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ARTICLE INFO ABSTRACT

Keywords: The macroscopic behaviors of materials are determined by interactions that occur at multiple
DFT lengths and time scales. Depending on the application, describing, predicting, and understanding
DFTB

these behaviors may require models that rely on insights from atomic and electronic scales. In
such cases, classical simplified approximations at those scales are insufficient, and quantum-
van der Waals interaction based modeling is required. In this paper, we study how quantum effects can modify the
Carbon nanotube mechanical properties of systems relevant to materials engineering. We base our study on a
UHMWPE high-fidelity modeling framework that combines two computationally efficient models rooted
in quantum first principles: Density Functional Tight Binding (DFTB) and many-body disper-
sion (MBD). The MBD model is applied to accurately describe non-covalent van der Waals
interactions. Through various benchmark applications, we demonstrate the capabilities of this
framework and the limitations of simplified modeling. We provide an open-source repository
containing all codes, datasets, and examples presented in this work. This repository serves as
a practical toolkit that we hope will support the development of future research in effective
large-scale and multiscale modeling with quantum-mechanical fidelity.

Energy range separation
Many-body dispersion

1. Introduction

The properties and behaviors of materials at the continuum scale are deeply rooted in the interactions and phenomena that
take place at much smaller scales, both spatially and temporally. For example, the macro-scale plasticity and failure mechanisms in
metals are significantly influenced by their microstructural properties and the dynamics of defects such as dislocations (Deshpande,
Needleman, & Van der Giessen, 2002; Hochrainer, Sandfeld, Zaiser, & Gumbsch, 2014; Hu, Chen, Ramesh, & McCauley, 2012; Van
der Giessen & Needleman, 1995). Similarly, the macroscopic behavior of complex fluids is heavily dependent on their molecular
structure (Siepmann, Karaborni, & Smit, 1993; Weinan, 2011), and the phenomena of adhesion and cohesion at interfaces are
fundamentally linked to interactions at the micro and nanoscale (Vakis et al., 2018). Moreover, for many important systems
and applications, quantum-scale effects show a noticeable influence at the macroscopic level. Such effects are observed when a
multitude of atomic systems correlate to produce non-local collective phenomena, e.g., in superconductivity (Clarke & Wilhelm,
2008), photosynthesis (Romero et al., 2014), piezoelectricity (Duerloo, Ong, & Reed, 2012), flexoelectricity (Wang, Gu, Zhang, &
Chen, 2019), optomechanics (Aspelmeyer, Kippenberg, & Marquardt, 2014), in the principles behind quantum computing (Ladd
et al., 2010), among others.
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In scenarios where quantum effects play a pivotal role, precise macroscopic predictions demand the use of high-fidelity ab initio
models that are grounded in the fundamental principles of quantum mechanics. Among the ab initio methods, Density Functional
Theory (DFT) (Hohenberg & Kohn, 1964; Jones, 2015; Kohn & Sham, 1965) has gained prominence for its ability to offer high-fidelity
results while maintaining a lower computational cost compared to other first principle methods, especially for systems comprising
up to a few hundred atoms. DFT has found widespread application across various fields, including physics, chemistry, and material
science, and has become a benchmark for the development of simplified or surrogate models that can tackle the complexity of
material systems (Brenner et al., 2002; Csanyi, Albaret, Payne, & De Vita, 2004; Curtin & Miller, 2003; Holler, Smejkal, Libisch, &
Hellmich, 2020; Maurer et al., 2019; Nyshadham et al., 2019; Peng, Ji, & De, 2012; Ulissi, Medford, Bligaard, & Ngrskov, 2017).

The computational cost of first principles/ab initio methods, such as DFT, precludes their direct application to engineering-
scale systems. In this context, they can be contrasted with fully empirical methods, which rely on observations, parametrizations
and experimental data to formulate models, rather than deriving interactions directly from fundamental theories. Fully empirical
methods, such as molecular mechanics (MM) or force field (FF) methods (Brenner et al., 2002; Christen et al., 2005; Cornell et al.,
1995; Jorgensen & Tirado-Rives, 1988; Stillinger & Weber, 1985), can thus be used to simulate systems millions of times larger. These
approaches model atoms as classical particles, with the system described by a function of particle positions. The parameters and
functional forms used to describe interactions between atoms and molecules are often derived from experimental measurements or
quantum-mechanical calculations for small fragments. Despite the fact that empirical methods are widely employed for engineering
purposes, they suffer from lower accuracy as compared to ab initio methods. In fact, there is no systematically improvable way to
ensure the reliability and predictive power of empirical force fields for complex molecules and materials. Hence, developing force
fields with increasingly higher fidelity (towards the exact solution of the Schrédinger equation) is the only guaranteed path reach
high-fidelity simulations of engineering-scale systems.

Bridging the gap between fully empirical and ab initio approaches, semi-empirical methods, such as the tight-binding method
(Goringe, Bowler, & Hernandez, 1997) and Hartree-Fock-based methods (Fischer, 1977), are able to balance efficiency and accuracy.
Semi-empirical methods incorporate empirical approximations into ab initio methods to enhance their performance, enabling the
study of larger systems with a controlled loss of accuracy. Among these methods, Density Functional Tight Binding (DFTB) (Elstner
et al., 1998; Porezag, Frauenheim, Kohler, Seifert, & Kaschner, 1995), which is directly parameterized from DFT, emerges as a sound
option due to its strong foundation in first principles. As a more computationally efficient tool, DFTB has been actively applied to
large molecules (DNA, proteins, etc.), clusters, and nanoparticles (silver, gold, molybdenum disulfide, etc.), see Spiegelman et al.
(2020) for a recent literature review of its applications. As such, it will be used in the present work as one of building blocks of the
quantum-informed framework.

A usual limitation of DFT and DFT-based models, such as DFTB, is the absence of long-range correlation effects. This includes van
der Waals dispersion forces, also known as London Dispersion Forces, in which electrons in one atom or molecule can influence the
distribution of electrons in another, leading to correlated behavior.! This influence is not adequately captured by simpler models,
and methods like DFT and DFTB may struggle to account for these correlations accurately. This can pose a significant drawback, as
vdW dispersion interactions play a crucial role in numerous and widely different phenomena, from cohesive interactions in layered
materials (Liu, Huang, & Duan, 2019) and protein folding (Dill, 1990), to the principles behind adhesion in gecko feet (Autumn
et al., 2002). Therefore, proper treatment of dispersion vdW interactions is needed to properly understand and predict properties
of a multitude of engineering systems, which will also be demonstrated further in the present work.

Conveniently, vdW dispersion interactions can be added on top of existing DFT-based models, as is often done in the case of
empirical methods. Among the main approaches developed to incorporate vdW dispersion interactions, classical pairwise (PW)
approximations, such as the Lennard-Jones (LJ) or Tkatchenko-Scheffler (TS) models (Tkatchenko & Scheffler, 2009), have proven
to be reliable for specific molecular systems and useful due to their computational efficiency. However, they neglect the quantum
many-body nature of vdW interactions, which may prevent them from properly reproducing experimental observations (Ambrosetti,
Alfe, DiStasio, & Tkatchenko, 2014; Marom et al., 2013; Reilly & Tkatchenko, 2013). For that reason, a more complex but also more
accurate many-body dispersion (MBD) method (Tkatchenko, Ambrosetti, & DiStasio, 2013; Tkatchenko, DiStasio, Car, & Scheffler,
2012) for vdW interactions becomes preferable, as it takes into account collective long-range electron correlations. Numerous
studies have convincingly shown that MBD surpasses PW models in accurately describing vdW dispersion interactions and more
closely approaches experimental references, as seen in thin-layer delamination (Hauseux et al., 2020), vdW power law at the
nanoscale (Ambrosetti, Ferri, DiStasio, & Tkatchenko, 2016), and modeling organic molecular materials (Reilly & Tkatchenko, 2013),
among others.

