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A B S T R A C T

Despite the prevalence of well-established and explored navigation systems, alternative localization methods
are currently the focus of intensive research. This interest is driven by geopolitical challenges and increasingly
sophisticated applications of mobile robots and uncrewed aerial vehicles. This study investigates the problem
of real-time positioning in GPS-denied environments. Based on the mapped magnetic anomaly field and using
Bayesian formalism for data fusion, the localization obtained from embedded sensors is corrected to reduce
cumulative errors. The proposed method has minimal computational cost and a minimal number of tunable
parameters. The paper introduces it and demonstrates its effectiveness in a laboratory study. Experimental
tests, using a system equipped with an Inertial Measurement Unit, demonstrated a significant reduction in
localization uncertainty. The improvement was especially notable in areas with large, smooth variations in the
magnetic field. Finally, the accuracy of the method is analyzed, and its performance is compared to a particle
filter.
. Introduction

The Global Positioning System (GPS) is the essential element of
any positioning, navigation, and timing services. It finds applications

oth in military operations and daily civilian activities. Given the
xtensive propagation distances that signals traverse from satellites to
PS receivers, the propagation environment can substantially influence

ignal strength and positioning accuracy. GPS signals are frequently
bstructed in areas such as narrow valleys, lengthy tunnels, or ur-
an environments characterized by densely distributed tall structures.
ithin an indoor environment, the GPS signal commonly experiences

ttenuation by a factor of 10 to 100 [1]. The ionosphere and tro-
osphere introduce further complexities that can impact positioning
ccuracy [2]. Furthermore, susceptibility to signal jamming or spoofing
lso poses challenges: GPS signal is very vulnerable to jamming because
f its low operating power [3], and spoofing was already proved to be
ossible for unauthorized control of an autonomous Unmanned Aerial
ehicle (UAV) [4]. These inherent realities have prompted engineers
nd researchers to explore positioning techniques that could serve as
lternatives to GPS.

The initial positioning methods during the Age of Discovery re-
ied on accurate chronometers and celestial body observations. This
pproach is somewhat replicated in modern star trackers. Due to the
imited daily time frame for celestial observations, these systems are
rimarily designed for application in space systems, such as planetary
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rovers [5]. An interwar navigation innovation was the development
of radio navigation systems, with hyperbolic navigation emerging as a
primary representative. This approach is still being considered in some
specific aviation applications [6]. Similarly to satellite navigation, radio
navigation methods are also susceptible to jamming. Moreover, there
is a trade-off between the range and accuracy of such systems, and
their operation is affected by weather conditions. In contrast to the
two methods mentioned above, a more modern navigation technique is
vision-based navigation, also referred to as terrain-relative navigation.
It became an object of interest alongside the development of computer
technology, particularly with the evolution of computer vision meth-
ods. This technique is especially useful for the autonomous operation
of aerial vehicles, navigating between two points designated by the
operator from satellite images [7]. A more sophisticated application
is the autonomous control of an aerial vehicle at low altitudes, which
complements classical navigation methods when obstacle avoidance
must be considered [8].

Several authors characterize their methodologies as extensions of
standard navigation systems in the event of GPS signal loss. Their pri-
mary advantage over standard Inertial Navigation Systems (INS) lies in
their ability to eliminate drift effectively [9]. However, they introduce
an additional computational burden to the control unit. It could involve
operating on geo-referenced satellite images [9] or performing a so-
called memory building process, which entails storing a set of image
vailable online 20 April 2024
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sequences and typically requires human operator involvement [10].
The estimation accuracy of such methods is also negatively affected by
flight altitude because, at higher altitudes, the apparent displacement
of ground objects is reduced. Additionally, they are unsuitable for very
uniform landscapes, such as when flying over a sea or a desert. Another
positioning strategy relies on gravity gradiometers, devices intended to
measure the elements of the gravity gradient tensor [11]. The gravity
gradiometers were initially developed for navigating submarines in
the absence of alternative options (e.g., sonars) and later adopted for
locating underground gas and oil deposits [12]. Scientific advancement
in this field resulted in the development of passive (non-emanating)
navigation systems that are robust to jamming and provide positioning
capability over water [13]. Airborne applications as an aid to the INS,
or in the absence of a GPS signal, are also one of the main fields of
interest in this context [14–16], which includes searching for mineral
deposits from aircraft [17,18]. Technological development has enabled
attempts to measure the gravitational field from space [19]. The main
disadvantage of such systems is the very cumbersome detection of man-
made underwater objects [20]. There are also challenges associated
with distinguishing between effects related to gravity and accelera-
tion, as well as with extremely small acceleration levels affecting the
correctness of the results.

The growing attention towards magnetic anomalies in the context
of positioning and navigation systems finds its foundation in a range
of inherent physical characteristics. First and foremost, magnetic sig-
nals exhibit global accessibility and are detectable in both outdoor
and indoor settings with no restrictions related to daily time frames.
Across the majority of terrains, magnetic anomalies sustain substantial
diversity, facilitating their detection even within environments that
might appear homogeneous to camera or radar-based systems, such as
deserts, dense forests, or water reservoirs. Notably, the measurement of
magnetic anomaly fields is achieved through passive instrumentation,
devoid of self-emission signals. This feature becomes essential when
integrating within complex, error-sensitive systems. It also needs to
be emphasized that the efficient utilization of magnetic anomaly in-
formation requires addressing several challenging problems related to
signal processing. In particular, it is essential to detect magnetic field
disturbances that arise inherently, such as those associated with geo-
magnetic storms, and those related to the interference from neighboring
electrical-powered devices.

