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Abstract
The minimum time required for a quantum system to evolve to a distinguishable state is set by the
quantum speed limit, and consequently influences the change of quantum correlations and other
physical properties. Here we study the time required to maximally entangle two principal systems
interacting either directly or via a mediating ancillary system, under the same energy constraints.
The direct interactions are proved to provide the fastest way to entangle the principal systems, but
it turns out that there exist mediated dynamics that are just as fast. We show that this can only
happen if the mediator is initially correlated with the principal systems. These correlations can be
fully classical and can remain classical during the entangling process. The final message is that
correlations save energy: one has to supply extra energy if maximal entanglement across the
principal systems is to be obtained as fast as with an initially correlated mediator.

An evolution of a quantum state into a distinguishable one requires finite time. The shortest time to achieve
this task is governed by the quantum speed limit (QSL). The first lower bound on the shortest time was
derived in a pioneering work by Mandelstam and Tamm [1]. Thereafter, important advancements and
extensions of the QSL were reported, for example, for pure states [2–4] as well as mixed states [5–8]. The
applications of these fundamental findings have been valuable in many areas, e.g. in the analysis for the rate
of change of entropy [9], coherence and correlations in bipartite settings [10, 11], the limitations in quantum
metrology [12] and quantum computation [13, 14], and the limit on charging capability of quantum
batteries [15–17]. See also [18, 19] for studies showing the application of QSL in the classical regime.

The widely accepted time bound for an evolution of a quantum state ρ (in general, mixed) to another
state σ is known as the unified QSL [20, 21], which reads

τ(ρ,σ)⩾ ℏ
Θ(ρ,σ)

min{⟨H⟩,∆H}
, (1)

whereΘ(ρ,σ) = arccos(F(ρ,σ)) denotes a distance measure known as the Bures angle,
F(ρ,σ) = tr

(√√
ρσ

√
ρ
)
the Uhlmann root fidelity [22, 23], ⟨H⟩= tr(Hρ)− Eg the mean energy taken

relative to the ground level of the Hamiltonian, Eg , and∆H=
√
tr[H2ρ]− tr[Hρ]2 the standard deviation of

energy (SDE). Note also that other distances have been employed [21]. In essence, equation (1) is often
described as a version of time-energy uncertainty relation as the evolution time is lower bounded by the
amount of energy (mean or variance) initially accessible to the system.
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Here we investigate the evolution speed of two principal objects A and B, which interact either directly or
via an ancillary system C. While direct interactions place no restrictions on the joint Hamiltonian HAB, the
mediated dynamics is mathematically encoded in the assumption that the tripartite Hamiltonian is a sum
HAC +HBC that excludes the terms coupling A and B directly. Note that local Hamiltonians, i.e. HA, HB, and
HC, are already included in these general forms. These scenarios are quite generic and applicable to ample
situations. We are interested in contrasting them and in identifying resources different than energy that play
a role in speeding up the evolution. We therefore impose the same energy constraint (the denominator in
equation (1)) in both bipartite and tripartite settings. Under this condition we show achievable minimal time
required to maximally entangle principal systems starting from disentangled states. It turns out that the
mediated dynamics cannot be faster than the optimal direct dynamics, but it can be just as fast provided that
the mediator is initially correlated with the principal systems. We show additionally, with an explicit
example, that although entanglement gain between A and B is the desired quantity, the correlations to the
mediator can remain classical at all times, see also [24, 25]. These results can be interpreted in terms of
trading correlations for energy. If one starts with an uncorrelated mediator and aims at entangling the
principal systems as fast as with a correlated mediator, additional energy has to be supplied initially. On the
other hand, due to energy conservation, the same energy must be invested in order to prepare the correlated
mediator, see [26–28] for a discussion from a thermodynamic perspective.

1. Preliminaries

Figure 1 summarises different considered generic scenarios. We shall refer to the case of direct interactions as
DI and split the mediated interactions into two cases where mediator C either interacts with the principal
systems at all times (CMI for continuously mediated interactions) or where it first interacts with A and then
with B (SMI for sequentially mediated interactions). Note that SMI in particular covers the case of
commuting Hamiltonians HAC and HBC. We begin by explaining the energy constraints imposed on these
scenarios.