Despite being more efficient than DFT and more accurate than empirical MM approaches, with notable examples being reported
in the physics community (Mortazavi, Brandenburg, Maurer, & Tkatchenko, 2018; Stohr & Tkatchenko, 2019), the DFTB+MBD
framework has not yet been widely used in the mechanical/computational engineering community. This is probably due to the
scarcity of accessible theoretical and practical introductions, as well as the high barriers to entry placed by the absence of scalable
and easy-to-use implementations. It may be also unclear how certain engineering-scale systems are sensitive to quantum-scale effects
predicted by the DFTB+MBD framework. Therefore, there is an urgent need to investigate and demonstrate performance of the
framework on engineering systems, while developing user-friendly approaches to its application.

In the present paper, we address the aforementioned needs by introducing the following contributions:

1 In the context of quantum mechanics and computational chemistry, the term “correlation” refers to the mutual influence or connection between the motions
of electrons in a system. Specifically, “long-range correlation” and “long-range interactions” implies interactions between electrons that extend over relatively
large distances.
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» A didactic introduction to the proposed quantum-based framework and related physics concepts, supported by the open-source
library (Shen, Sosa, Bordas, Tkatchenko, & Lengiewicz, 2024) containing all the models, examples, and datasets featured in
this paper. This effectively transfers the seemingly unapproachable physics toolkit to engineering.

» Identification of engineering systems whose mechanical properties require incorporating quantum effects. This serves as a
practical guide, aiding the selection of suitable models for specific systems.

» Demonstrating the improved fidelity of DFTB+MBD over simplified modeling, by showcasing differences on various systems.

In particular, we will introduce and explain the DFTB+MBD modeling framework, and study how it can be applied to various systems
and problems, with an emphasis on how important high-fidelity modeling can be to accurately predict mechanical properties. We
evaluate the performance of the framework for selected molecular systems, including interacting carbon chains as the starting toy
system, single-wall carbon nanotubes (SWCNT) as single molecules with closed structures and robust mechanical properties, and
Ultra High Molecular Weight Polyethylene (UHMWPE) as multi-extended-molecule systems held together by vdW forces.

The remainder of this paper is structured as follows: Section 2 introduces the current paradigm of atomistic modeling, namely
DFT, followed by an introduction to DFTB as its high-fidelity approximations and how they lead to the necessity of implementing
the energy range separation technique, which forms the basis of our framework. Section 3 describes two vdW dispersion models to
be implemented in conjunction with DFTB: one is based on the many-body quantum mechanical nature of the problem (MBD) and
the other a pairwise approximation of the interaction (PW). Section 4 presents our open-source repository and demonstrates the
framework’s capabilities through benchmark applications on various systems. This includes static and dynamic studies on carbon
chains, focusing on vdW effects, as well as mechanical tests on SWCNT and UHMWPE, where we explore the interplay between
DFTB and vdW interactions in different nanostructures, emphasizing the significance of the quantum effects in predicting mechanical
properties of materials relevant to engineering. Finally, Section 5 summarizes our contributions and discusses the potential of the
proposed framework.

2. Density functional theory-based modeling

In this section, we will present the origin and reasoning behind the methodology of our frame-work, which is built according to
the energy range separation approach. The concept of energy range separation arises from the practical simplifications made when
implementing DFT, which was developed to address the computational difficulties of directly solving the Schrodinger equation. For
that reason, we will first provide an informative introduction to DFT in Section 2.1, starting from first-principles modeling, followed
by presenting the semi-empirical approximation of DFT, namely DFTB, which is practically employed in our proposed framework.
This introduction will assist in explaining the necessity of incorporating the concept of energy range separation and thus add vdW
dispersion corrections to DFT-based models, see Section 2.3 for a detailed discussion.

2.1. Density functional theory

The behavior and properties of atomistic structures can be described by the many-body Schrédinger equation (Cohen-Tannoudji,
Diu, & Lalog, 1977). In the simple stationary (time-independent) scenario of N particles labeled by r;, the Schrodinger equation
takes the following form:

N N N

[Z (—%vf) + V) + Y U | ¥ = EY. 1))
i=1 i=1 i<j

In the equation above, the term in the square brackets is the Hamiltonian operator that includes the non-interacting term VX(r;)

(e.g., the external potential) and the interacting term U(r;,r s while E is the unknown energy, and ¥ = ¥(r,,r,,....ry) is the

unknown 3 N-dimensional complex-valued wave function that fully defines the state of the whole system.

Solving the many-body Schrodinger equation requires finding the eigenvalues, E,, and eigenvectors, ¥,, of the Hamiltonian
operator. This can be a challenging task for large, complex systems, since the memory requirement to store the whole system wave-
function, as well as the computational cost it takes to calculate it, scales exponentially with the number of interacting particles. For
that reason, methods for approximating the quantum mechanical interactions are usually used.

The most widely used simplifying step is the Born-Oppenheimer approximation for atom nuclei (Szabo & Ostlund, 1996), which is
based on the fact that the nuclear polarization is much smaller than the electronic polarization. This enables us to regard the atomic
nuclei as classical particles, focusing solely on the quantum electronic problem—the interaction among N electrons in the presence
of nuclei. However, this approach proves insufficient for most practical applications, necessitating additional approximations due to
the complexity of the full many-body problem involving all remaining electronic degrees of freedom, which is challenging to solve

entirely.
A commonly used method to mitigate the aforementioned complexity issue is the DFT method, which allows for coarse-graining
from a 3N-dimensional wave function of interacting electrons, ¥'(r|, ..., ry), to a much simpler 3-dimensional density function, n(r).

The DFT method is based on the Hohenberg—Kohn theorems (Hohenberg & Kohn, 1964), which claim that the ground state solution
for the general problem can be exactly represented as a system of N non-interacting electrons subjected to an effective potential
determined by the total ground state electron density, n(r).

The key point of considering electrons as non-interacting lies in the fact that it greatly simplifies the computational problem.
By treating electrons as non-interacting, we can avoid the need to account for the complex many-body interactions between them,
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which would otherwise require a significantly higher computational effort. This qualitative change in the expression leads to an
extreme reduction in computational cost. In fact, the cost of solving Eq. (1) for an unknown 3 N-dimensional wavefunction scales
as O(K3N) for K equal to the number of discretization points used to compute it, while the cost of performing DFT scheme for an
unknown 3-dimensional density function scales as O(N?).

In DFT, the total energy E can be written as a function of the electron density function n(r) and atomic (nuclei) position R,
z.Z
i

1
drdr' + EXn(r)+ = Y — I

E(n(r). R) = T(n(r) + E™n(r), R) + [ 10) — ;{ 5
J

2 \r—r'|

(2

and is composed of five characteristic terms. The first one is the total electronic kinetic energy T'(n(r)), the second represents the
energy contribution due to the external potential induced by atomic charges E®(n(r), R), the third is called the Hartree term and
it describes the Coulomb repulsion between electrons, the fourth is the exchange—correlation energy E*¢(n(r)), and the last one is
the atomic energy (nuclei-nuclei interaction). The exchange-correlation part is arguably the most important since it encompasses
all of the characteristic quantum mechanical effects, including the many-body particle interactions.

