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Abstract Cancerous mass detection methods for mam-

mographic images still miss some malignant cases on the

one hand, and produce too many false-positive (FP)

detections with respect to the number of true-positive (TP)

detections on the other. An attempt has been described to

improve the TP ratio per image and to decrease the number

of FP errors in the hierarchical template matching detector

of regions of interest (ROIs) for cancerous masses by

eliminating the images of linear structures (LSs) from the

mammograms. The LSs were detected with an accumula-

tion-based line detector. The measure of correctness of

the ROIs detection was discussed and the quality of

the detector, represented by free receiver operating char-

acteristics curves, was compared with the human-eye

observations. The result is that the widely used measure of

detection correctness seems to underestimate the detection

quality made by a human. Tests were performed on the

mammograms from the MIAS database.

Keywords Mammograms � Cancer � Tumour �
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1 Originality and contribution

• The commonly used measures and criteria of correct-

ness of a single result of cancerous mass detection

versus the reference, ground truth data have been dis-

cussed. A minimum requirement has been formulated

that a measure should not yield a positive result for a

detector which always returns the whole image as a

single detection. The cases in which the criteria found

in the literature could violate this basic requirement

have been pointed out.

• A trial to improve the quality of results of a template-

matching hierarchical cancerous mass detection algo-

rithm by eliminating the images of linear structures

from the mammograms has been presented.

• The results without and with the elimination of the linear

structures have been compared. The comparison has

been carried out with two methods. First, a formally

defined correctness criterion and the free receiver

operating characteristics (FROC) curves were used.

Then, two results chosen on the grounds of that

comparison were further compared by an assessment

with a human eye. The methods gave different results: the

human eye assessment appeared to be more in favour of

the results with LSs elimination than the assessment with

the algorithmic criterion, although the eye comparison

was strict. This led to a conclusion that more effort should

be put to the design of the correctness criteria.

• The assessments made it possible to formulate the

ranges of application of the presented algorithms.

2 Introduction

Breast cancer is an important medical and social problem.

It can be estimated that in the US one out of eight women

will develop the breast cancer at some point during her life

[1]; the corresponding number for Poland is 1 out of 16 [2].

M. Bator � L. J. Chmielewski (&)

Institute of Fundamental Technological Research,

Polish Academy of Sciences, Świȩtokrzyska 21,
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Early detection of breast cancer makes it possible to apply

a sparing treatment and makes the survival time longer.

Therefore, screening the groups of elevated risk (women

above the age of 50) is justified, which involves the anal-

ysis of thousands or millions of mammograms. The

development of computer aided diagnosis (CAD) methods

might help the radiologists in carrying out this task. In less

than 10% of women the result of the screening mammog-

raphy is positive, that is, it suggests further investigation. If

a CAD system could classify as negative at least a part of

the 90% of mammograms having no signs of pathology

prior to the investigation by a human, it would greatly

reduce the workload of radiologists and make it possible

for them to pay more attention to the remaining mammo-

grams, potentially carrying the features of an abnormality.

A CAD system, to be useful in improving the performance

of a radiologist, should have a sufficiently large specificity

at a given sensitivity level, comparable to that of a human

observer. In [3], a discussion has been presented which

leads to the conclusion that there should be not more than

1.5 false-positive detections (FP) for each true-positive

detection (TP). However, in the automatic mammogram

analysis programs existing at present, the false positive

ratio per image (FPI) is usually larger than this.

In the present paper we report our attempt to improve

the detection in an algorithm for detecting the regions of

interest (ROIs) for cancerous masses, described in [4], by

eliminating the linear structures from the mammograms.

The quality of detection is considered as a high value of the

true-positive detection ratio (TPR), commonly named

sensitivity, together with a possibly low value of the false-

positive detections ratio per image (FPI), which can be

related to the specificity in that the lower the FPI, the higher

the specificity of the detector. To measure the TPR and FPI

ratios it is necessary to know whether a particular indica-

tion returned by the detector is true or false. We discuss the

virtues and shortcomings of the commonly used measures

of correctness of a single result of mass detection and

indicate how the choice of this measure can improve or

impair the measures of the detection quality.

