of monotones for general
quantum resource theories has been given in Ref. [30].
A third way to surpass the limitations of Theorem 1 is to

use quantum catalysis [57]. A quantum catalyst is an
additional quantum system which is not changed in the
overall procedure [58]. Recently, significant progress has
been achieved in the study of correlated and approximate
catalysis, where a catalyst can build up correlations with the
system, and the procedure is allowed to have an error which
can be made negligibly small [59–64]. In this framework, a
system state ρS can be converted into σS if for any ε > 0

there exists a catalyst state τC and a free operationΛf acting
on the system S and the catalyst C such that [57,60,63,64]

kΛfðρS ⊗ τCÞ − σS ⊗ τCk
1
≤ ε; ð10Þ

TrS½ΛfðρS ⊗ τCÞ� ¼ τC: ð11Þ

Remarkably, in the resource theory of coherence catalytic
transformations are completely described by a single
quantity, known as the relative entropy of coherence
CðρÞ ¼ SðΔ½ρ�Þ − SðρÞ with the von Neumann entropy
SðρÞ ¼ −Tr½ρlog2ρ�. In particular, it is possible to trans-
form ρ into σ via dephasing covariant operations and
approximate catalysis if and only if CðρÞ ≥ CðσÞ [65];
see also Supplemental Material [45]. A similar statement
can be made for the resource theory of quantum thermo-
dynamics based on Gibbs-preserving operations. In this
case, catalytic transformations via Gibbs-preserving
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operations are fully described by the Helmholtz free energy
[59]. Equivalently, a catalytic transformation ρ → σ is
possible in this setting if and only if [59] SðρjjγÞ ≥
SðσjjγÞ with the Gibbs state γ and the quantum relative
entropy SðρkγÞ ¼ Tr½ρlog2ρ� − Tr½ρlog2γ�.
Single complete resource monotone and total order.—

One of the early problems in entanglement theory is to find
a complete set of conditions that characterizes the state
transformations. While it quickly became clear that no
finite set of conditions suffices [33] (except in special cases,
e.g., pure states), the argument relies on specific features of
entanglement. Therefore the problem remains open for
other resource theories. In the last part of the Letter we will
investigate the structure of “simple” resource theories
which have a single complete resource monotone; i.e., a
free transformation from ρ to σ is possible if and only if
RðρÞ ≥ RðσÞ for a single monotone R. We will show that
such theories are equivalent to total ordering of the states.
We will also provide some partial characterization of such
theories, that shows such simple theories must have a very
restricted form, which explains why state transformations
in commonly considered resource theories cannot be
governed by a single monotone.
In the following, we call a resource theory totally

ordered if for any pair of states ρ and σ there exists a
free transformation in (at least) one direction ρ → σ or
σ → ρ. We further introduce the resource monotone

RðρÞ ¼ min
μ∈F

kρ − μk1; ð12Þ

where F is the set of free states. It is straightforward to see
that R is a monotone in any quantum resource theory.
We are now ready to prove the following theorem.
Theorem 2.—A resource theory has a single complete

monotone if and only if the theory is totally ordered.
The proof idea is to use the fact that R½ð1 − εÞσ þ εμ� is a

strictly nonincreasing function of ε for any free state μ. We
refer to the Supplemental Material for the full proof [45].
This shows that the existence of a single monotone that is
complete is equivalent to a total ordering of the set of states
by the free transformations. We will now prove some
additional features of totally ordered resource theories.
Theorem 3.—Any totally ordered quantum resource

theory allows for free transformations between any two
pure states jψi → jϕi.
See Supplemental Material for the full proof [45]. It is

important to note that Theorem 3 implies

RðψÞ ¼ RðϕÞ ð13Þ

for any two pure states jψi and jϕi.
We will now fully characterize all totally ordered

resource theories for d ¼ 2. We will start by characterizing
the set of free states, using again the monotone R in
Eq. (12). Note for two single-qubit states ρ and σ with

Bloch vectors r and s it holds kρ − σk1 ¼ jr − sj. Since all
pure states are equally far away from the set of free states
due to Eq. (13), it must be that the set of free states is a ball
around the maximally mixed state. Denoting the radius of
this ball by t we can characterize the set of free states as
follows:

F t ¼
�
σ∶

����σ −
1
2

����
1

≤ t

�
; ð14Þ

with t ∈ ½0; 1�. For any given t we can now evaluate the
resource monotone R for any state ρ:

RðρÞ ¼ maxfjrj − t; 0g: ð15Þ

Thus, in a totally ordered resource theory for a single qubit
all state transformations are determined by the length of the
Bloch vector. For any two resource states ρ and σ (with
Bloch vectors r and s) a free transformation ρ → σ is
possible if and only if jrj ≥ jsj. Moreover, a transformation
ρ → σ is always possible whenever jsj ≤ t, since σ is a free
state in this case.
An example for a totally ordered resource theory in the

single-qubit setting is the resource theory of purity [66,67],
which corresponds to the case t ¼ 0. Wewill now show that
a totally ordered resource theory exists for any t ∈ ½0; 1�.
For a given t, we define the set of free operations to be all
unital operations, i.e., all operations with the property
Λ½1=2� ¼ 1=2. Additionally, all fixed-output operations
such that Λ½ρ� ¼ σ with σ ∈ F t are considered free.
Noting that via unital operations it is possible to transform
a qubit state ρ into another qubit state σ if and only if
jrj ≥ jsj [67], we see that the free states and operations
defined in this way give rise to a totally ordered resource
theory, withF t being the set of free states. Note that the key
property enabling this construction is that unital operations
induce a total order. However, since this property does not
hold for d ≥ 3, we cannot generalize the construction to
higher dimensional systems.
Conclusions.—We have investigated the possibility to

have a complete set of monotones in general quantum
resource theories. Using only minimal assumptions, such
as monotonicity and continuity, we have proven that a
complete finite set of monotones does not exist, if a
resource theory contains free pure states. This result is
applicable to the theory of entanglement in bipartite and
multipartite settings, and also to the theories of coherence,
imaginarity, and asymmetry. It is however possible to find
complete sets of monotones by either allowing disconti-
nuity or considering infinite sets, and we gave examples for
such complete sets in various resource theories.
We have further considered resource theories where the

state transformations are governed by a single monotone.
We proved that any such theory must be totally ordered,
where any pair of states admits a free transformation in
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(at least) one direction. We provided a partial characteri-
zation of any such theory, any totally ordered resource
theory must allow for free transformations between all
pure states, and provided a full characterization of state
transformations for all totally ordered resource theories for a
single qubit. It remains an open question whether there exist
totally ordered resource theories for d ≥ 3. Nevertheless,
this shows the severe restrictions one imposes when we
assume that transformations are governed by a single
monotone. Another open problem concerns the extension
of our results to the resource theories of quantum channels,
where—instead of states—transformations between quan-
tum channels are considered [68]. It is not clear at this
moment how the results presented in this Letter extend to
these resource theories.
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