The electron density function, n(r), used in Eq. (2), is obtained as a solution to a separate problem, the Kohn-Sham equa-
tions (Kohn & Sham, 1965). The Kohn-Sham equations are derived through the DFT formalism, which provides a non-interactive
system description for electrons using the Kohn-Sham orbitals ¢, (r):

nr') ., SEX B
|r_r,ldr + () Gr(r) = e, Py (r). 3

—%V2+Ve’“ (R)+/

The four terms in this equation are directly related to the first four terms of Eq. (2), and pose an eigenvalue problem to be solved
for the unknown Kohn-Sham orbitals ¢, (r) and the related energies ¢,. The last term of Eq. (2) representing the atomic interaction
energy is not included in this description as it has no explicit dependence on the degrees of freedom of the electrons.

In Eq. (3), the Kohn-Sham orbitals are represented by a linear combination of respective basis functions ¢,(r), and their choice is
specific to the problem in hand, see Parr and Yang (1994). As a result, ¢, (r) = Y, C\,¢,(r), with C;; being effectively the unknowns
in Eq. (3). Knowing the orbitals, ¢, (r), it is possible to compute the electron density

nr) =Y (), )
k

and solve the Eq. (3) and (4) in an iterative self-consistent manner. The only constraint is that the integral of the electron density
n(r), which represents the total charge, be preserved.
The algorithmic process for solving the Kohn-Sham equations involves the following steps:

. Initialize the electron density n(r) with an initial guess.

. Compute the last three terms in the bracket in Eq. (3) using the current electron density n(r).
. Solve the Kohn-Sham equations (Eq. (3)) in order to find the eigenfunctions (orbitals) ¢, (r).
. Update the electron density n(r) using the new orbitals ¢, (r) according to Eq. (4).

. Check for convergence of the electron density n(r). If not converged, return to step 2.

g b W=

Upon properly obtaining the electron density, we can derive the total energy precisely using Eq. (2). However, even for systems
with thousands of atoms, the computational cost of DFT makes it prohibitive for solving the energy minimization problem in a
successive manner for exploring different configurations. In the following section, we will present an efficient high-fidelity alternative
for atomistic simulations, known as DFTB.

Remark 1. It is important to note that the electron density n(r) has an implicit dependency on the atomic positions R;, as the
external potential Ve and the exchange—correlation functional % depend on the positions of the nuclei. This dependency is
properly resolved when computing the forces as a derivative of energy with respect to the atomic positions (Payne, Teter, Allan,
Arias, & Joannopoulos, 1992). However, the discussion of particular approaches for doing so is beyond the scope of the present
paper.

2.2. Density functional tight binding

Density Functional Tight Binding (DFTB) (Elstner et al., 1998) is a semi-empirical method rooted in DFT that relies on the, so-
called, tight binding approximation. The fundamental assumptions of this approach include the confinement of valence electrons to
their respective atoms and the representation of density fluctuations as a superposition of atomic contributions, which are considered
to be exponentially decaying, spherically symmetric charge densities. In this study, we utilize the DFTB3 method (Yang, Yu, York,
Cui, & Elstner, 2007), a variant of DFTB that incorporates a third-order Taylor expansion of these tightly bound electronic states
with respect to electron density fluctuations in the total energy calculation shown in Eq. (2), based on the Kohn-Sham formalism
introduced in Section 2.1. Consequently, the total electron density n(r) can be approximated using a linear combination of a minimal
atomic basis set obtained through parametrization. In essence, the electron density of the system n(r), see Eq. (4), is represented by
combining the contributions of a limited set of atomic orbitals (i.e., basis functions ¢,(r)), which are fitted to reference data acquired
from DFT calculations. This process allows for rewriting the Kohn-Sham equations (Eq. (3)) in terms of the defining coefficients
for this minimal atomic basis set, and solve a reduced eigenvalue problem to compute n(r) following the same iterative procedure
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Fig. 1. Illustration of the proposed high-fidelity framework and its energy range separation approach. The modeling is based on the approximated density
functional theory (ADFT), for which we apply DFTB as an efficient semi-empirical approximation of DFT. The long-range complement for the ADFT is achieved
by van der Waals dispersion interactions, and our framework offers both the many-body (MBD) and pairwise (PW) methods. The concept of energy range
separation is abstracted as the interplay between the orange (ADFT) and green (vdW) curves, with a clear overlapping revealing the implicit nature of the
separation.

detailed in Section 2.1. Although the computational complexity of DFTB3 scales the same as DFT (O(N?)) because it also relies
on the diagonalization operation, the approximations employed in this case enable a speedup of one to two orders of magnitude
compared to the latter while preserving accuracy for a broad range of systems with localized electrons.

While DFTB3 offers a significant computational advantage over DFT, we should acknowledge its limitations as well as the range
of systems for which it is well-suited. First of all, DFTB relies on tight binding assumption, which practically limits its applications
to non-metallic systems. Also, DFTB3 relies on an empirical parametrization, which can limit its accuracy and transferability
compared to DFT. Additionally, its minimal basis set further reduces its reliability compared to DFT. Despite these limitations,
DFTB3 has demonstrated success in accurately modeling various systems, such as organic molecules, molecular crystals, surfaces,
and nanomaterials (Spiegelman et al., 2020). For cases where DFTB is not well suited, such as systems characterized by presenting
charge transfer or excited states, advanced time-dependent DFTB (Niehaus et al., 2001), or alternative methods, including DFT itself,
wavefunction-based approaches, or hybrid methods (Becke, 1993; Heyd, Scuseria, & Ernzerhof, 2003), provide much more accurate
results.

Remark 2. DFTB3 enables calculations on periodic lattices, which is utilized in some of the presented examples. The handling
of periodicity in DFTB3 is facilitated by Bloch’s theorem, which suggests that solutions to the Schrodinger equation for a periodic
potential can be written as a product of a plane wave and a function that mirrors the periodicity of the lattice (Ashcroft & Mermin,
1976). This theorem allows the problem to be transformed into the reciprocal space, or k-space. In this context, k-points are specific
points in the reciprocal space that represent different possible states for an electron in the crystal. For each of these k-points, the
Kohn-Sham equations, a set of eigenvalue equations, need to be solved. This involves a process of diagonalization, resulting in a set
of eigenvalues (the energy levels) and eigenvectors (the corresponding wave functions) for each k-point. The choice of k-points for
the calculations can significantly impact both the accuracy and computational cost of the simulation. A larger number of k-points
generally leads to more precise results, but also increases the computational cost due to the diagonalization process required for
each k-point.

2.3. Energy range separation

In DFT, the exact functional for the exchange—correlation is not known, which forces us to make simplifications to E*¢. The nature
of these approximations is widely taken as local, i.e., we assume the exchange-correlation to depend only on the density at the
coordinate where it is being evaluated or its low-order derivatives. This assumption inevitably makes this interaction energy decay
exponentially with distance, since that is the decay rate for the electron wavefunction overlap. Moreover, a second-order expansion
analysis on the correlation energy (Tkatchenko et al., 2013) reveals that, for two neutrally charged spherical particles, the energy
decay should follow a rate inversely proportional to the distance to the power of 6 generated because of induced instantaneous
dipole interactions. This tells us that the interaction decay rate for DFT is overestimated and thus it is necessary to correct for the
long-range correlation interactions by introducing a van der Waals dispersion potential.