Comprehensive studies of all the aspects of breast can-

cer imaging can be found in [5]. Reviews of cancerous

masses detection and classification can be found in [1] and

to some extent also in [6]. Linear structures (LSs) [7, 8],

also called curvi-linear structures [9, 10], are blood vessels,

milk ducts and connective tissue fibers (Cooper ligaments)

in normal mammograms, and the spicules in pathologic

mammograms. The LSs directly related to cancerous

masses are spicules; other LSs interfere in the detection of

masses. Some authors report that the classification of LSs

should improve the subsequent detection and classification

of the features of cancer, like in [8]. Recent publications

[11, 12] suggest that the strength of the LSs in the

mammogram is strictly related to the risk of the develop-

ment of cancer and can be used directly in the risk

assessment analysis. Other authors, like [10], state that the

attenuation of the LSs improves the results of analysis.

In this study, a mass detection algorithm using no

information on the spicules is used. Moreover, in some

mammograms the view of a cancerous mass is intercepted

by a view of a LS which passes over or under the mass and

interferes in the detection process. Therefore, we go along

the line of elimination of all the LSs without their classi-

fication as an attempt to improve the detection outcome.

The results are evaluated on all the mammograms from the

Mammographic Image Analysis Society (MIAS) database

[13].

The method of detecting the ROIs used in this paper is a

multiscale template matching algorithm described earlier in

[4]. Its brief explanation is repeated here for better clarity.

The linear structures are detected with an accumulation-

based line detector already presented in [14–17]. The

method of line elimination by image interpolation is pre-

sented here.

The paper is a revised and extended version of our

previous paper [18].

This paper is organised as follows. In Sect. 3, the

questions related to the choice of the measure of correct-

ness of the detection results are discussed. In Sect. 4 the

ROI detector used in this study is described. In Sect. 5 the

methods of detecting and eliminating the linear structures

are presented. Next, the results of the detection of can-

cerous masses with and without the elimination of the LSs

from the mammograms are described and their comparison

with the results received in the way of an assessment by a

human is given in Sect. 6. The final conclusions come in

Sect. 7.

3 Measures of correctness of the automatic detections

In the literature on cancer detection in mammograms, as

the ground truth information necessary for verifying the

quality of the results of automatic detection, usually the

indications made by qualified human observers are used.

Such indications made by radiologists are treated as veri-

table evidence in at least two senses. The first is that inside

the indicated region there is only the tumour, and the

second is that outside this region there is only the normal

tissue.

The expert’s indication is relatively easy to use if the

suspected region is outlined, but this is not always the case.

It is enough to show the tumour with an arrow if the

observer is an experienced person. Cancerous masses were

marked in such a way for example in [2]. An arrow is

usually slightly outside the indicated region, not to obscure
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that what is interesting, so its end does not point directly to

any characteristic point of the tumour. There can be more

arrows for one mass, each pointing to a different direction

or parallel. Such indications are not at all appropriate for

algorithmic verification.

However, even with an explicit, closed outline the sit-

uation is made complex by that the human indications are

not objective. For example, in the paper [19] the relative

accuracy of the indications of two experienced radiologists

was tested. In the set of images containing 100 cancerous

masses, the average ratio of the common areas to the sum

of areas of the indications made by the radiologists was

0.76. The subjectivity of the tumour borders has at least

two reasons: the image of the tumour is always superim-

posed on the image of the normal tissue, and the infiltration

of normal tissues by the neoplasm is always irregular.

It should be always made clear which rules were applied

in marking the interesting regions, for example, whether

only the central mass was outlined, or together with the

spicules, or even together with the surrounding area of

increased lung translucence. Such rules are not always

explicitly reported. In some of the available mammo-

graphic databases, free shaped regions are allowed, like in

DDSM [20], or only circles, like in MIAS [13]. Any con-

straint imposed on the shape of an indication excludes its

‘‘pixel to pixel’’ accuracy.

Despite the above mentioned drawbacks of the indica-

tions made by experts there is no other source of information

available to be used in checking or training an automatic

detector or classifier. The regions found automatically

should then be compared to the reference regions. If such

comparison is done by human experts then it would have the

same drawbacks as the process of forming the reference

regions. Therefore, some objective measure of correctness

of an automatic detection result should be introduced.