Consider, for the moment, a unitary evolution of a quantum state ρ(0) to ρtar generated by a
Hamiltonian H. One can see from the unified QSL in equation (1) that there are two relevant quantities: one
being the fidelity F(ρ(0),ρtar) between the initial and target state and the other min{⟨H⟩,∆H}, which is the
minimum of the non-negative mean energy or SDE. It is straightforward to check that scaling of the
Hamiltonian, H→ kH, where k is a constant, leads to the rescaled energy factors ⟨H⟩ → k⟨H⟩ and
∆H→ k∆H. A trivial option to speed up the evolution of the quantum state is therefore to supply more
energy, e.g. by having stronger coupling. We wish to focus on other quantities playing a role in the speed of
evolution and therefore, in what follows, we put the strength of all interactions on equal ground by setting
min{⟨H⟩,∆H}= ℏΩ, where Ω is a frequency unit. This allows us to write the unified QSL in equation (1) as

Γ(ρ(0),ρtar)⩾
Θ(ρ(0),ρtar)

min{⟨M⟩,∆M}
, (2)

where Γ = Ωτ stands for the dimensionless minimal time, whereas ⟨M⟩= ⟨H⟩/ℏΩ and∆M=∆H/ℏΩ
respectively denote the non-negative mean energy and SDE, normalised with respect to ℏΩ. Hereafter, we
assume the condition

min{⟨M⟩,∆M}= 1, (3)

which can always be ensured with appropriate scaling k. We refer to this condition as resource equality.
To quantify the amount of entanglement in concrete situations we use negativity, which is a well known

computable entanglement monotone [29–33]. We stress, however, that the conclusions of the paper hold for
any entanglement monotone. Negativity is defined as the sum of negative eigenvalues after the state of a
bipartite system is partially transposed. The bipartite entanglement between objects X and Y is denoted by
NX:Y and admits maximum value (d− 1)/2, where d=min{dX,dY} and dX (dY ) is the dimension of object X
(Y). For simplicity, we shall assume that the principal objects have the same dimension. Maximally entangled
states, for any entanglement monotone [34], are given by pure states of the form

|ΨXY⟩=
1√
d

d−1∑
j=0

|x j⟩|y j⟩, (4)

where {|x j⟩} and {|y j⟩} are orthonormal bases for object X and Y, respectively.
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Figure 1. Different considered scenarios. The principal objects are denoted by A and B. Our goal is to maximally entangle them as
fast as possible, starting with a disentangled initial state. (a) Direct interactions, with Hamiltonian HAB. (b) Continuous mediated
interactions with general Hamiltonians of the form HAC +HBC. (c) Sequential mediated interactions where C first interacts with
A, and then with B.

Figure 2. Optimal direct dynamics showing maximum entangling speed between two objects, each with dimension d. Maximum
entanglement, (d− 1)/2, is achieved at T= arccos(1/

√
d), indicated by the dots.

2. Direct interactions

Let us begin with optimal entangling dynamics for any dimension d, with direct interactions. Since the initial
state we take is disentangled, it has to be a pure product state as the dynamics is purity preserving and the
final maximally entangled state is pure, see equation (4). One easily verifies with the help of Cauchy–Schwarz
inequality that the fidelity between a product state and maximally entangled state is bounded as
F = ⟨αβ|ΨAB⟩⩽ 1/

√
d. From the resource equality, the time to maximally entangle two systems via direct

interactions follows

ΓDI ⩾ arccos(F)⩾ arccos
(
1/
√
d
)
. (5)

This bound is tight and can be achieved with the following exemplary dynamics. Under an initial state of
|00⟩, we take an optimal (to be shown below) Hamiltonian

HAB =
ℏΩ

2
√
d− 1

d−1∑
j=1

(X j
A +Y j

A)⊗ (X j
B +Y j

B), (6)

where the subscripts indicate the corresponding system and we have defined X j ≡ |0⟩⟨ j|+ | j⟩⟨0| and
Y j ≡−i|0⟩⟨ j|+ i| j⟩⟨0|. Note that the constant factor ensures the resource equality. One can show that the

state at time t takes the form |ψAB(t)⟩= cos(Ωt) |00⟩+ sin(Ωt)(
∑d−1

j=1 | j j⟩)/
√
d− 1, and therefore it

oscillates between the disentangled state |00⟩ and a maximally entangled state |ΨAB⟩. The latter is achieved
earliest at time T≡ Ωt= arccos(1/

√
d), see figure 2.