It is in this context that we introduce the energy range separation, see Fig. 1, to decouple the total energy of an atomic system
Et"t:

Etot — EADFT + EVdW’ 5)

where the total energy is defined as the sum of the contribution obtained as a part of the approximated DFT energy EAPFT, and the
long-range contribution determined by van der Waals dispersion interactions EV4W which will be introduced in Section 3. In general,
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there are various options available for EAPFT, each with different trade-offs between efficiency and accuracy. In our DFTB+MBD
framework, we incorporate DFTB method to achieve a good balance between high-fidelity and computational feasibility for the
non-vdW contribution in Eq. (5). This can be expressed as:

Etot — EDFTB +EVdW, 6)

where vdW superscript represents either MBD or PW models.
3. Van der Waals dispersion: pairwise and many-body models

Van der Waals dispersion, also know as London dispersion, is a type of ubiquitous attractive inter-atomic/molecular force. It
arises due to the temporary fluctuations in the electron density, leading to instantaneous dipoles which then interact with other
dipoles induced by them. As stated in Section 2, vdW dispersion interactions are not taken into account in the usual approximations
of exchange—correlation energy made in DFT and DFTB methods, but can be included as an additional term, E¥4W, in the total
energy. In this section, we will present two such vdW models, employed in our framework, i.e. pairwise and many-body dispersion
approaches.

3.1. Pairwise approach
In order to model vdW interactions, pairwise approaches are commonly used. In those cases the vdW dispersion energy EVIW-PW
is evaluated as a simple sum of interactions between two atoms:

EVAWPW _ Z fdamp . %’ )
J>i ij

where R;; = ||R; — R;]|| is the interatomic distance between atoms i and j. C4;; are coefficients, which are either determined
experimentally or numerically from DFT calculations. The damping function f9™P prevents a non-physical singularity when R, ;
tends to zero and is equal to one at large distances. The properties at medium and small distances will be always slightly perturbed
by Eq. (7), depending on the parameters of the damping function.

In our simulations, we adopt the Tkatchenko-Scheffler (TS) vdW model (Tkatchenko & Scheffler, 2009). It is based on a scaling
technique that determines accurate in situ polarizabilities and other corresponding parameters by taking into account the local
chemical environment. The damping function in the TS model is of Fermi-type defined as follows:

FmP(R, ) = [1 + exp(—d - (R,;/S"™W - 1))] ™", (8)

where d is the parameter for adjusting the shape of the damping function. SV4W is defined as a scaled sum of vdW radii
;/(R,.VdW’e“+R‘.'dw’eff ), where R;'dw’eff is the effective vdW radius of the ith atom and y is a functional-specific empirical parameter that
is fitted to reproduce intermolecular interaction energies based on the choice of experimental or benchmark database (Ambrosetti,
Reilly, DiStasio, & Tkatchenko, 2014; Jurecka, Sponer, éerny, & Hobza, 2006; Tkatchenko & Scheffler, 2009). The pairwise

coefficient C;; is defined as:

zceff Ceff
6,ii 6,jj
Coij = (@O /Ot Ceff | (o0l 1, Oeff) eff ©)
j i 6.ii i J 6.jj
where a?’e“ is the effective atomic polarizability, and C:f[fl is the effective atomic parameter. The above “effective” terms can be

obtained by scaling their free-atom values, i.e.

2 " e\ 1/3
pett yeff petf
Cef_f_ — Cfr_e_e i , aQ,eff — ap,free i , RydW,eff — RydW,free i , (1 0)
6,ii 6,ii ylree i i yfree i i yiree
i i i

where the factor Vf” / Vl.free represents the ratio of the effective volume occupied by the atom interacting with its environment, as
evaluated using the Hirshfeld partitioning (Hirshfeld, 1977), to the free (non-interacting) reference volume occupied by this atom.
In general, the volume ratios vary throughout an atomic structure, which can only be retrieved from high fidelity models, such as
the DFTB method introduced in Section 2.

3.2. Many-body dispersion approach

The MBD method (Tkatchenko et al., 2013, 2012) is a powerful approach for calculating the interatomic interaction energy based
on the Adiabatic Connection Fluctuation Dissipation Theorem (ACFDT) within the Random Phase Approximation (RPA) for a model
system comprised of quantum harmonic oscillators (QHOs) interacting via the dipole-dipole interaction potential (Tkatchenko et al.,
2013). The MBD model generalizes the pairwise vdW energy expression by considering all orders of the dipole interaction between
fluctuating atoms. Following Ambrosetti, Reilly, et al. (2014), the ACFDT-RPA correlation energy for MBD model is expressed as
follows:

prawnmep _ L / Tr[In(1 — AT)] do, 11)
27[ 0
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where A is a diagonal 3N x 3N matrix (N atoms). For the case of isotropic QHOs, A is defined as 4,,, = —§,,,«, (i®), where a; (iw)
is the /th frequency-dependent atomic polarizability. T is the dipole-dipole interaction tensor:

T = Vg, ® Vg, v (12)

where @ and b specify the Cartesian coordinates, and uf.g is a modified Coulomb potential (Dombroski, Taylor, & Gill, 1996), used
to incorporate overlap effects for a set of fluctuating point dipoles:

o erf(Ry;/(B-5;))

s =7 (13)

ij Rij
in which g in Eq. (13) is an empirical constant, R; 5 is the interatomic distance between atom i and j, and 4, ;= Uiz + oj? is an
effective width computed from the atom’s Gaussian widths o; and ¢; of atoms i and j respectively. These Gaussian widths are directly
related to the polarizabilities, «;, in classical electrodynamics (Mayer, 2007) and can be derived from the dipole self-energy as:

> 1/3
o = <\/%ai> : 14

For the efficiency of implementations, we assume the dipole-dipole interaction is frequency-independent by utilizing the effective
polarizability a?’eff to compute o; as defined by Eq. (14). According to Ambrosetti, Reilly, et al. (2014), the ACFD-RPA correlation
energy defined by Eq. (11) can be directly obtained (for a frequency-independent T tensor) from diagonalization of a model
Hamiltonian that is based on atom-centered QHOs coupled by dipole-dipole interactions. The interaction energy can thus be directly
evaluated from the 3N (for N atoms) eigenvalues 4, of the matrix composed by N 2 3 x 3 blocks C%‘BD which characterize the

coupling between each pair of atoms i and j:

CYBP = 25, + (1 - &) w0,/ a M T (15)

where w; is the characteristic frequency for atom i that is determined as follows (Tkatchenko & Scheffler, 2009):

4 cfree
i 3 (af),free)z

The MBD energy is finally computed as the difference between the interacting and non-interacting frequencies:

3N N
vdw,MBD _ 1 _3
E =5 2{ VA3 cho,.. 17)
— -

The interatomic forces can be computed by directly taking the gradient of the energy defined in Eq. (17) instead of the more complex
and equivalent expression given in Eq. (11). Hence, the 3-dimensional force vector of atom i is obtained as: FMBP = —v, EvdW,MBD,
where the gradient is taken w.r.t. R;. After some algebra one finds

FMBD = —}LTr [A=1/2 ST (v,CMBD) 5], (18)

where A,y = A0, 1s obtained upon diagonalization of CMBD yia a suitable SO(3N) rotation matrix .S that diagonalizes CMBD,
A = STCMBDS. The trace operator implies summation over the 3N eigenmodes of the system, each reflecting a collective
contribution from the whole system. This reveals a qualitative difference from the PW models, in which the force split has a pairwise
nature.