Many authors neglect to state what measure they have

used, for example [21–26]. In the literature, definitions

using the area of the common part of the detected region

and the reference region can be found. This common part is

related to the detected or reference areas themselves. This

can be done in several ways, and the resulting measures,

which we shall call here the coverage factors, can be

expressed by one of the following formulae:

fD ¼
sðR \ DÞ

sðDÞ ; ð1Þ

fR ¼
sðR \ DÞ

sðRÞ ; ð2Þ

fRD ¼
sðR \ DÞ
sðR [ DÞ ; ð3Þ

where R is the reference region as indicated by the radi-

ologist, D is the region found by the detector, and s(�)

denotes the area (in pixels). The consequences of using any

of the above formulae will be discussed in the sequel.

The detection is treated as correct if the factor is larger

than a threshold:

f�[ a: ð4Þ

Several values of a were used in the literature, for example

in [27–32] it was assumed a = 0.5. Other arbitrarily cho-

sen values were, for example, a = 0.4 in [33], a ¼ 1
3

in [34]

or 1
4

in [35]. In an extreme case, the detection was con-

sidered as correct if there was any nonempty common part

of the detector finding and the reference region [3], so

a = 0.

The choice of the threshold a is vital and can lead to

undesirable effects in the extreme cases. For example, if

a = 0 then a detector with numerical complexity O(0),

sensitivity 100%, and an average false positive rate per

image (FPI) below one, can be easily constructed. How this

can be done? It is enough for the detector to indicate the

whole breast, or even the whole image as the tumour

region. Let us call the detector which always returns the

whole image as a single indication the trivial detector. It

works properly as just described irrespective of which of

the formulae (1)–(3) is used. There is another way to make

the trivial detector work. If the formula (2) is used to define

the coverage factor, then for any a [ [0, 1] the output from

the elementary detector is always classified as a single true

positive. This seems to disqualify this definition. Although

in the papers [27, 29, 32] the formula has not been given

explicitly, the description suggests this unfortunate defini-

tion (2).

It can be suggested that any measure of detection cor-

rectness should be checked against the trivial detector. If it

is possible for the trivial detector to yield a positive result,

then such a measure should be dismissed.

Let us now consider a following example illustrating the

drawbacks of using the coverage factor to differentiate

between the correct and incorrect detections. Assume that

the radiologist has indicated a tumour with a circle and the

detector returned an indication also as a circle having the

same centre, but with the radius larger by a factor of at least
ffiffiffi

2
p

: If a = 0.5 then such an indication is classified as

erroneous according to (1) as well as to (3). Although with

the definition (2) it would be classified as correct, but this

definition has just been dismissed. The case becomes more

complex if the centres do not coincide. In the Fig. 1a an

example which illustrates this problem is shown. The

image is a fragment of the mammogram MDB264RM from

the MIAS database in which the detection was attempted.

The reference regions are white: the white circle is the

reference region as found in the database and the white

irregular contour has been drawn by an experienced radi-

ologist who knew the information from the database. The
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black circle is the result from the detector. Despite that the

detector result is clearly in good conformity both with the

radiologist’s indication and the database reference region,

it will be classified as false positive due to that less than

half of its area lies inside the database reference region. It

should be noted that according to the considered criterion

also the radiologist’s indication will be classified as false.

The solution to this problem is to reduce a, but as stated

before, the vicinity of the limiting case of a = 0 should be

avoided.

It should be noted that when the definition (3) is used,

then at a = 0.5 the radiologist’s indication with respect to

the database reference, and vice versa, are incorrect.

Using the coverage factor fD according to (1) has an

important advantage when the reference indications are

generated inconsequently as far as their tightness around

the cancerous mass is considered, like in the MIAS data-

base. In the just considered contour in Fig. 1a the mass was

circumscribed very tightly, while in the Fig. 1b there is a

loosely circumscribed mass. It is better then, that in the

denominator of the coverage coefficient there is the

detected area, not the reference one.