Alternatively, the optimality of this dynamics can be understood from the triangle inequality of the Bures
angle [35]:Θ(0,T)+Θ(T,arccos(1/

√
d))⩾Θ(0,arccos(1/

√
d)), where we have used a short notation

Θ(T1,T2)≡Θ(ρ(T1),ρ(T2)). Under the resource equality, the optimal time should be equal to the Bures
angle. Indeed this is the case for the above dynamics asΘ(T1,T2) = T2 −T1, saturating the triangle
inequality. Therefore, not only the maximally entangled state is reached in the shortest time, but the

3
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evolution between any intermediate states, i.e. from T1 to T2, with T1,T2 ∈ (0,arccos(1/
√
d), is the fastest

possible.
The described fastest entangling dynamics has the following special features. (a) The Bures angle between

the initial state, |ψAB(0)⟩, and the state at any time t before reaching maximal entanglement, |ψAB(t)⟩, is
monotonic with entanglement gain, so that QSL directly translates to the limits on entanglement generation.

(b) This generation has its origin in components
(∑d−1

j=1 | j j⟩
)
/
√
d− 1 and the high entangling speed comes

from the fact that already the linear term in the expansion of the evolution operator exp(−i∆tHAB/ℏ)
introduces these components. That is, the rate of change of entanglement is strictly positive ṄA:B(t)> 0, for
all times up to maximally entangling time.

3. Canmediator speed up entangling process?

At first sight, one might wonder whether the use of quantum mechanical mediator could speed up the
evolution by utilising non-commuting Hamiltonians, as revealed through the Baker–Campbell–Hausdorff
(BCH) formula. Namely, the dynamics generated by direct coupling HAB = A⊗B could be reconstructed
through the mediator system C interacting via HAC +HBC = A⊗ pC + xC ⊗B, where xC and pC are the
position and momentum operators acting on the mediator. Due to the canonical commutation relation the
BCH equation reduces to:

e−it(A⊗pC+xC⊗B)/ℏ = e−itA⊗pC/ℏ e−itxC⊗B/ℏe−it2A⊗B/2ℏ. (7)

Effective direct coupling is now identified in the last term on the right-hand side. Since the corresponding
exponent is proportional to squared time, it is legitimate and interesting to enquire about the speeding up
possibility.

On the other hand, the special features described at the end of the previous section make it unlikely that
any other dynamics is faster than the fastest direct one. Indeed, this is shown in Theorem 1 presented in
appendix A. Any dynamics (direct or mediated) that starts with disentangled principal systems can
maximally entangle them in time lower bounded as

Γany ⩾ arccos
(
1/
√
d
)
, (8)

where the resource equality is assumed. One then wonders whether mediated dynamics can achieve the same
speed as the direct one. At this stage initial correlations with the mediator enter the picture.

We shall show that if the mediator is initially completely uncorrelated from the principal systems, the
time required to reach the maximally entangled state is strictly longer than arccos(1/

√
d). Then we provide

explicit examples of mediated dynamics, with initially correlated mediators, that achieve the shortest possible
entangling time.

Consider the initial tripartite state of the form ρ(0) = ρAB ⊗ ρC (with separable ρAB) and, to give a vivid
illustration first, take a Hamiltonian HAC +HBC = (HA +HB)⊗HC, or any commuting Hamiltonians
for which one can identify common eigenbasis {|c⟩}. Let us take a specific product state |αβγ⟩ in the
decomposition of the initial state ρ(0), and write |γ⟩=

∑
cλc |c⟩. Since [HAC,HBC] = 0 the evolution

is mathematically equivalent to UBCUAC = exp(−i tHBC/ℏ)exp(−i tHAC/ℏ) and the initial product
state evolves to |ψ(t)⟩=

∑
cλc|αc(t)⟩|βc(t)⟩|c⟩, where |αc(t)⟩= exp(−i tEcHA/ℏ) |α⟩ and |βc(t)⟩=

exp(−i tEcHB/ℏ) |β⟩ with the corresponding eigenvalue Ec of the Hamiltonian HC. By tracing out system
C we note that the state of AB is a mixture of product states and hence not entangled. Application of this
argument to all the product states in the decomposition of ρ(0) shows that this evolution cannot generate
any entanglement between the principal systems whatsoever, i.e. ΓCMI =∞ in this case. This stark contrast
with the QSL comes from the fact that the Bures angle is no longer related to the amount of entanglement in
the subsystem AB.