The MBD method, as introduced above, is a quantum-mechanical approximation that differs from full ab initio approaches. In
principle, a comprehensive ab initio method considers all multipole moments in the Coulomb interaction, including quadrupole
and octupole, while MBD primarily focuses on the dipole moment that dominates long-range interactions. Higher-order multipole
moments, more relevant in short-range interactions, are implicitly handled by DFT or DFTB methods through the energy range
separation scheme discussed in Section 2.3. Despite these simplifications, studies such as those by Ambrosetti, Alfe, et al. (2014)
have shown that MBD can yield accurate results comparable to “true” ab initio methods like quantum Monte Carlo. This demonstrates
MBD’s potential for effectively capturing essential long-range interactions.

Remark 3. In the following applications which employ DFTB, a variant of the MBD method, namely MBD@rsSCS (Ambrosetti,
Reilly, et al., 2014), is applied. This variant follows the structure introduced above, however, it is adapted to be used with DFT-
based models such as DFTB. For instance, it is capable of capturing the so called screening effect via self-consistent screening, which
affects dipolar fluctuations that induce vdW dispersion (Tkatchenko et al., 2012).

Remark 4. We remark that different parametrizations are possible for the long-range dispersion interactions, because computing
long-range electron correlation for many-electron systems is a challenging problem that needs to be approximated in practice. The
PW (TS) and MBD methods employed here are a particular kind of such approximations with minimal empiricism and proven to
yield accurate results for finite-sized molecules and periodic materials (Hermann, DiStasio, & Tkatchenko, 2017; Stchr, Van Voorhis,
& Tkatchenko, 2019). Recently, dispersion methods with broader applicability to strongly ionic and metallic materials have been
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proposed, such as uMBD (Kim et al., 2020) and MBD-NL (Hermann & Tkatchenko, 2020). We note that materials that exhibit non-
trivial coupling between metallic and localized electrons still pose a challenge to vdW dispersion methods (Dobson & Ambrosetti,
2023). The DFTB+MBD framework presented in this paper is not exclusive to a particular method for vdW dispersion interactions
and more advanced vdW dispersion methods (such as uMBD or MBD-NL) can also be employed in future versions of the DFTB+MBD
framework.

4. Applications

In this comprehensive section, we will demonstrate the modeling capabilities of the presented DFTB-based framework. In
Section 4.1 we provide implementation notes and give an overview of the open-source repository being a part of this contribution,
aiming to make the DFTB-based framework more easily approachable for the engineering community. Following that, through a
series of benchmark examples of increasing complexities, we will try to shed light on how quantum effects can impact the mechanical
properties of certain engineering systems. In Section 4.2, benchmark static and dynamic calculations are performed on interacting
carbon chains, to demonstrate quantum many-body vdW effects on simple and flexible structures. Subsequently, in Section 4.3,
we shift our focus to the single-wall carbon nanotube (SWCNT), a much stiffer benchmark system, and conduct buckling tests to
emphasize the necessity of high-fidelity modeling in accurately capturing mechanical responses, while illustrating the pitfalls of
simplified modeling. Finally, in Section 4.4, inspired by the insights gained from the first two benchmark cases, we arrive at the
application on a multi-extended-molecule system, namely Ultra High Molecular Weight Polyethylene (UHMWPE). The mechanical
properties of these systems are known to rely on vdW interactions, and we show that the interplay between the DFTB and MBD
components of the framework is necessary to model these effects accurately.

4.1. Implementation notes

In the examples studied in the following sections, we utilize models provided by two software packages: the established DFTB+
library and the novel TensorFlow-based library. A concise introduction to both is provided subsequently. For the benefit of future
research, we offer an open-access repository (Shen et al., 2024) that encompasses all the software, numerical examples, and datasets
utilized in this study.

The first of the libraries, the DFTB+ software package (Hourahine et al., 2020), represents an established implementation of
the DFTB+MBD framework, as introduced in Sections 2 and 3. This package utilizes the DFTB3 method and incorporates the vdW
dispersion interactions exclusively through the Fortran-based library libmbd (Hermann, Stchr, Géger, Chaudhuri, Aradi, Maurer, &
Tkatchenko, 2023; libmbd source code, 2023). Additionally, it offers essential tools for conducting molecular dynamics simulations
and structural optimization. To enhance the accessibility of the DFTB+ library to the engineering community, we provide a wrapper
in the form of a Python application programming interface (API). This API facilitates seamless importing and manipulation of
geometry, modification of simulation parameters, execution of intricate static and dynamic tests, and post-processing of output
data, extending beyond the inherent capabilities of DFTB+. With this toolkit, users can undertake comprehensive analyses using a
single script file, enhancing both convenience and efficiency.

To set up a DFTB+MBD simulation using our toolkit, users need to define a few key elements. These include specifying the
geometry in a specific format (e.g., gen or xyz), setting boundary conditions (for periodic cases, K-points must be specified as
discussed in Remark 2), and choosing between quasi-static (setting up a driver for geometry optimization) or dynamic (setting up
a thermostat) simulations. Users also need to introduce material parameters, such as those for carbon and hydrogen parameterized
in Gaus, Goez, and Elstner (2013). All these operations are streamlined through the provided Python API, making the setup process
straightforward and user-friendly. Further details are provided in the repository (Shen et al., 2024), together with the particular
setups of examples used in this work.

The second library utilized in this work was developed as an alternative programming approach that leverages the TensorFlow
(TF) Python library. The primary motivation behind this choice is TF’s automatic differentiation (AD) capabilities, which facilitate
the development of new models in a quasi-symbolic manner, thus obviating the need for low-level coding of gradients and Hessians.
Another significant advantage of using TF is its potential for seamless integration with cutting-edge acceleration techniques,
including machine-learning surrogate modeling and GPU acceleration, positioning it as a favorable avenue for future advancements.
In this paper, we have implemented various vdW dispersion interaction models, such as the MBD and PW models discussed in
Section 3. For modeling short-distance interactions (e.g., covalent bonds), we employ the TF framework to implement the simplified
harmonic model, as showcased in Section 4.3.1, enabling us to examine the constraints of such simplified modeling.

4.2. vdW effects on simple structures

In this section, we analyze simple systems of two interacting carbon chains, as shown in Fig. 2, and compare predictions between
two vdW models introduced in Section 3, i.e., the MBD method and the pairwise TS model (PW in short). We study three cases of
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Fig. 2. Schematic of the system which includes 2 parallel chains with an inter-chain distance h. The upper and lower chains contain NC, and NC, atoms,
respectively, while the spacing between neighboring carbon atoms is 1.2 A.
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Fig. 3. Static vdW force calculation on the carbon 2-chain system. (a) shows the scaling of the net vdW force in y direction by the changing 4. (b) shows the
evolution of the net force ratio of MBD to PW when changing length of upper chain NC;,.

increasing complexity: the fully rigid case, the flexible quasi-static case, and the fully dynamic case. Each of those settings allows
us to demonstrate specific effects, and consequently to better understand the differences between the two vdW models.

In the rigid case, we study the vdW net forces between two fixed parallel carbon chains for varying distance, h, between
the chains, and a varying number of atoms, NC,, in the upper chain. The lower chain is kept relatively long, NC, = 200,
approximating an infinite substrate. The results shown in Fig. 3 reveal significant relative differences in interaction forces, ZFyPW
and ZFyMBD, predicted by PW and MBD models, respectively. While at short distances the net forces predicted by both vdW models
are comparable, the MBD force decays slower with distance, which is additionally amplified with the increasing number of atoms
in the chains. This evident and strong many-body effect relies on the quantum nature of dispersion interactions, which can be
accurately predicted by the MBD method, and cannot be captured by pairwise models that are by definition additive and assume a
constant decay rate (see Eq. (7)).