To date, various methodologies have been developed for positioning
based on the magnetic field and customized to the specific charac-
teristics of the environment. In the context of indoor applications,
localization is often combined with the mapping task, and this approach
is known as Simultaneous Localization and Mapping (SLAM). It has
gained popularity due to the increasing demand for autonomous mobile
robots requiring precise navigation within indoor environments, where
a referencing system, particularly GPS, is either unavailable or offers
insufficient accuracy. Typically, SLAM methods incorporate radar and
laser sensors [21], and they can be broadly categorized as filtering or
smoothing [22]. Recent works also focus on utilizing cameras for this
purpose, the so-called visual SLAM [23,24]. This approach can be im-
plemented using classical stereovision systems or monocular ones [25].
Utilization of the ambient magnetic field for SLAM has gained special
attention in recent years [26,27]. Localization algorithms in SLAM are
commonly implemented using Kalman filters [28] or various versions of
particle filters [29,30]. A sequential batch fusion algorithm for indoor
magnetic map matching was proposed in [31], based on a combined use
of magnetometers, gyroscopes, and wheel odometry. Indoor navigation
with active beacons generating AC magnetic fields was considered
in [32]. Extension of the techniques initially developed for SLAM to
outdoor environments commonly results in using particle filter imple-
mentations for navigation purposes [33,34]. Iterative closest contour
point algorithms are often used with swarm optimization approaches
like anto colony optimization [35] or particle swarm optimization [36].
2

In airborne applications, estimating the Earth’s magnetic anomaly field
is often used as a basis for developing navigation methods [37]. Using
magnetic field measurements for aerial navigation requires proper
calibration to isolate the influence of non-geological magnetic field
sources. For this purpose, classical calibration methods, such as the
linear calibration model, are successfully supplemented by machine
learning methods [38].

In this paper, we leverage the magnetic field information and the
Bayesian formalism to enhance the positioning accuracy initially esti-
mated by a localization module. As in the case of inertial measurement
units (IMU), the initial position estimate can be characterized by a
significant drift, which can be partially corrected by exploiting the
additional information provided by an onboard magnetometer. The
proposed algorithm can be thus classified as a data-fusion method.
In each time step, the initial expected position is shifted towards the
suitable neighboring isoline of the magnetic field, and the localization
variance is correspondingly decreased. The developed algorithm for
position correction relies on simple closed-form formulas, facilitating
real-time implementation. The method is tested and validated in labora-
tory conditions. Its effectiveness in correcting the position is examined
along two trajectories that traverse distinct magnetic field character-
istics. The presented analysis of the positioning accuracy includes the
influence of magnetic field characteristics and the measurement error
level of the magnetometer. Compared to previous approaches, the main
contribution of this work is the development of a Bayesian data-fusion
algorithm for real-time trajectory correction, based on magnetic field
measurements, that has minimal computational costs and features a
minimal number of arbitrary tunable parameters.

This paper is organized as follows: Section 2 introduces the architec-
ture of the positioning system and outlines the necessary assumptions
about its components. Subsequently, it describes the method used for
magnetic field mapping and then presents and discusses the algorithm
proposed for correcting the position. Section 3 describes the experi-
mental setup and uses it to map the magnetic field. Section 4 applies
and evaluates the proposed position correction method, discusses its
accuracy, and compares it to a particle filter implementation. Finally,
Section 5 offers concluding remarks.

2. Real-time positioning based on magnetic anomaly measure-
ments

The primary limitation of state estimators commonly utilized for
localization, such as Kalman or particle filters, is their incremental and
iterative nature. This characteristic leads to high computational cost,
hindering their application in real-time scenarios. Various modifica-
tions of these methods have been proposed to enhance their conver-
gence rate [30]. Another challenge in adapting methods developed for
indoor environments to outdoor settings is associated with the larger
scale of the problem, leading to a significant increase in computational
burden. Localization methods designed for indoor environments are
occasionally tested outdoors; however, their applicability is generally
limited to relatively small areas [39]. In this study, we aim to de-
sign a computationally efficient algorithm capable of an instantaneous
localization correction, irrespective of the scale of the designated area.

2.1. System operation and objectives

The general scheme of the proposed system is depicted in Fig. 1.
Suppose the reference positioning system (in particular GPS) is avail-
able. In that case, it provides the absolute position of the object to
be utilized by both the navigation system and the magnetic anomaly
map module, which creates and updates the magnetic anomaly map.
However, if the reference positioning system is unavailable, the primary
information about object position is obtained from a built-in localiza-
tion module such as IMU. This module provides an estimate of the
current position based on differential measurements. Given the mag-

netic anomaly map and a magnetometer, magnetic corrections can be
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Fig. 1. General scheme of the proposed localization system based on magnetic corrections.
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dditionally computed and applied to obtain a corrected, more precise
osition. Therefore, when information from the reference positioning
ystem is lost or identified as unreliable, the magnetic correction mod-
le can be activated, in addition to the built-in localization module, to
rovide enhanced localization information.

The data recorded by the built-in localization module exhibit noise,
esulting in cumulative errors that increase over time. Conversely,
agnetic field readings do not exhibit drift but are susceptible to

andom external and internal disturbances and the effects of device
agnetization. This work focuses on achieving an efficient trajectory

orrection procedure suitable for real-time operation. The mapping
ubsystem is thus required to provide input data that is sufficiently
ccurate for this task. This is stated here in the form of the following
our general assumptions:

A1. Trajectory drift introduced by the built-in localization module is
sufficiently limited.

A2. Magnetometer sensitivity and accuracy of the reference posi-
tioning system are sufficient to obtain magnetic field maps of
adequate precision.

A3. Spatial variability of the magnetic field allows for local lineariza-
tion and Gaussian representation of the involved probability dis-
tributions.

A4. The magnetic anomaly field within the considered area can be
considered stationary in time.

These assumptions focus the work on the proposed correction algo-
ithm. In particular, A1 ensures that the input trajectory provided by
he built-in positioning system, even if inaccurate, is still relevant to the
ctual trajectory. Abandoning A1 would shift the focus from correcting
n inaccurate trajectory to full positioning based solely on magnetic
easurements. A2 to A4 limit the uncertainty of the magnetic anomaly
ap to the level that can be accounted for using a single measurement

ariance parameter (𝜎2M in Table 1). More significant variability of the
ield needs to be addressed separately, for example by incorporating
edicated SLAM techniques. This is a challenging problem but beyond
he immediate scope of this work. Based on the above assumptions,
mportant objectives of this work are related to efficiency:

O1. Minimal computational cost of the proposed algorithm. It avoids
cumulative delays and enables real-time operation instantaneou-
sly after the loss of the reference positioning system.

O2. Minimal number of tunable parameters. Typical positioning meth-
ods, including those based on particle filtering, tend to have many
tunable parameters that must be individually adjusted in a time-
consuming procedure. The algorithm proposed here has only one
adjustable parameter, whose value is selected in reference to a
physical quantity: the variance of magnetic field measurements.

This study focuses on two-dimensional localization, limited to lon-
itude and latitude, without considering altitude. Extending the frame-
ork to perform three-dimensional positioning is straightforward but
3

equires altitude-dependent magnetic field maps. In majority of the
ases, this altitude-dependency can be effectively established by em-
loying the International Geomagnetic Reference Field (IGRF) model [40
he remaining elements of the positioning correction framework would
e preserved in the transition to the three-dimensional setting.