Consider now a general Hamiltonian HAC +HBC. In Theorem 2 presented in appendix B we show that
starting with ρ(0) = ρAB ⊗ ρC the mediated dynamics has non-positive entanglement rate at time t= 0, i.e.
ṄA:B(0)⩽ 0 if the three systems are open to their local environments and ṄA:B(0) = 0 for any closed
mediated tripartite system. This delay is causing a departure from the optimal entangling path and cannot be
compensated in the future. We show rigorously in Theorem 3 presented in appendix C that starting with an
uncorrelated mediator, i.e. ρ(0) = ρAB ⊗ ρC the time required to maximally entangle A and B via CMI
satisfies a strict bound

ΓCMI > arccos(1/
√
d). (9)
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Furthermore, we have performed numerical checks with random initial states and Hamiltonians (see
appendix D for details) and conjecture that the actual time to maximally entangle the principal systems with
initially uncorrelated mediator is Γcon j ⩾ 2arccos(1/

√
d). The following two examples with three quantum

bits shed light on the origin of this hypothetical lower bound. As initial state, consider |000⟩, in the order
ABC, and first take a Hamiltonian H= ℏΩ(XAYC +YBXC)/

√
2, where X and Y denote Pauli operators for

the respective qubits. One verifies that the resource equality holds and the state at time t reads
|ψ(t)⟩= cos(Ωt) |000⟩+ sin(Ωt)|ψ+⟩ |1⟩, where |ψ+⟩= (|01⟩+ |10⟩)/

√
2 is the Bell state. The maximally

entangled state is obtained at time Ωt= π/2 because one has to wait until the dynamics completely erases
the |000⟩ component. In contradistinction, the direct dynamics introduces |11⟩ component (already in linear
time∆t) and hence the evolution can stop at Ωt= π/4. Another natural way to entangle two systems via
mediator is to entangle the mediator with one of the systems first and then swap this entanglement. Each of
these processes takes time at least arccos(1/

√
d) and hence again we arrive at the bound anticipated above

(the swapping step actually takes a bit longer, see appendix E). A rigorous proof of this bound is left as an
open problem.

We finally give examples of mediated dynamics, starting with a correlated mediator, that entangles as fast
as the fastest direct dynamics. One may think of utilising an extreme option where the dynamics is initialised
with a maximally entangled mediator. This is indeed possible but it is also possible to utilise purely classical
correlations with the mediator. Let us start with the entangled mediator first. Consider three qubits with an
initial state and the Hamiltonian written as

|ψ(0)⟩= 1√
2
(|000⟩+ |111⟩),

H=
ℏΩ
2
√
2
(ZA ⊗HC1 +ZB ⊗HC2), (10)

where HC1 =−(1+XC +YC +ZC) and HC2 = 1−XC −YC +ZC. The principal system is initially
disentangled but the mediator is maximally entangled with the rest of the systems, NAB:C(0) = 1/2. One
verifies that NA:B follows the curve for d= 2 in figure 2.

As mentioned, quantum correlations to the mediator are not necessary. Consider the following example:

ρ(0) =
1

2
|ψm⟩⟨ψm| ⊗ |0⟩⟨0|+ 1

2
|ψ̃m⟩⟨ψ̃m| ⊗ |1⟩⟨1| ,

H=
ℏΩ
2
(ZA ⊗ZC +ZB ⊗ZC), (11)

where |ψm⟩= (|+−⟩+ |−+⟩)/
√
2 and |ψ̃m⟩= (|−−⟩+ |++⟩)/

√
2 are two Bell-like states of AB with

|±⟩= (|0⟩± |1⟩)/
√
2. This example is similar to those in [24, 25] used to demonstrate entanglement