The enhancement in the total interaction force arising from the many-body effects, presented in Fig. 3, suggests that a substantial
difference can be expected between MBD and PW models if the respective systems are allowed to deform or move dynamically.
Indeed, first confirmations of such non-trivial force-deformation coupling, for the case of simplified short-range modeling, have
been reported in previous studies (Hauseux, Ambrosetti, Bordas, & Tkatchenko, 2022; Hauseux et al., 2020). In the present work,
we further study the effects of relaxation, but this time using the high-fidelity DFTB+MBD modeling framework to more accurately
capture the short-range interplay between the DFTB and vdW contributions.

In the flexible quasi-static case, we perform a single cycle of bonding/debonding between two equal chains composed of
NC,; = NC, = 28 carbon atoms. In both chains, each of the edge carbon atoms is additionally capped by a hydrogen atom, which
prevents the DFTB model predictions from being dominated by slowly decaying repulsive force coming from otherwise reactive
endings. The chains are free to deform except for the hydrogen atoms that are fixed at a given inter-chain distance, k. The process
of bonding/debonding is subdivided into steps and is performed by gradually decreasing/increasing h, respectively. At each step,
the chain system deforms to its static force equilibrium, for which the inter-chain interaction force is computed. The results shown
in Fig. 4 reveal differences in responses between the two vdW models. Although both vdW models predict path-dependency of
the process, the MBD hysteresis loop in Fig. 4(b) is relatively much smaller as compared to the PW model predictions. This can
be explained by the fact that the net forces for MBD model are higher at longer distances, which leads to a more pronounced
deformation and results in an earlier snap-in transition at bonding.
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Fig. 4. Bonding and debonding process between two deformable carbon chains. As depicted in the inset of (a), both chains are capped by hydrogen atoms
(colored cyan) fixed at a distance of k. In (a), the vertical gap profiles, i, between two chains are shown for selected instances of the debonding process. In
(b), the force-separation hysteresis loops are shown for bonding—debonding cycles. The directions marked by black (PW) and red (MBD) arrows in (b) show the
bonding/debonding directions. Colored arrows and markers in (b) correspond to respective cases in (a).

The rigid- and flexible quasi-static analyses of interacting chains revealed evident MBD effects as compared to the PW model
predictions. Only at closer distances, the differences are shown to be much less pronounced, see for instance Figs. 3 and 4 at the
distances below 7 = 7 A. This can be owed to the fact that at shorter distance ranges, the forces predicted by both vdW models are
comparable and must additionally compete with exponentially increasing repulsive DFTB forces.

Now, we will shift our focus to dynamics, which is expected to highlight more differences between vdW models. It has been
shown that MBD yields significantly more accurate and complex dynamical properties compared to pairwise vdW models (Galante
& Tkatchenko, 2023; Reilly & Tkatchenko, 2014), which can influence the prediction of macroscopic characteristics of material
systems, such as thermal conductivity, rheological properties of fluids, and temperature-induced variations in elasticity. For the
purpose of this paper, we will limit ourselves to a simple study that will illustrate basic dynamical effects induced by many-body
interactions.

In the dynamic analysis, we conduct molecular dynamics (MD) simulations of two interacting carbon chains at the temperature
300K. Similarly to the quasi-static case, each chain consists of 28 carbon atoms and is capped at its boundaries by fixed hydrogen
atoms. We analyze the system at different distances, h, between the fixed hydrogen atoms, in the range 5-8 A, and compare the
averaged results to the respective static deformation cases (see Fig. 4 for a reference of the static cases). We use four different
random seeds to parallelize the simulation. For each seed, after the initial run-up phase lasting 10* fs, the main phase of simulation
continues until 10 x 10*fs, during which the atoms’ positions and forces are collected every 1fs time step. In Fig. 5(d) we observe
that the region of bonding—debonding shifted towards i = 7 A for the dynamic cases as compared to the static cases. At the same
time, in the dynamic case, significant differences between responses predicted by MBD and PW models remained and were extended
to a wider range of distances. These observations again emphasize the importance of using MBD as a high-fidelity model, which has
been now demonstrated to be also valid in the dynamic setting.

4.3. Single-wall carbon nanotube

In this section, our framework is applied to study the mechanical responses of more complex atomic structures. As an example to
study, we specifically choose the single-wall carbon nanotubes (SWCNTs or CNTs), which are known to possess exceptional properties
due to their particular cylindrical arrangement of carbon atoms. Stiffnesses around 1 TPa (Krishnan, Dujardin, Ebbesen, Yianilos, &
Treacy, 1998) and other potentially useful mechanical and electrical properties attracted attention from scientific communities and
found a number of applications in industry (Kinloch, Suhr, Lou, Young, & Ajayan, 2018; Nurazzi et al., 2021). Although various
techniques have been developed so far for efficient modeling of CNTs (Arash & Wang, 2014; Arroyo & Belytschko, 2004; Eberhardt
& Wallmersperger, 2019; Hossain, Hao, & Silverman, 2018), to our best knowledge, there is limited research that discusses aspects
of efficiency versus accuracy in the context of DFTB and vdW models.

We plan to utilize the predictive capabilities of the introduced DFTB-based framework to disentangle some of the effects that
contribute to the mechanical responses of CNTs, and to demonstrate the pitfalls of simplified modeling. To do so, in Section 4.3.1
we introduce and calibrate harmonic models for SWCNTs, that will represent a class of simplified force-field methods. It will be then
used in Section 4.3.2 to showcase discrepancies of the simplified models with respect to the high-fidelity DFTB and vdW models.
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Fig. 5. Dynamical bonding process between two deformable chains for the PW and MBD models. In (a)-(c), the time-averaged deformations in y and are shown
for the upper chain at selected distances, with the corresponding static bonding results presented as references. The gray and light-red shaded areas represent
the standard deviations for PW and MBD results, respectively. In (d), The time-averaged force-bonding curve is shown, along with the static force-bonding curve
for comparison. Red and black arrows in (d) mark the bonding direction.

4.3.1. Harmonic model and parameters calibration

Harmonic models can serve as a simplified empirical model for the DFTB interactions. They are widely utilized as classical force-
field methods, such as AMBER (Cornell et al., 1995), GROMOS (Christen et al., 2005), OPLS (Jorgensen & Tirado-Rives, 1988), etc. In
many applications, this popular and simple choice for modeling atomic interactions provides a sufficiently accurate approximation of
covalent bonds in the context of molecular mechanics. More advanced models, such as REBO (Brenner et al., 2002) and SW (Stillinger
& Weber, 1985), incorporate nonlinear descriptions of covalent binding to enhance predictive power. However, they remain within
the empirical domain and are inherently limited by the lack of short-range correlation and cumbersome parametrization.

In the present work, we use a typical harmonic model, which can serve well for the purpose of illustration. Following the standard
energy separation in MM, similarly to the energy separation introduced in Section 2.3, the total energy E'™! is split into covalent
[Eharmonic and non-covalent EY4W parts. For three-dimensional nanostructures, such as CNTs, the harmonic part normally includes
three independent terms, namely, bond stretching (2 atoms), bond bending (3 atoms), and bond torsion (4 atoms):

Ehemonic = 3 L = + Y 2k @ — 67 + Y, 2k - 92, (19)
i J !

where k,, ky, and k, are bond force constants for stretching, bending, and torsion, respectively. r is the bond length, 6 is the bond
angle, and ¢ is the torsion angle, also known as the dihedral angle. The subscript 0 denotes reference values obtained from the initial
relaxed configuration of the structure, which are allowed to be different for each bond (as denoted by the superscripts), assuring the
energy minimum for the initial (relaxed) structure. Also, as there is no coupling between the three terms in Eq. (19), the bending
and/or torsion terms can be optionally neglected, e.g., when analyzing simple atomic chain structures.