.2. Magnetic anomaly mapping

A number of approaches have been developed and implemented in
ositioning and navigation systems to build accurate magnetic field
aps. In [41], magnetometer measurements were collected in a grid

nd then linearly interpolated to approximate the magnetic field distri-
ution. The method was successfully validated for localization using a
article filter incorporating data acquired from a magnetometer and
ccelerometer. In [42], the spatial binning method was adopted to
epresent the magnetic field intensity, subsequently utilized in the
LAM approach to localize pedestrians equipped with IMU. Here, the
agnetic field is modeled using Gaussian regression [43,44], and this

hoice is motivated by two factors. Firstly, Gaussian regression with an
xponential kernel has demonstrated its ability to reconstruct typical
hapes of magnetic anomalies [29], even with limited measurement
ata. Secondly, the positioning algorithm leverages the smooth func-
ions reproduced by Gaussian regression when computing the magnetic
ield gradient (see Section 2.3.3).

Assume that we have at disposal a set of magnetic field measure-
ents 𝑀1(�̄�1),… ,𝑀𝑚(�̄�𝑚) acquired with some Gaussian noise 𝜖 ∼
(0, 𝜎2M) at the respective locations �̄�1,… , �̄�𝑚 ∈ 𝑋 ⊂ R2. Using

he assumption that 𝑀1(�̄�1),… ,𝑀𝑚(�̄�𝑚) are related to a Gaussian
rocess , a continuous interpolating function 𝑀 ∶ 𝑋 → R can

be established as the mean of the posterior distribution, 𝑀(𝐱) =
E
[

(𝐱)|𝑀1(�̄�1),… ,𝑀𝑚(�̄�𝑚)
]

. Using the Bayes rule [45] it follows that
the posterior distribution

(𝐱)|𝑀1(�̄�1),… ,𝑀𝑚(�̄�𝑚) ∼ 
(

𝜇, 𝜎2
)

, (1)

where the mean 𝜇 is a function of 𝐱 ∈ 𝑋 ⊂ R2 given by:

𝜇(𝐱) =
[

𝜅(𝐱, �̄�1),… , 𝜅(𝐱, �̄�𝑚)
]T (𝐂 + 𝜎M𝐈

)−1 [𝑀1(�̄�1),… ,𝑀𝑚(�̄�𝑚)
]

. (2)

In (2), 𝜅 stands for the covariance kernel function which is assumed to
be represented by the Gaussian function,

𝜅(𝐱, �̄�𝑖) = 𝜎2 exp
(

−
‖𝐱 − �̄�𝑖‖2

2𝑙2

)

, 𝑖 = 1,… , 𝑚, (3)

and parameterized with the signal variance 𝜎2 and the length scale 𝑙.
urther, 𝐈 in (2) is the identity matrix, and the covariance matrix 𝐂 is
omputed using:

=
[

𝑐𝑖,𝑗
]

𝑚×𝑚 , 𝑐𝑖,𝑗 = 𝜅(�̄�𝑖, �̄�𝑗 ). (4)

Therefore, for every location 𝐱 ∈ 𝑋 ⊂ R2 the function 𝑀 can be
represented by 𝜇(𝐱):

[

̄1 ̄𝑚
]T ( )−1 [ 1 ̄1 𝑚 ̄𝑚

]

𝑀(𝐱) = 𝜅(𝐱, 𝐱 ),… , 𝜅(𝐱, 𝐱 ) 𝐂 + 𝜎M𝐈 𝑀 (𝐱 ),… ,𝑀 (𝐱 ) . (5)
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Table 1
Localization-related nomenclature.
𝐱, 𝐲 ∈ R2 locations in a 2D space (deterministic two-element vectors)
𝑀(𝐱) magnetic field map at location 𝐱 (deterministic number)
𝑓𝐀(𝐱) probability density function of the random variable 𝐀
𝐙𝑡 location determined at time 𝑡 by the magnetic localization system (2D random variable)
𝐗𝑡 location reported at time 𝑡 by the built-in localization system (2D random variable)
𝛥𝐗𝑡 = 𝐗𝑡 − 𝐗𝑡−1 location update reported at time 𝑡 by the built-in localization system (2D random variable)
𝐘𝑡 = 𝐙𝑡−1 + 𝛥𝐗𝑡 location at time 𝑡 obtained by shifting 𝐙𝑡−1 by 𝛥𝐗𝑡 (2D random variable)
�̄�𝑡 = 𝐗𝑡|𝐘𝑡=𝐗𝑡

location obtained by fusing 𝐗𝑡 and 𝐘𝑡 (2D random variable)
𝑀𝑡 = 𝑀(�̄�𝑡) + 𝜖 measurement of the magnetometer at location �̄�𝑡 (1D random variable)
𝜖 ∼  (0, 𝜎2

M) magnetic field measurement error (1D random variable)

All location-related random variables are assumed to be normally distributed.
S
m

𝐙

C

𝐙

a

𝜮

a

he hyperparameters 𝜎 and 𝑙 in (3) are selected by maximizing the log
arginal likelihood:

(𝜎, 𝑙) = − 1
2
[

𝑀1(�̄�1),… ,𝑀𝑚(�̄�𝑚)
]T (𝐶 + 𝜎M𝐼)−1

[

𝑀1(�̄�1),… ,𝑀𝑚(�̄�𝑚)
]

− 1
2
log

(

det
(

𝐂 + 𝜎M𝐈
))

− 𝑚
2
log(2𝜋).

(6)

rom (6), it follows that the optimal pair of hyperparameters (𝜎∗, 𝑙∗)
atisfies the following necessary optimality condition:
𝜕𝐽
𝜕𝜎

(𝜎∗, 𝑙∗) = 0, 𝜕𝐽
𝜕𝑙

(𝜎∗, 𝑙∗) = 0. (7)

To compute (𝜎∗, 𝑙∗), the gradient descent method is employed.

2.3. Real-time accurate localization using magnetic corrections

2.3.1. Data sources for localization
If neither the reference positioning (such as GPS) nor the magnetic

localization systems are available/activated, the only available source
of information on the current location is the built-in localization system
(for example, an inertial localization system). In each time step 𝑡, it
reports the location 𝐗𝑡 and its update from the previous time step,
denoted by 𝛥𝐗𝑡 = 𝐗𝑡−𝐗𝑡−1. Both 𝐗𝑡 and 𝛥𝐗𝑡 are modeled as 2D random
ariables, and as with all other location-related random variables, they
re assumed to be normally distributed in the following. For clarity, the
ocalization-related nomenclature is presented in Table 1.