localisation via classical mediators and to indicate that controlled quantum teleportation can be realised
without genuine multipartite entanglement [36]. Note that initially the principal system is disentangled (an
even mixture of Bell states) and this time the mediator is only classically correlated—its states flag in which
maximally entangled state is the principal system [37]. Furthermore, Hamiltonians HAC and HBC in
equation (11) commute, with the common Z eigenbasis, and hence in the absence of initial correlations with
the mediator entanglement in the principal system would be impossible. One can now verify via standard
computations that the dynamics of NA:B resulting from equation (11) is the same as in figure 2 for d= 2.
Note that the states of the mediator are the eigenstates of H and hence they are stationary. Accordingly, only
the Bell-like states evolve in time. It has been shown recently in a general case of CMI where the state
contains only classical correlations in the partition AB : C at all times, that the entanglement gain, quantified
by the relative entropy of entanglement [38], is bounded by the initial mutual information, i.e.
EA:B(t)− EA:B(0)⩽ IAB:C(0) [25, 39]. Here, EA:B(t) =min{σAB}−tr(ρAB(t) log(σAB))− S(ρAB(t)) denotes the
relative entropy of entanglement and IAB:C(0) = S(ρAB(0))+ S(ρC(0))− S(ρ(0)) stands for the initial mutual
information. The subscripts indicate the corresponding subsystems, σAB is any separable state in the
partition A : B, and S(ρ) =−tr(ρ log(ρ)) is the von Neumann entropy. In the particular example of
equation (11) this bound is achieved as we initially have IAB:C(0) = 1 and EA:B(0) = 0 which get converted to
maximal entanglement EA:B(T) = 1. More generally, for the task discussed here an immediate strategy is to
start with IAB:C(0) at least equal to the entanglement EA:B of the target state |ΨAB⟩.

4. Sequential mediated interactions

At last we move to the SMI scenario, where system C first interacts only with A and then only with B. This
setting was studied to some degree in [40] where, in the present context, it was found that in order to prepare

5
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a maximally entangled state between the principal systems the dimension of C has to be at least d. We
therefore set it to d and take the initial state as ρ(0) = ρAB ⊗ ρC. Under these conditions Theorem 4 in
appendix E shows the following lower bound on the entangling time:

ΓSMI ⩾ arccos(1/
√
d)+ arccos(1/d). (12)

Our numerical simulations indicate that this bound is tight. Note that this is even longer than
2arccos(1/

√
d) already demonstrated to be achievable with CMI .

5. Discussion

We wish to conclude with a few comments on the obtained results. Since a maximally entangled state |ΨAB⟩
is pure and the direct closed dynamics preserves the purity, the maximal entanglement cannot be achieved
via direct coupling if one starts with a mixed state. After introducing an ancillary system, the reduced AB
dynamics is, in general, not unitary and hence the purity of ρAB may change. For a concrete example see
below equation (11), where the initial purity of 1/2 is increased to 1 while the disentangled initial state
becomes maximally entangled. Therefore, for states of AB that are initially mixed, the only way to
deterministically achieve maximum entanglement and saturate the time bound ofDI is to make use of a
correlated mediator. If the deterministic condition is lifted, a pure state can also be obtained by incorporating
a projective measurement.

Having said this, a possibility emerges to maximally entangle initially mixed principal systems by opening
just one of them to a correlated local environment. This is reasonable because the incoherent evolution may
increase the purity of ρAB and previously established entanglement with the environment can flow to the
principal systems. A simple example is as follows. Suppose A and B are qubits and only qubit A interacts with
its single-qubit environment C. As the initial state, we take the one in equation (11) and consider a
Hamiltonian H= ℏΩZA ⊗ZC for the local interaction with environment. One verifies that the resulting
dynamics gives the same entanglement NA:B as in figure 2 for d= 2. It is therefore the fastest possible
entangling process.

The last example is interesting from the point of view of open quantum systems. Note that the mutual
information in the principal system grows from the initial value IA:B(0) = 1 to the final value IA:B(π/4) = 2.
Yet, subsystem B has not been operated on—only system A interacts with its local environment. One
therefore asks what happens to the data processing inequality stating that information can only decay under
local operations [35]. The answer is that the inequality is derived for local maps which are completely
positive and trace preserving. Accordingly, the example just given is likely one of the simplest of
non-completely-positive dynamics. Violation of data processing inequality has already been discussed
as a witness of such forms of evolution [41]. In the present example, the high entangling speed comes
from the lack of complete positivity. The initial mutual information of a separable state satisfies
IA:B(0)⩽min{S(ρA),S(ρB)} and it cannot be improved via any evolution respecting data processing
inequality. In contradistinction, entangled states admit mutual information as high as IA:B = 2min
{S(ρA),S(ρB)}. Such gain via local operations is possible only with non-completely-positive dynamics.