11
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Fig. 6. The SWCNT used in this section for the calibration of harmonic model and for the buckling tests. The number of carbon atoms N = 640, radius
Reny =542 A, and the reference length of the nanotube L =48 A

The calibration of the three parameters in Eq. (19) has been performed through fitting to the DFTB configurational energy of
several thousand perturbed configurations, see the geometry in Fig. 6. The calibration resulted in the following fitted parameters:
k, = 35.0505eV/A2, k, = 6.6069 eV /rad’, and k, = 0.5361 eV/rad’.

Remark 5. The presented calibration procedure was restricted to sampling the energy landscape around the equilibrium, which
has its own drawbacks. The first one is that we are assuming the force to be linear on the energy evaluation variables, which is
not the case for sufficiently large perturbations. Secondly, we are expecting our simplified model to be able to properly capture the
energy landscape, which may not be the case even if we are well inside the linear regime. All of these combined can potentially
influence the comparison between DFTB and the harmonic model at every range.

4.3.2. Buckling test

For the buckling test, we define the process as follows: First, we set up boundary conditions in which the two outermost layers
of the nanotube (at its two ends) are fully fixed. At each compresslon step, ¢, the displacement increment A, is apphed to the right
end of the nanotube. In the case of DFTB, we set Ait, = 0. 027 A. For the harmonic model, the increment is Au =0.1A and for cases
without the dihedral contribution, we use A&}, = 0. 05A to aid the minimization process, as the structure is less stable. Towards the
end of the compression, A, can be further reduced to overcome convergence difficulties.

At each compression step, ¢, we measure the reaction force F}, and compute the longitudinal strain of the nanotube ¢, = @, /L.
The instantaneous stiffness E(¢,) is given by:

1

P 4o,

E(e,,) = ac, (20)
where o}, = F] /S, is the reaction stress on the constrained layer. The cross-section area of the nanotube S, is calculated by
multiplying the nanotube circumference by the commonly assumed wall thickness 3.4 A, which equals the thickness of mono-layer
graphene (Gupta, Bosco, & Batra, 2010).

The results presented in Fig. 7 reveal completely different responses of harmonic-based models and DFTB-based models. Although
in both cases, the values of initial stiffness fall not far from the expected 1 TPa (Krishnan et al., 1998), it is clear that the simplified
model fails to capture many aspects of the system under stress. First of all, the linear increase in stiffness observed in DFTB before
buckling is not present in the harmonic model, as it assumes force linearity. Secondly, the initial stiffness value is underestimated,
possibly due to its inability to properly capture the energy landscape near equilibrium. Furthermore, only local structural buckling
is observed in the harmonic model, in contrast to the global buckling observed in DFTB, as shown in Fig. 7(b). This discrepancy
again attributed to the lack of nonlinearity in the harmonic model. Finally, the harmonic model predicts meaningful differences
with respect to vdW interactions in terms of buckling, which is not the case for DFTB.

Even though our buckling test is a largely simplified version of real experimental setups, which causes the results to deviate
quantitatively from experimental observations of CNT buckling, the qualitative response in terms of nonlinearity revealed by the
DFTB model in Fig. 7(b) aligns with experimental observations (Guduru & Xia, 2007; Kuzumaki & Mitsuda, 2006). This encourages
us to consider the proposed modeling approach as a potential avenue for future research.

The fact that vdW effects do not significantly affect the responses of the DFTB model can be explained by the relatively high
strength of covalent bonds which overrides much weaker vdW forces. The structure of SWCNTs do not leave any easily-activated
DOF that could be controlled by vdW interactions. This important observation provided us with a clue on where to seek systems
that rely more on vdW interactions, which leads us to polymer systems analyzed in Section 4.4.

Remark 6. When analyzing regions of rapid stiffness drops in the harmonic model (interpreted as buckling points), there is a
significant qualitative difference depending on whether the model includes a dihedral term or not. As expected, the dihedral term

12
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Fig. 7. SWCNT buckling results for the (a) harmonic models, and (b) DFTB model, for different vdW models. In (a), the “no-dih” plots refer to the harmonic
model that excludes the dihedral term, see Remark 6. The global SWCNT buckling (see inset in (b)) only happens with DFTB, and is never observed for harmonic
models.
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Fig. 8. Two different views of the UHMWPE crystal structure. Atoms inside a primitive unit cell (4 carbon and 8 hydrogen atoms) are colored yellow (H) and
orange (C). The remaining atoms for a 2 X 2 x 2 supercell are colored white (H) and black (C). Translucent atoms demonstrate the periodicity of the structure.
In (b), the primitive unit cell is marked by a red dashed box, and the supercell is marked by a black solid box.

adds resistance to buckling and brings the results of the harmonic model closer to DFTB. Additionally, it is worth mentioning that
also MBD contributes to stabilizing the structure, which could be explained by its globally cohesive nature that regularizes the
displacement field.

4.4. Ultra High Molecular Weight Polyethylene (UHMWPE)

The two previous examples provided us with insights into how the mechanical responses of various simple systems can be driven
by the interplay between short- and long-range interactions that are modeled by the DFTB+MBD framework. These observations
naturally provoke the idea of analyzing three-dimensional systems that are less constrained than SWCNTs, thereby revealing higher
sensitivity to vdW effects. In that respect, our choice is to study Ultra High Molecular Weight Polyethylenes (UHMWPEs) (Kurtz,
2004; Tam & Bhatnagar, 2016), which are three-dimensional arrangements of long polyethylene chains. As the interactions between
these chains are primarily governed by vdW dispersion forces, they provide excellent systems for investigating qualitative differences
induced by the choice of vdW models.

For the purpose of this study, we analyze polymer chains that are of crystalline arrangements. Such crystal structure is typically
represented by a unit cell that is repeating periodically over the space, see orange groups in Fig. 8. (In the 3-dimensional case, the
crystal is defined by a 3 x 3 tensor U that is composed of the three translation vectors for the unit cell.) The unit cells can form,
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Fig. 9. UHMWPE compression test for different vdW models. In (a), the maximum principal stress represents the reaction in the direction of compression. In
(b), the transversal reaction stress is presented as the L? norm of two minor principal stresses. The red asterisks in both figures indicate the initial buckling
point of each case. In the inset in (b), the buckled structure at 3% compression is presented (it is very similar among all three cases).

so-called, supercells, which are hexahedrons built of unit cells. A supercell consists of atoms having independent degrees of freedom
(DOF), which are constrained by periodic boundary conditions. As such, larger supercells form less constrained periodic systems.

Because of high computational costs, we limit ourselves to a quasi-static regime. We conduct two different loading scenarios.
The first one is the compression in x direction (longitudinal), affecting buckling behavior, see Section 4.4.1. The second one is the
elongation in y direction (transversal), creating an irreversible reorganization of crystal structure, see Section 4.4.2. In both cases,
we use the concept of periodic supercells, and the boundary conditions are applied to the boundaries of periodic supercells, not the
individual atoms. The sizes of periodic supercells are chosen large enough to demonstrate effects of interest.

Remark 7. As a preliminary step in each case analyzed, the periodic supercells are first fully relaxed. This is accomplished by
applying zero-stress Neumann boundary conditions to the periodic boundaries of the supercell and then allowing the system to
converge. Such relaxed structures are characterized by expected zero reaction forces at the periodic boundaries at the beginning of
the respective compression/tension tests.