If available and activated, the magnetic localization system provides
he corrected location 𝐙𝑡 in each time step 𝑡. This location is computed
y fusing information on location obtained from as many as three
nformation sources:

1. location 𝐗𝑡 reported in each time step by the built-in localization
system,

2. location 𝐘𝑡, which is obtained by shifting the location 𝐙𝑡−1 (de-
termined in the previous time step) by the update 𝛥𝐗𝑡 (provided
by the built-in localization system), 𝐘𝑡 = 𝐙𝑡−1 + 𝛥𝐗𝑡,

3. magnetic field measurement 𝑀𝑡 provided by the magnetometer.

.3.2. Two-step data fusion procedure
The information obtained from the three data sources listed above is

used into a single a posteriori location 𝐙𝑡 using the Bayesian formalism.
his process is performed in two steps:

tep 1. The random variables 𝐗𝑡 and 𝐘𝑡 are treated as the a priori
information about the current location. These two variables are
fused into a single random variable �̄�𝑡. The natural postulate
that 𝐗𝑡 = 𝐘𝑡 plays the role of the evidence.

tep 2. The fused location �̄�𝑡 is treated as the a priori location and
updated into the final location 𝐙𝑡. The evidence is the specific
value 𝑀𝑡 = 𝑚𝑡 provided by the magnetometer as the result of
the (noisy) measurement of the magnetic field intensity.
4

𝑓

tep 1. In Step 1, the input random variables are assumed to be nor-
ally distributed with the following means and covariance matrices:

𝑡−1 ∼  (𝝁𝐙𝑡−1
,𝜮𝐙𝑡−1

), (8)

𝐗𝑡 ∼  (𝝁𝐗𝑡
,𝜮𝐗𝑡

), (9)

𝛥𝐗𝑡 ∼  (𝝁𝛥𝐗𝑡
,𝜮𝛥𝐗𝑡

). (10)

The random variables 𝐙𝑡−1 and 𝛥𝐗𝑡 are treated as independent, which
enables a straightforward calculation of the shifted location 𝐘𝑡:

𝐘𝑡 = 𝐙𝑡−1 + 𝛥𝐗𝑡 ∼ 𝑁(𝝁𝐘𝑡
,𝜮𝐘𝑡

), (11)

where 𝝁𝐘𝑡
= 𝝁𝐙𝑡−1

+𝝁𝛥𝐗𝑡
and 𝜮𝐘𝑡

= 𝜮𝐙𝑡−1
+𝜮𝛥𝐗𝑡

. The variables 𝐗𝑡 and
𝐘𝑡 are treated as the a priori information on the location in time step 𝑡.
For the derivation simplicity, they are assumed to be independent, so
that their joint probability density function is given by:

𝑓𝐗𝑡 ,𝐘𝑡
(𝐱, 𝐲) = 𝑓𝐗𝑡

(𝐱) 𝑓𝐘𝑡
(𝐲)

∼ exp
(

−1
2
(𝐱 − 𝝁𝐗𝑡

)T𝜮−1
𝐗𝑡
(𝐱 − 𝝁𝐗𝑡

) − 1
2
(𝐲 − 𝝁𝐘𝑡

)T𝜮−1
𝐘𝑡
(𝐲 − 𝝁𝐘𝑡

)
)

.

(12)

Given the natural postulate that 𝐗𝑡 = 𝐘𝑡, which is treated as the
evidence, the probability density function of the a posteriori location
�̄�𝑡 equals

𝑓�̄�𝑡
(𝐱) = 𝑓𝐗𝑡 ,𝐘𝑡|𝐗𝑡=𝐘𝑡

(𝐱, 𝐱) ∼ 𝑓𝐗𝑡
(𝐱) 𝑓𝐘𝑡

(𝐱)

∼ exp
(

−1
2
(𝐱 − 𝝁𝐗𝑡

)T𝜮−1
𝐗𝑡
(𝐱 − 𝝁𝐗𝑡

) − 1
2
(𝐱 − 𝝁𝐘𝑡

)T𝜮−1
𝐘𝑡
(𝐱 − 𝝁𝐘𝑡

)
)

∼ exp
(

−1
2
(𝐱 − 𝝁�̄�𝑡

)T𝜮−1
�̄�𝑡
(𝐱 − 𝝁�̄�𝑡

)
)

.

(13)

onsequently, �̄�𝑡 is normally distributed,

̄
𝑡 ∼ 

(

𝝁�̄�𝑡
,𝜮�̄�𝑡

)

, (14)

nd

�̄�𝑡
=
(

𝜮−1
𝐗𝑡

+𝜮−1
𝐘𝑡

)−1
, (15)

𝝁�̄�𝑡
= 𝜮�̄�𝑡

(

𝜮−1
𝐗𝑡
𝝁𝐗𝑡

+𝜮−1
𝐘𝑡
𝝁𝐘𝑡

)

. (16)

Step 2. In Step 2, the magnetic field measurement error 𝜖 ∼  (0, 𝜎2M)
and the location �̄�𝑡 are assumed to be independent. Given that 𝑀𝑡 =
𝑀(�̄�𝑡)+ 𝜖, see Table 1, this means that the probability density function
of the joint distribution of �̄�𝑡 and 𝑀𝑡 is given by:

𝑓�̄�𝑡 ,𝑀𝑡
(𝐱, 𝑚) = 𝑓�̄�𝑡

(𝐱) 𝑓𝑀𝑡|�̄�𝑡=𝐱(𝑚)

∼ exp

(

−1
2
(𝐱 − 𝝁�̄�𝑡

)T𝜮−1
�̄�𝑡
(𝐱 − 𝝁�̄�𝑡

) − 1
2
(𝑚 −𝑀(𝐱))2

𝜎2M

)

.
(17)

Given the specific outcome 𝑀𝑡 = 𝑚𝑡 of the magnetic field measurement,
the a posteriori distribution of the current location is given as

𝐙𝑡 = �̄�𝑡|(𝑀𝑡 = 𝑚𝑡), (18)

nd its probability density function satisfies:

(𝐱) = 𝑓 (𝐱) ∼ 𝑓 (𝐱, 𝑚 ). (19)
𝐙𝑡 �̄�𝑡|𝑀𝑡=𝑚𝑡 �̄�𝑡 ,𝑀𝑡 𝑡
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Table 2
Bayesian data fusion procedure for magnetic correction of location.