A further advantage of using the coverage factor as

defined with (1) is its suitability to the assessment of the

detectors which yield the results of thresholding a map of

similarity of the region to an object sought. Examples of

such an approach can be found in [27, 32, 36]. The detected

region decreases together with the increase of the threshold

and can become a one-pixel indication.

Another approach is to use as an indication only the

centre of the detected region and to neglect its dimensions.

However, even with this approach the detection result

shown in Fig. 1a is considered as erroneous.

In the two above approaches, the indication quality is

the same irrespective whether it is located near the middle

or near the border of the reference region. Also, inside one

reference region more than one detection can appear. In the

literature the ways of treating such multiple indications are

different, sometimes even in one paper, like in [33].

Bearing in mind all the above critical remarks we have

used in this paper the quality measure of the detection

results using the coverage factor fD, according to (1), (4),

with the most commonly used value of a = 0.5.

4 Detection of regions of interest for cancerous masses

The detector used was a multiscale template matching

algorithm [4]. This was a single-feature detector which

yielded the results characterised by a very high sensitivity

(over 0.90), but with a considerable number of false-posi-

tive detections (over seven per image), as it will be seen in

further sections. Therefore, this detector could be suc-

cessfully used as a ROI detector for further stages of any

cancerous mass detection and classification algorithm, due

to that it is clear in structure, efficient in calculation, and

makes it possible to reduce to a large extent the area of the

image which should be further processed.

In the sequel this detector of the ROIs will be simply

referred to as the detector.

Fig. 1 Fragments of the images from the MIAS database which

illustrate the problems with the coverage factors according to (1)–(3)

at a = 0.5. White circle reference region from the database; white
irregular contour reference region indicated by the radiologist; black
circle region found by the detector. a MDB264RM : an example of a

cancerous mass tightly circumscribed by the reference contour from

the database; b MDB155LL : an example of a mass loosely circum-

scribed by the reference contour from the database (see also the text.)
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A template is an auxiliary image which represents a

model brightness distribution in a mass. A similarity

measure between the template and the corresponding

window of the image is calculated while the template is

shifted across the image. As the similarity measure the

correlation coefficient was used, as expressed by the

equation

cðT; IÞ ¼
PN

j¼1ðtj � tÞðij � iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
j¼1ðtj � tÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
j¼1ðij � iÞ2

q ; ð5Þ

where T is a template and I is a window in the image, both

containing N pixels numbered consecutively, tj is a grey

level in a template pixel, ij is a grey level in a window

pixel, and t; i are the mean grey levels of the template and

the window, respectively. The correlation coefficient

belongs to an interval h-1,1i and depends only on the

relation of shapes of the template and the window, not on

their grey scale. Negative values would be obtained for the

template being equal or close to a negative of the image. A

template with a hemispherical brightness was used:

tRðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � x2 � y2
p

for x2 þ y2�R2; ð6Þ

where x, y are pixel coordinates in a local coordinate sys-

tem of the template having origin at the template centre.

The basic rationale for using a sphere as the template was

that in an unconstrained environment a tumour would

develop into a sphere, due to that it can be safely assumed

that in the absence of obstacles it would develop isotropi-

cally. A wider discussion on the spherical shape of the

template can be found in [37, Section III.A].

As in [4], the Fast Fourier Transform was used and the

correlation was calculated in the Fourier domain, while

unlike in [4], where the domain of the template was

complemented into a square circumscribed on the great

circle of the hemisphere, in the present paper the template

was circular.

As advised in [37] and according to the previous expe-

rience [4], the analysis was carried out in a multiscale

setting. The templates with 8 radii from 36 to 108 pixels,

differing by a factor of
ffiffiffi

2
p

; were used. To reduce the

amount of calculations, images in four scales were ana-

lysed: 1:1, 1:2, 1:4 and 1:8, with two radii in each: 36 and

51 pixels. Templates with such radii detect objects having

radii of 30–43 and 43–60 pixels, respectively. The multi-

scale approach was designed according to the observation

made in [27] that instead of performing a detection of an

object having two times larger dimensions one could use an

image with two times smaller linear dimensions, obtaining

approximately the same results. Combining such a reso-

lution pyramid with FFT calculations mentioned above

reduced the calculation time for a single mammogram to

less than 10 min on a 2 GHz computer under MATLAB.