Our main result shows that correlations play a similar role to energy in speeding up dynamics. In
tripartite mediated system A-C-B, where principal systems A and B are coupled via mediator C, it takes
strictly longer to maximally entangle AB when the evolution is initialised with uncorrelated mediator than
when it begins with a correlated mediator. We conjecture that the required minimal time for the case of
uncorrelated mediator is twice as long. In other words, if one would like to start with an uncorrelated
mediator and reach a maximally entangled state at the same time as with a correlated mediator, one has to
supply twice as much energy.
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Appendix A. No speeding up with mediators

Theorem 1. Consider dynamics described by a Hamiltonian H, involving three objects A, B, and C (direct or
mediated). For initial states ρ(0) = ρABC, having disentangled ρAB, the lower bound on the time required to
maximally entangle AB satisfies

Γany ⩾ arccos
(
1/
√
d
)
, (A1)

where the resource equality is assumed.

Proof. In the target state the principal systems are maximally entangled, which implies that their state is pure
and uncorrelated with the mediator C, i.e. ρtar = |ΨAB⟩⟨ΨAB| ⊗ ρC. We evaluate the fidelity of the initial and
target states:

F(ρ(0),ρtar) = F(ρABC, |ΨAB⟩⟨ΨAB| ⊗ ρC)

⩽ F(ρAB, |ΨAB⟩⟨ΨAB|)

⩽ max
p j,|a jb j⟩

√∑
j

p j|⟨a jb j|ΨAB⟩|2

⩽ max
|a jb j⟩

|⟨a jb j|ΨAB⟩|=
1√
d
, (A2)

where the steps are justified as follows. The first inequality is due to monotonicity of fidelity under trace-
preserving completely positive maps [42] (here, tracing out C). Then we expressed the disentangled state
as ρAB =

∑
j p j

∣∣a jb j

〉〈
a jb j

∣∣ and used its convexity properties. The final equation follows from the form of
maximally entangled state. Finally, by having the resource equality, one gets Γany ⩾ arccos(F(ρ(0),ρtar))⩾
arccos(1/

√
d).

Appendix B. No initial entanglement gain with uncorrelated mediator

Theorem 2. Consider the case of CMI , where all objects can be open to their own local environments (for
generality). For initial states where the mediator is uncorrelated, i.e. ρ(0) = ρAB ⊗ ρC, the rate of any
entanglement monotone follows ĖA:B(0)⩽ 0.

Proof. We take the evolution of the whole tripartite system following the Lindbladmaster equation to include
the contribution from interactions with local environments:

ρ(∆t)− ρ(0)

∆t
=−i[H,ρ(0)]+

∑
X=A,B,C

LXρ(0), (B1)

LXρ(0)≡
∑
k

QX
k ρ(0)Q

X†
k − 1

2
{QX†

k QX
k ,ρ(0)}.

We set ℏ to unity in this proof for simplicity. Note that the first term in the RHS of equation (B1) corresponds
to the coherent part of the dynamics, while the second constitutes incoherent processes from interactions with
local environments, that is, the operatorQX

k only acts on systemX. We take the total Hamiltonian asH=HA ⊗
HC +HB ⊗HC ′ without loss of generality, and note that the proof easily follows for a general Hamiltonian
H=

∑
µH

µ
A ⊗Hµ

C +
∑

νH
ν
B ⊗Hν

C ′ .
Following equation (B1), the state of the principal objects at∆t reads

ρAB(∆t) = trC(ρ(∆t))

= trC(ρ(0)− i∆t[H,ρ(0)]+∆t
∑
X

LXρ(0))