Initialization: 𝐙0 ∶= 𝐗0 , 𝑡 ∶= 1

Time step 𝑡:

Input: means and covariance matrices of the location-related variables
𝐙𝑡−1 ∼  (𝝁𝐙𝑡−1

,𝜮𝐙𝑡−1
) (from the previous step)

𝐗𝑡 ∼  (𝝁𝐗𝑡
,𝜮𝐗𝑡

) (from the built-in localization system)

𝛥𝐗𝑡 ∼  (𝝁𝛥𝐗𝑡
,𝜮𝛥𝐗𝑡

) (from the built-in localization system)
variance of the magnetic field measurement error

𝜎2
M

result of the magnetic field measurement (from magnetometer)
𝑚𝑡

Computations: (1◦) mean and covariance matrix of the location 𝐘𝑡 = 𝐙𝑡−1 + 𝛥𝐗𝑡
𝝁𝐘𝑡

= 𝝁𝐙𝑡−1
+ 𝝁𝛥𝐗𝑡

𝜮𝐘𝑡
= 𝜮𝐙𝑡−1

+𝜮𝛥𝐗𝑡

(2◦) mean and covariance matrix of the fused �̄�𝑡 = 𝐗𝑡|(𝐗𝑡 = 𝐘𝑡)

𝜮�̄�𝑡
=
(

𝜮−1
𝐗𝑡

+𝜮−1
𝐘𝑡

)−1

𝝁�̄�𝑡
= 𝜮�̄�𝑡

(

𝜮−1
𝐗𝑡
𝝁𝐗𝑡

+𝜮−1
𝐘𝑡
𝝁𝐘𝑡

)

(3◦) mean and covariance matrix of 𝐙𝑡 = �̄�𝑡|(𝑀𝑡 = 𝑚𝑡)

𝜮𝐙𝑡
=
⎛

⎜

⎜

⎝

𝜮−1
�̄�𝑡

+
∇𝑀(𝝁�̄�𝑡

)
(

∇𝑀(𝝁�̄�𝑡
)
)T

𝜎2
M

⎞

⎟

⎟

⎠

−1

𝝁𝐙𝑡
= 𝝁�̄�𝑡

+
𝑚𝑡 −𝑀(𝝁�̄�𝑡

)

𝜎2
M

𝜮𝐙𝑡
∇𝑀(𝝁�̄�𝑡

)

Time step update: 𝑡 ∶= 𝑡 + 1

Output: means and covariance matrices of the corrected locations
𝝁𝐙𝑡
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The magnetic map 𝑀(𝐱) is locally linearized around 𝝁�̄�𝑡
,

(𝐱) ≈ 𝑀(𝝁�̄�𝑡
) + (𝐱 − 𝝁�̄�𝑡

)T∇𝑀(𝝁�̄�𝑡
), (20)

and the linearization is substituted into the joint distribution (17).
Given (19), this finally yields the following a posteriori probability
density function of 𝐙𝑡:

𝑓𝐙𝑡
(𝐱) ∼ exp

(

−1
2
(𝐱 − 𝝁𝐙𝑡

)T𝜮−1
𝐙𝑡
(𝐱 − 𝝁𝐙𝑡

)
)

, (21)

where

𝜮𝐙𝑡
=

⎛

⎜

⎜

⎜

⎝

𝜮−1
�̄�𝑡

+
∇𝑀(𝝁�̄�𝑡

)
(

∇𝑀(𝝁�̄�𝑡
)
)T

𝜎2M

⎞

⎟

⎟

⎟

⎠

−1

, (22)

𝝁𝐙𝑡
= 𝝁�̄�𝑡

+
𝑚𝑡 −𝑀(𝝁�̄�𝑡

)

𝜎2M
𝜮𝐙𝑡

∇𝐹 (𝝁�̄�𝑡
), (23)

and 𝜮�̄�𝑡
and 𝝁�̄�𝑡

are defined as in (16). Consequently, 𝐙𝑡 is normally
distributed:

𝐙𝑡 ∼ 
(

𝝁𝐙𝑡
,𝜮𝐙𝑡

)

. (24)

The standard deviation 𝜎M quantifies the error 𝜖 ∼  (0, 𝜎2M) of the
agnetic field measurement. However, an additional error is entailed

n the linearization (20). If its dependence on the location �̄�𝑡 is ignored
or averaged out), it can be included in the measurement error 𝜖 and
ccounted for by increasing its standard deviation 𝜎M. Similarly, 𝜎M
ay also be increased to account for the inaccuracies of the magnetic
ap 𝑀 . Consequently, 𝜎M is the sole tunable parameter of the proposed
rocedure, as stated in the objective O2 in Section 2.1.

The entire two-step Bayesian data fusion procedure is summarized
n Table 2. Numerically, it involves only straightforward sums, inver-
ions, and products of 2 × 2 matrices and 2-element vectors. These
egligible numerical costs make the procedure suitable for real-time
peration and agree with the objective O1 listed in Section 2.1.

.3.3. Reduction of location uncertainty
The magnetic field is measured at each time step. According to

22) and (23), the proposed Bayesian procedure shifts the expected
5

m

alue of the location and increases its accuracy (decreasing the vari-
nce/uncertainty) in the direction associated with the gradient ∇𝑀(𝝁�̄�𝑡

)
f the magnetic field. As seen in (22), location accuracy increases
ogether with the gradient norm and together with the accuracy of the
agnetometer measurements 𝜎−1M .

The reduction of variance can be illustrated as shown in Fig. 2.
he background contour map represents the magnetic field intensity,
s measured and mapped on the lab test stand (Section 3.3), with
xplicitly marked isolines. The variance reduction is demonstrated for
6 points distributed in a regular 4 × 4 grid. The black circles represent
he initial location uncertainty (prior to correction) and correspond
o the probability density function isolines containing 50% of the
robability mass. The red and green ellipses contain the corresponding
0% probability mass after the location variance is corrected by (22).
wo levels of standard deviation for the magnetic field measurement
rror are considered: 𝜎M = 10% (red lines) and 𝜎M = 1% (green
ines), expressed relative to the full magnetic field range on the map.
ignificant reduction of variance along the gradient can be observed. As
xpected, the variance along magnetic field isolines remains unaffected
y the correction, so that location uncertainty is not improved in the
irection perpendicular to the gradient.