4.4.1. Compression test

As aforementioned, the compression test is performed in the longitudinal direction. We choose the Ny X Ny X N, = 10x 1 x 1
supercell that involves two long polyethylene chains. Such increased aspect ratio of the supercell promotes earlier buckling behavior
of the structure (see the inset in Fig. 9(b)).

The buckling of the periodic structure is achieved by compressing the supercell in the x direction while having the remaining
DOFs of the supercell fixed. Technically, we decrease the U;f“ component of the U tensor and keep its remaining components
fixed. The compression is performed until 3% of reduction, with the step size, AUfﬁ“, of —0.053A (i.e., 0.2% of compression). At
each step of compression, we retrieve the stress tensor that corresponds to the reaction at the constrained supercell, which can be
interpreted as the macroscopic stress. We analyze the principal stresses, with the maximum principal stress corresponding to the
loading (longitudinal) direction and the two remaining minor principal stresses corresponding to the reactions in the transversal
direction.

The results are presented in Fig. 9. The first observation is that the predictions strongly depend on vdW model, which
demonstrates a qualitative difference of the UHMWPE systems as compared to SWCNTs (see Fig. 7(b)). The inclusion of vdW
interactions delays buckling and predicts a slightly stiffer UHMWPE, despite the fact that there is no significant difference observed
in the buckled structure among the three cases. For the transversal reaction, vdW interactions exhibit a pronounced impact on the
post-buckled phases, leading to a rapid increase in reaction stresses. Notably, the MBD model predicts higher transversal stresses of
the buckled structure, which highlights the significance of many-body effects on the non-covalent bonding. These observations are
consistent with our hypothesis that in multi-molecule systems with lower stiffness, the vdW dispersion interaction and its many-body
nature play crucial roles, and therefore need to be treated carefully by using high-fidelity models.

4.4.2. Elongation test

In the elongation test we consider two different sizes of supercells, see Fig. 8. The smallest 1 x 1 x 1 supercell is composed of
a single primitive unit cell, which constrains the system to 12 atoms with 3 DOFs each. We also use the 2 x 2 x 2 supercell, which
increases the number of independent atoms by the factor of 8, allowing us to study more complex reorganization of polymer chains.
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Fig. 10. Evolution of reaction stress during the elongation of UHMPWE structures in the y direction for two different supercells and three different vdW cases.
The A and B insets in (b) show the abrupt transition of UHMPWE microstructure between respective points A and B on the load curve in MBD plot. The green
dashed lines in the insets connect the polyethylene chains of the same orientation, which makes it easier to observe the structural change.

The elongation is performed by gradually increasing the U ycfu component of the U tensor while allowing other components
to relax. The increments AUyC;11 are 0.027 A and 0.053 A for the small and large supercells, respectively, which assures relatively the
same increments in both cases. At each increment, we retrieve the yy component of the reaction stress tensor. (Note, that due to the
relaxation of the remaining components of the deformation tensor, the reaction in the y direction is the only non-zero component
of the stress tensor.)

The results are presented in Fig. 10. The first clear observation is that vdW interactions are indeed crucial to be included in the
modeling of UHMWPE. The No-vdW model predicts relatively early breakage of the structure, while the inclusion of vdW interactions
maintains structural integrity and introduces non-trivial effects throughout the entire elongation range. The second observation
concerns stress jumps visible in the No-vdW and MBD plots. These jumps indicate phase transitions involving significant changes
in both the relative positions and orientations of the polyethylene chains. In the case of the No-vdW model, the jumps indicate
moments of structural breakage, whereas in the case of the MBD model, the jump indicates the moment of phase transition. The third
observation relates to differences between the predictions of the PW and MBD models. The most significant qualitative difference is
the phase transition predicted only by the MBD model, as shown in Fig. 10(b). Even more interesting is that the stresses at point B in
Fig. 10(b) are almost identical for both vdW models, whereas the microstructure predicted by the MBD model undergoes the phase
change, and the one predicted by the PW model remains unchanged. It is also worth noting that the phase change only occurs for
the larger supercell, which again highlights the important role of many-body effects in systems with more “easily-activated” degrees
of freedom, such as those with larger supercells or longer chains.

Even though we limited ourselves to a quasi-static regime, the observations made for dynamic chain-to-chain interactions in
Section 4.2 suggest that the effects observed for UHMWPE can remain or even be amplified in the fully dynamic regime. In fact, in
the case of polymer melts — where chains are not tethered at the ends as in our simulations — the dynamic freedom of the chains
introduces a multitude of configurations that may frequently fall within the regime where predictions of MBD and PW models diverge
significantly. The cooperative motions that are fundamentally captured by the MBD model, and are absent in the PW model, could
lead to alternative entanglement dynamics and mesoscopic structures in polymer melts. These structures, in turn, are pivotal in
determining the material’s macroscopic properties such as viscosity, mechanical strength, and thermal conductivity.

5. Conclusions and future work

In this paper, we studied the importance of including quantum-based models to accurately predict the mechanical properties
of materials. For this purpose, we used a high-fidelity modeling framework, DFTB+MBD, that combines the Density Functional
Tight Binding (DFTB) method with van der Waals (vdW) dispersion interactions, including both many-body dispersion (MBD) and
pairwise methods. This framework is designed to address the limitations of classical force fields and simplified models in capturing
the complex interactions that occur at the atomic and molecular scales, particularly in systems where quantum effects are significant.

Through a series of benchmark studies on various molecular systems, we demonstrated that the DFTB+MBD framework can be
a suitable high-fidelity validation toolkit, able to reveal spurious or misleading effects predicted by selected simplified models. In
particular, we showed appreciable differences in stiffness, reaction forces, and critical points of structural change. These differences
were caused in part by the underlying linearity of the simplified harmonic models, which is inaccurate when considering sufficiently
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large perturbations, but also by the effects of many-body dispersion interactions that are not accurately predicted by the simplified
pairwise models.

Our findings shed light on how the responses of different material systems are influenced by quantum-scale effects. We
underscored the essential role of the many-body nature of vdW interactions, as captured by the MBD method, particularly in systems
with extended non-bonded interactions. A notable example is Ultra High Molecular Weight Polyethylene (UHMWPE), which exhibits
sensitivity to vdW effects. While our research is currently limited to the quasi-static regime and relatively small supercell sizes, we
identify UHMWPE as a promising candidate for future studies. For example, dynamic simulations involving larger supercells could
enhance the predictive capabilities for transition points, viscosity, elasticity, and other macroscopic properties of polymer melts.

We also acknowledge the limitations of the proposed DFTB+MBD framework, as discussed in Sections 2.2 and 3.2, particularly
its limited effectiveness for metallic systems. Nevertheless, the framework provides a structure that is ready to incorporate other
existing or new models that are better suited to different application areas. We view such extensions as a promising direction for
future research.

Lastly, we presented an open-source toolkit (Shen et al., 2024) to facilitate the implementation of the DFTB+MBD framework,
thereby making numerical implementations and molecular simulations more accessible to the engineering community. This
framework and toolkit offer a practical approach for investigating phenomena at the microscale with high fidelity. We anticipate
that they will support future research in effective ab initio large-scale and multiscale modeling (Curtin & Miller, 2003; Nair, Warner,
& Hennig, 2011; Tadmor & Miller, 2011; Talebi, Silani, Bordas, Kerfriden, & Rabczuk, 2014; Weinan, 2011; Xu, Tabarraei, Paci,
Oswald, & Belytschko, 2012). Specifically, we aim to focus our future efforts on developing a more general workflow for constructing
effective simplified models, which will extend the applicability of the framework to engineering-scale systems.
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