7
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= ρAB − i∆t[HAEC +HBEC ′ ,ρAB] +∆t(LA + LB)ρAB, (B2)

where EC = tr(HCρC) and EC ′ = tr(HC ′ρC) denote the initial mean energies, and we have used ρ(0) = ρAB ⊗
ρC. Also, trC(QC

k ρCQ
C†
k − 1

2{Q
C†
k QC

k ,ρC}) = 0 follows from the cyclic property of trace.
Effectively, the evolution of the principal objects leading to ρAB(∆t), as written in equation (B2), consists

of local Hamiltonians weighted by the corresponding mean energies HAEC +HBEC ′ , and interactions with
respective local environments. Therefore, for any entanglement monotone, a measure that is non-increasing
under local operations and classical communication, one concludes that EA:B(∆t)⩽ EA:B(0), and hence,
ĖA:B(0)⩽ 0.

Unitary dynamics is a special case of Theorem 2 without incoherent interactions with local environments.
Since entanglement monotones are invariant under local unitary operations EA:B(∆t) = EA:B(0) or
ĖA:B(0) = 0. As a consequence, changes in entanglement between the principal objects (positive or negative)
are only possible if the mediator C is correlated with them.

By applying this argument to the final state |ΨAB⟩⟨ΨAB| ⊗ ρC and backwards in time, we conclude that
any dynamics (direct or mediated) approaches the final state at a rate ĖA:B(T) = 0, clearly seen in figure 2.

Appendix C. Strict bound for uncorrelated mediator

We revisit the condition where C is initially uncorrelated, i.e. ρ(0) = ρAB ⊗ ρC, which is a special case of
Theorem 1. In this case, we have

F(ρ(0),ρtar) = F(ρAB, |ΨAB⟩⟨ΨAB|)F(ρC,ρ
′
C), (C1)

where ρ ′
C is the state of C in the target ρtar. The only way to saturate the optimal bound of direct dynamics is

to set F(ρC,ρ
′
C) = 1, i.e. ρC = ρ ′

C. Accordingly, the initial state of AB has to be in a pure product form.
Having this in mind, the theorem below shows that the time bound is still strict.

Theorem 3. For the initial state of the form ρ(0) = |αβ⟩⟨αβ| ⊗ ρC, the time required to maximally entangle the
principal systems via CMI follows a strict bound

ΓCMI > arccos(1/
√
d). (C2)

Proof. Recall that the dynamics identified in theDI case saturates the triangle inequality and is characterised
by a straight line in Bures angles. Any other optimal dynamics (e.g. generated by other Hamiltonians) has to
follow the same straight line. Along the line the states of AB remain pure at all times. However, Theorem 2
shows that entanglement gain between A and B is possible only when the mediating system is correlated with
the principal systems at some time t during the dynamics. In the present case, this means that at t, the state of
AB is not pure, in particular, the mediator is not in a decoupled form |ψAB(t)⟩⟨ψAB(t)| ⊗ ρC, where |ψAB(t)⟩ is
the state from the optimum DI . Since F(ρAB(t), |ψAB(t)⟩⟨ψAB(t)|)< 1, we use the triangle inequality of the
Bures angle to conclude the strict bound:

ΓCMI = Γ1 +Γ2

⩾Θ(0, t)+Θ(t,arccos(1/
√
d))

>Θ(0,arccos(1/
√
d)) = arccos(1/

√
d), (C3)

where Γ1 and Γ2 respectively denote the minimum time for evolution 0→ t and t→ arccos(1/
√
d). In other

words, the dynamics strictly does not follow the optimum (straight line) path, where at time t the state is
uniquely |ψAB(t)⟩⟨ψAB(t)| ⊗ ρC.

Appendix D. Numerical simulations for uncorrelated mediator

Here we present results of numerical simulations behind the conjectured minimal time of 2arccos(1/
√
d) to

maximally entangle the principal systems with initially uncorrelated mediator (recall that dA = dB = d).
Based on the discussion prior to Theorem 3, we consider initial states of the form ρ(0) = |αβ⟩⟨αβ| ⊗ ρC and
Hamiltonians H=HAC +HBC scaled to satisfy the resource equality condition.