. Experimental stand and instrumentation

.1. Laboratory stand

A laboratory setup was designed to verify and demonstrate the
ffectiveness of the developed method. Fig. 3 presents an overview
f the experimental stand and its essential components. The system
onsists of a base plate, a subsystem for generating the magnetic field,
lighting system, a mobile measurement platform, and a vision system.
he vision system tracks the movement of the mobile platform and
ecords the reference trajectory. The base plate is made from chipboard
overed with a laminate layer with a low coefficient of friction to
liminate self-excited vibrations of the mobile measuring platform. The
ase plate is 1600 mm by 2000 mm in dimension and is supported
y six steel legs. Under the base plate, two sets of ferromagnetic

agnets are mounted (see Fig. 4). They are connected to the plate
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Fig. 2. Reduction of variance (location uncertainty) due to magnetometric measurements. The ellipses contain 50% of the location probability mass before the correction (black)
and after the correction by (22) (red and green).
Fig. 3. Experimental test stand: a – camera (Creative Live Cam), b – base plate, c – mobile measurement platform with Xsens MTi-630, d – fluorescent markers.
bottom surface by links of adjustable length, which enable changing
the intensity of the magnetic field on the test rig. With the increasing
length of the links, the intensity of the magnetic field measured on the
surface of the base plate decreases. Each set of magnets generates its
own magnetic field, which differs from the other in terms of shape
and value. As a result, different magnetic field distributions can be
easily obtained, and system operations can be tested under different
environmental conditions. The specific arrangement of ferromagnetic
magnets depicted in Fig. 4 was selected to obtain a magnetic field
whose general characteristics resemble those of typical anomalies of the
Earth’s magnetic field. The field is shaped to obtain different gradients
along the trajectories of the moving platform. Additionally, a part of
the field on the test stand was designed to be relatively flat and have
a minimal gradient.

3.2. Measurement systems and data processing

The source of reference trajectory, required for assessing the effec-
tiveness of the proposed localization algorithm, is the vision system
6

discussed in this section. The vision system tracks the movement of the
mobile platform, equipped with an inertial measurement unit (IMU),
a magnetometer, and a magnetic field map. These components of the
localization system are introduced in consecutive subsections.

3.2.1. Vision system
The vision measurement system is employed to obtain the positions

of the markers and the reference location of the mobile platform in a
two-dimensional (2D) Cartesian coordinate system associated with the
base plate. The system utilizes a camera with an image resolution of
1920 × 1080 pixels, placed at a distance of 1850 mm from the surface
of the base plate (see Fig. 3). Such placement enables the camera to
track the mobile platform’s displacement with a resolution accuracy of
±1 mm. The system records video footage of the mobile platform at a
rate of 30 frames per second, which enables continuous measurement
of the movement trajectory at speeds up to 3 m/s. To enhance image
contrast for subsequent vision processing, spotlights from two lamps
are directed at the photo-luminescent markers mounted on the mobile
platform and around the base plate.
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Fig. 4. System for creating magnetic field on the test stand.
A series of image processing steps is used to process the images
captured by the camera and obtain the precise localization of the
markers in the image plane. Initially, each video frame is converted
to the HSV (hue, saturation, value) color space model. This model
resembles human eye perception and is more suitable than RGB for
color-based object tracking and image processing [46]. A MATLAB
code, developed using the Threshold Color Image1 algorithm, is then
used to identify the thresholds for the HSV color components of the
photo-luminescent markers. The resulting filtering masks isolate the
image pixels corresponding to the markers. Subsequently, the color
matching method [47] is employed to extract and process the respective
pixel clusters. The coordinates of their geometric centers of gravity are
interpreted as the location of the markers.

The IMU housing is elevated above the plane of the base plate,
as shown in Fig. 5. To mitigate errors related to the parallax effect,
three photo-luminescent markers are placed on the base of the mobile
platform, marked as ‘‘c’’ in Fig. 5. The geometric center of these markers
is determined as the location of the magnetometer integrated with the
center of the IMU housing.

The camera’s optics introduce geometric distortions to the recorded
images, which are corrected by recalculating the relative positions of
the pixels in the image matrix using the transformation procedures
described in [48–50]. Radial and tangential distortion coefficients,
determined through heuristic calibration [51], are used to adjust the
horizontal and vertical positions of pixels [49]. This process is repeated
for each frame recorded by the camera of the vision measurement
system. Prior to each measurement, the vision measurement system
self-adapts by automatic scaling, recording the intensity of markers’
reflection, and compensating for the perspective effect and optical edge
distortion.

3.2.2. Inertial measurement unit
The vision system measures the reference real trajectory of the

mobile platform. This trajectory is synchronized in the time domain
with the data recorded by the mobile measurement platform, providing
a crucial second set of measurements for the localization module. The
platform is based on a Xsens MTi 600 Inertial Measurement Unit (IMU),
as depicted in Fig. 5, which includes an MTi-630 integrated circuit. This
circuit registers parameters such as acceleration (±100 m∕s2, 2000 Hz),
rotation angles (±2000 deg/s, 400 Hz), and magnetic field intensity
(±8 G, 400 Hz).

The measurement noise of the magnetometer, quantified using its
root mean square (rms) value, was estimated to be at the relatively
low level of 0.002 G. In terms of the full range of the magnetic
field intensity in the considered domain, which was approximately

1 https://www.mathworks.com/help/images/ref/colorthresholder-
app.html
7

8.7 G (see Section 3.3), this rms measurement error amounted to only
0.23‰. To account for real scenarios, where the actual error can be
significantly larger due to various additional disturbancies, the noise
rms in subsequent computations was conservatively assumed to be 1%
of the field full range.

3.3. Mapping of magnetic anomaly field

The map of the magnetic field, generated on the experimental stand,
was obtained using the method described in Section 2.2, with 𝑚 =
1000 measurements collected as shown in Fig. 6 (left). The optimal
hyperparameters, satisfying condition (7), were determined to be 𝜎∗ =
8.6 ⋅ 10−4 and 𝑙∗ = 2.38 ⋅ 10−1. The resulting magnetic field distribution
is depicted in Fig. 6 (right). The illustrated domain corresponds to the
base plate. For numerical purposes of trajectory simulation, the field
can be extrapolated beyond the boundary of the plate.