Let us first describe the case of two qubits interacting via a mediating qubit, i.e. dA = dB = dC = 2. We
randomise the initial state, i.e. |α⟩, |β⟩, and ρC as well as the Hamiltonians HAC and HBC using the quantinf
package by Toby Cubitt. For a particular evolution time, we sample 107 random instances and compute the
corresponding entanglement. We present the maximum entanglement at each time in figure 3 (black dots).
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Figure 3. Numerical simulations of CMI with two qubits interacting via an initially uncorrelated mediator with dimension
dC = 2 (black dots), dC = 3 (blue squares), and dC = 4 (red triangles). For each time, we generated 107 random initial states and
Hamiltonians. The data presents maximum entanglement at the corresponding time. The dashed-dotted vertical line indicates the
minimum conjectured time of 2arccos(1/

√
2), and the dashed horizontal line indicates the maximum entanglement between

two qubits.

As seen, our simulations suggest that the fastest time to reach maximum entanglement of 0.5 is indeed
2arccos(1/

√
2). We have also performed simulations where the dimension of the mediator is dC = 3 as well

as dC = 4. In this case, we present the corresponding maximum entanglement at each time in figure 3 as blue
squares (dC = 3) and red triangles (dC = 4). One can see from figure 3 that maximum entanglement is
increasing with time for T< 2arccos(1/

√
2) and fluctuates below the maximum value (0.5) for T> 2

arccos(1/
√
2), further supporting the conjecture. We also performed simulations for the case of two qutrits

interacting via a mediating qutrit, i.e. dA = dB = dC = 3. In this case, entanglement does not even come close
to the maximum possible value at time 2arccos(1/

√
3), indicating that this is a correct lower bound on the

entangling time.

Appendix E. Sequential mediated dynamics

Theorem 4. Starting with ρ(0) = ρAB ⊗ ρC, maximal entanglement in AB is achieved via SMI in time

ΓSMI ⩾ arccos(1/
√
d)+ arccos(1/d). (E1)

Proof. The final state has the form ρ f = |ΨAB⟩⟨ΨAB| ⊗ ρC. In this scenario it is to be obtained by the sequence

of operations ρ f = UBCUACρ(0)U
†
ACU

†
BC. We start with the following argument

EA:B(ρ f )⩽ EA:BC(ρ f ) = EA:BC(UACρ(0)U
†
AC ) (E2)

where the inequality is due to the monotonicity of entanglement under local operations (here, tracing out C)
and the equality is due to the fact that the second unitary,UBC, is local in the considered bipartition. Thus the
only way to establish maximal final entanglement between the principal systems is to already prepare it with
operation UAC. This consumes time arccos(1/

√
d) and requires initial state of A and C to be pure, i.e. |αγ⟩

because C is not correlated with AB initially (note that it does not pay off to start with partial entanglement in
ρAB). Furthermore, since the final state is pure and we are left with application ofUBC only, the state of particle
B also has to be pure. Summing up, after the first step the tripartite state reads |ΨAC⟩ |β⟩. In the remaining step
we need to swap this maximal entanglement into the principal systems. To estimate the time required by the
swapping we compute the fidelity:

F = |⟨ΨAC|⟨β|ΨAB⟩|γ⟩|

=
1

d
|

d∑
j=1

d∑
k=1

⟨a j|a ′
k⟩⟨β|b ′

k⟩⟨c j|γ⟩|

⩽ 1

d

√∑
j

|
∑
k

⟨a j|a ′
k⟩⟨β|b ′

k⟩|2
√∑

j

|⟨γ|c j⟩|2

=
1

d

√∑
j,k,l

⟨a ′
l |a j⟩⟨a j|a ′

k⟩⟨β|b ′
k⟩⟨b ′

l |β⟩=
1

d
, (E3)

where we have written |ΨAC⟩=
∑

j |a jc j⟩/
√
d and |ΨAB⟩=

∑
k |a ′

kb
′
k⟩/

√
d as the maximally entangled states

(note possibly different Schmidt bases). Then we used the Cauchy-Schwarz inequality to obtain the third
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line. Since {|c j⟩} form a complete basis the last square root in the third line equals 1 (sum of probab-
ilities). Rewriting the remaining mod-squared and using the completeness of the bases {|a j⟩} and {|b ′

k⟩}
we arrive at the final result. The total time required by both steps is therefore at least ΓSMI = Γ1 +Γ2 ⩾
arccos(1/

√
d)+ arccos(1/d).
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