4. Experimental demonstration

4.1. Reference and IMU-based trajectories

The mobile platform, with the IMU onboard, completed a bow-
shaped loop trajectory (trajectory A), as shown in Fig. 7 (left). The
actual reference trajectory, registered using the vision system, is de-
picted in black, while the trajectory reported by the IMU is in red.
The background represents the magnetic field intensity. The proposed
correction procedure was applied to this original trajectory A and, for
additional verification, to the same trajectory subjected to a numerical
vertical flip (trajectory B), shown in Fig. 7 (right).

Fig. 7 confirms the limited accuracy of the built-in inertial local-
ization system. The time evolution of the localization error is plotted
in Fig. 8 (left) using the black line. This depicted error represents the
distance between the reference position reported by the vision system
and the position reported by the IMU-based localization system. The
error increases from 0 cm at the start of the motion (where the initial
position is known) up to 41.2 cm at the end. The mean value of the
error is 11.9 cm.

4.2. Trajectory correction based on magnetic field measurements

The correction procedure proposed in Section 2.3.2 was applied to
the two trajectories depicted in Fig. 7. Magnetic field measurements
were read from the map at the actual position of the mobile platform
reported by the vision system. Measurement noise was simulated by
adding uncorrelated Gaussian noise at the level of 1%, as discussed
at the end of Section 3.2.2. The parameter 𝜎M, used in the correction
procedure (Table 2), was additionally increased by 5‰ to account
for the magnetic map inaccuracies and the error related to the local
linearization (20) of the magnetic field, as discussed at the end of

https://www.mathworks.com/help/images/ref/colorthresholder-app.html
https://www.mathworks.com/help/images/ref/colorthresholder-app.html
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Fig. 5. The mobile measurement platform: a — sensor module (Xsens MTi-630), b — vibration isolation, c — photoluminescent marker, d — low-friction fabric.
Fig. 6. Measurement points used for mapping the magnetic field on the experimental stand of dimensions 1.6 × 2.0 [m] (left). Mapped magnetic field intensity (right).
Section 2.3.2. To account for the randomness of the simulated measure-
ment noise, a Monte Carlo approach was used, with 10,000 correction
procedures performed for each trajectory.

The means of the corrected trajectories 𝝁𝐙𝑡
are plotted in Fig. 7

using green lines. The mean localization errors for the entire corrected
trajectories A and B are 4.9 cm and 4.0 cm, respectively, significantly
lower than the mean error of 11.9 cm for the IMU-based trajectory. The
time evolution of the mean localization errors in successive time steps
is plotted in Fig. 8 (left), along with their ±1𝜎 bands. Histograms of the
mean localization errors for all 10,000 realizations are shown in Fig. 8
(right).

The proposed correction procedure, based on magnetometric mea-
surements, significantly decreased the localization error, both globally
(for the entire trajectories) and locally (in almost all time steps). The
difference in correction accuracy between the two considered trajecto-
ries is related to their specific placement within the magnetic field and
the fact that magnetometric measurements can decrease the localiza-
tion uncertainty only across the isolines of the magnetic field, but not
along them (see Fig. 2). This fact can be confirmed by decomposing
the localization error in each time step into a sum of errors along
the gradient and along the isoline. The mean absolute values of these
8

errors, parameterized by time 𝑡, are plotted in the top row of Fig. 9.
The proposed correction procedure significantly reduced the range of
the mean absolute errors along the horizontal axis, which corresponds
to the direction of the gradient. In contrast, the error range along the
vertical axis (along the isolines) was less affected.

The correction steps performed at a single time instant 𝑡 are illus-
trated for trajectory A. The bottom right plot in Fig. 9 shows the entire
trajectories: reference (black), IMU-based (red), and mean corrected
(green). A single time step (time step No. 307) is selected, with the
corresponding trajectory points explicitly marked. The bottom left plot
in Fig. 9 is an inset corresponding to the area around these locations.
The IMU-based location, marked ‘‘1’’ (red), is relatively far from the
actual reference location ‘‘r’’ (black). The correction procedure was
performed in three following steps, formally defined in Table 2:

(1◦) The corrected location 𝐙𝑡−1 from the previous time step, marked
with a small green dot, was shifted by 𝛥𝐗𝑡 to obtain the location
𝐘𝑡, marked ‘‘2’’.

(2◦) The locations 𝐘𝑡 (‘‘2’’) and IMU-based 𝐗𝑡 (‘‘1’’) were used to ob-
tain the location �̄�𝑡 (‘‘3’’). This location lies on a different isoline
of the magnetic field than the actual reference location ‘‘r’’.
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Fig. 7. The bow-shaped trajectory of the mobile platform (trajectory A, left) and its vertical flip (trajectory B, right). The actual reference, IMU-reported 𝐗𝑡, and mean corrected
𝐙𝑡 trajectories are plotted in black, red, and green, respectively.
Fig. 8. (left) Localization error in successive time steps for the IMU-based and two corrected trajectories: mean values and ±1𝜎 bands. (right) Histogram of the mean localization

error for the two corrected trajectories.
(3◦) The location �̄�𝑡 (‘‘3’’) was updated using the magnetic field
measurement to obtain the final corrected location 𝐙𝑡 (‘‘4’’). The
update pushed the location towards the proper isoline (that of
the reference location ‘‘r’’), which is emphasized by means of
the light gray shading.

The corrected trajectory (‘‘1’’) slides across the magnetic field iso-
lines similarly to the reference trajectory (‘‘r’’). However, magnetic
field measurements cannot provide information about the location
component along the isolines, which thus remains influenced by the
error of the IMU-based localization system.

4.3. Comparison with a particle filter approach

To confirm the performance of the developed method, the results
obtained in Section 4.2 were compared with those acquired using
a particle filter. Particle filters have been extensively studied in the
context of magnetic anomaly-based positioning and navigation (see, for
example, [52–54]). The particle filter was implemented in its standard
9

version, following the algorithm outlined in [52], which relies on three
major steps: (1) calculation of weights, proportional to the measure-
ment density; (2) resampling, which discards less significant particles
and generates new ones; and (3) position updating of samples using
a propagation model. To ensure a consistent comparison, the particle
filter was provided with the same data as the Bayesian correction
approach, including an identical magnetic anomaly field map, mag-
netic measurement noise for particle weight updating, and IMU-based
data for particle propagation modeling. Furthermore, 1000 particles
were used to estimate the initial position, distributed according to
a normal distribution centered around the starting position with a
standard deviation of 5 cm. At each step, resampling was performed
by discarding particles with normalized weights below 0.9, followed
by the generation of new particles according to a normal distribution
centered around the remaining particles with a standard deviation of
3 cm. Additionally, the total number of particles was constrained to
vary between 100 and 3000.
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Fig. 9. (top) Decomposition of the mean absolute localization error, in successive time steps, into components along the local isoline and along the local gradient for the corrected
trajectories A and B. (bottom) The reference, IMU-based, and mean corrected trajectory A. The bottom left inset illustrates the correction procedure performed in a single time
step.
Fig. 10 compares the localization errors of both approaches. In terms
of the overall positioning accuracy, the proposed Bayesian correction
is slightly outperformed by the particle filter. As listed in Table 3,
the particle filter reduced the mean error value by 8.2 mm (16.9%)
for trajectory A and by 2.4 mm (6.0%) for trajectory B. Nevertheless,
several advantages of the proposed Bayesian correction can be observed
and summarized as follows:

1. The Bayesian correction was significantly more accurate in the
initial stages of both trajectories. It ensured stable and pre-
cise tracking of the actual position, while the particle filter
yielded substantially larger errors due to its stochastic nature.
The observed stability in position estimation with the Bayesian
correction during the initial phase may offer advantages in
scenarios involving temporary losses of GPS signals.

2. The stochastic characteristics of the particle filter are empha-
sized in trajectory A, where significant variation of the estimated
position can be observed in the second stage of the trajectory
(much larger than for the Bayesian correction). This indicates
that the expected performance of the particle filter may not
always be guaranteed, as evidenced by the very large values
10
of standard deviation in Table 3 and the broad error histogram
shown in Fig. 11.

3. The intrinsic randomness of the particle filter makes its perfor-
mance highly sensitive to the selection of algorithm parameters,
particularly in the resampling step. The choice of appropriate
thresholds for discarding the least significant particles and dis-
tributions for generating new particles can significantly impact
the precision and stability of the estimated position. In contrast,
the proposed Bayesian correction approach does not require any
preliminary tuning, which promotes reliability and simplifies
implementation.

4. Real-time implementations of the Bayesian correction are facil-
itated by its minimal computational cost. As listed in Table 2,
the average processing time for one iteration of the developed
Bayesian algorithm was 3.16 ms (using a standard PC running
Windows OS). In contrast, one iteration of the particle filter
required 1.34 s on average (over 400 times longer). This sig-
nificant difference (2–3 orders of magnitude) is mainly due to
the repetitive generation of random distributions and multiple
readings of the magnetic field map.
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Table 3
Localization errors for the Bayesian correction procedure and the particle filter: mean trajectory error and its ±1𝜎 value. Mean
processing time per single iteration.

trajectory A trajectory B mean processing time
mean error ±1𝜎 [cm] mean error ±1𝜎 [cm] per iteration

Bayesian correction 4.85 ± 0.29 4.00 ± 0.26 3.16 ms
particle filter 4.03 ± 1.28 3.76 ± 0.20 1.34 s
Fig. 10. Localization errors in successive time steps and their ±1𝜎 bands for: (left) trajectory A; (right) trajectory B. The curves correspond to the IMU-based trajectory, trajectory
corrected using the proposed Bayesian approach, and particle-filtered trajectory.
Fig. 11. Histogram of the mean localization error for the two particle-filtered
trajectories (to be compared with Fig. 8).

4.4. Sensitivity to measurement error of the magnetometer

An important factor in the proposed Bayesian correction procedure
is the measurement error level of the magnetometer. This error af-
fects the accuracy of the measurements and is accounted for in the
coefficient 𝜎M. The examples in the preceding Section 4.2 involved a
measurement error at the rms level of 1% of the full magnetic field
range, which conservatively overestimated the actual measurement
error of the employed physical magnetometer. In practical applications,
the measurement error, expressed in relative terms of the field range,
can vary considerably. This variation can be due to either a small range
of the magnetic field in the area of interest or the physical limitations of
the sensor. This section tests the efficiency of the proposed method un-
der different measurement error levels. Fig. 12 plots the mean absolute
localization errors for both considered trajectories (A and B), together
with their ±1𝜎 bands, in dependence on the measurement error ranging
from 0.1‰ up to 100% of the full field range. The horizontal axis
is plotted in a logarithmic scale. As in Section 4.2, the value of 𝜎M
used in computations was additionally increased by 5‰ to account for
magnetic map inaccuracies and field linearization errors.
11
Fig. 12. Dependence of mean absolute localization errors and their ±1𝜎 bands on the
rms measurement error level of the magnetometer, expressed in terms of the full range
of the magnetic field. The black horizontal line marks the localization error of the
IMU-based trajectory.

For large measurement noise levels, the mean localization error
approaches that of the IMU-based trajectory. This outcome is intuitive,
as magnetic field measurements with large errors do not provide mean-
ingful information for correcting localization. The localization error is
low and relatively stable for measurement noise up to at least 1% rms,
which represents a noise level an order of magnitude larger than that
of the sensor used in the experiment.

5. Conclusion

This paper presents a new method for real-time localization of an
object traveling in a GPS-denied environment. Based on Bayesian for-
malism, the method utilizes measurements of magnetic field anomalies.
In contrast to other commonly used localization methods, such as those
relying on particle filters, the developed approach eliminates the need
for an iterative procedure, enabling real-time implementation regard-
less of the scale of the designated area. The instantaneous operation
of the algorithm is well-suited for precise position correction during
temporary losses of GPS signal.
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Experimental validation confirmed the effectiveness of the proposed
algorithm in utilizing magnetic field measurements to refine the initial
position obtained from the IMU module. The correction method demon-
strated a substantial 58%–67% improvement in the mean position
error compared to the IMU-derived position estimates. Further analysis
confirmed the robustness of the proposed method to magnetic field
measurement errors. A comparison to a particle filter approach revealed
a significant improvement in both computational efficiency (by 2–3
orders of magnitude) and error stability, albeit at the cost of a slightly
decreased positioning accuracy (by 6%–17%).

Simultaneously, certain limitations of the method were identified.
In particular, it was observed that the correction of position is sig-
nificantly more effective along the direction of the magnetic field
gradient. It suggests that proper trajectory planning can increase the ac-
curacy of magnetic localization. Moreover, the experimental validation
was performed in laboratory conditions. Further steps towards real-
world applications will involve significant new challenges related to
the magnetic disturbances and the dynamic variability of the magnetic
field.
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