At the image resolution of 50 lm/pix, the masses of

diameters from 3 to 48 mm could be detected.

The final detection result was calculated by thresholding

the resulting correlation maps at the subsequent pyramid

levels with the same threshold and aggregating the partial

results received onto the full scale level 1:1. In this way the

regions having arbitrary shapes could be received. As a

single detection an eight-connected set of pixels was con-

sidered. For the presentation in the images however, each

detection for a given radius of the template (recalculated to

the full resolution in the pyramid) was dilated with a disk

of the same radius. This was done solely for the presen-

tation purposes, to show the possible extent of the indicated

ROI for a tumour (as it will be seen in the Sect. 3), while in

the formulae for checking the quality of detection (1)–(4),

the detections without dilation were taken.

5 Linear structures

5.1 Detection

The method used for detection of the linear structures was

the evidence accumulation-based line detection algorithm

already described in sufficient detail in [15, 17], and pre-

viously in [14]. A brief description can be found also in

[16], Sect. 6.2. In the present application, linear structures

of width between 2 and 16 pixels, related to the scale 1:4,

were sought (the question of choosing this scale will be

further explained in Sect. 5.2.4). This was enough to cap-

ture all the LSs visible in the mammograms. Structures

having the line intensity maxima smaller than 0.3 of the

maximum intensity of the strongest LS in the given image

were neglected and the ridges of the remaining, stronger

structures were followed (some less important details were

omitted for the sake of compactness; for details see [15], p.

360 or [17], Chapt. 6.3.6 and 6.8).

The line detector used finds the line width w0 as the

distance between the loci of maximum image intensity

gradients, as is typically done by detectors. However, the

actual width w of the LS in the image is larger, due to that

the line width extends beyond the loci of maximum gra-

dient. Therefore, the width found was multiplied by a

factor fw slightly larger than one: w = fw w0, fw = 1.25.

This is explained in Fig. 2a. Note that if the profile of the

line were sinusoidal, the factor fw should be equal to two.

The profile of a typical blood vessel is much different from

sinusoidal, so a value much nearer to one was chosen.

The primary results of the detection for each mam-

mogram were the binary masks of the LSs. In the LS

elimination process described in the following section,

also the the map of the directions of the LSs and the

relative distance transform, defined further, were used.
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These were easy to generate as the byproduct of the

detection process, due to that each detected pixel is

related to its respective pixel in the skeleton of the line, in

which the local line width and direction has been stored

by the line detection algorithm. The direction is simply

copied from that stored in the relative skeleton pixel. The

relative distance transform in a given pixel of the LS is

the ratio of its distance from the line edge to the distance

of its relative skeleton pixel from the edge, equal to a half

of the width.

5.2 Elimination

5.2.1 The basic approach

A linear structure in the breast projects itself on the

mammogram together with other tissues and manifests

itself as a bright object in the image. The image intensity

function of a mammogram can be split as follows

Iðx; yÞ ¼ I0ðx; yÞ þ ILSðx; yÞ; ð7Þ

where I is the image intensity of the mammogram, x,y are

coordinates, I0 is the intensity without the LS, and ILS is the

intensity of the LS alone.

The possible approaches to the elimination of the LSs

are: 1� subtraction of the ILS component of the intensity

from the image, 2� replacement of the image intensity in

the regions occupied by the LSs with the intensity I0, and

3� suppression of the component ILS so that the resulting

intensity is closer to I0. The first approach necessitates for

the model of the LS. The images of the LSs are very dif-

ferent so this approach seems unrealistic. The second

approach makes it necessary to know I0 in the regions of

the LSs. In the third approach it is assumed that the method

of suppressing the LSs is known. For example, in [10] the

LSs were attenuated by averaging the image intensity in the

regions occupied by the LSs in a 11 9 11 pixels window.

In this paper the second approach was used. The image

intensity I0 without the LSs in the regions of the LSs was

estimated as the interpolation of the image intensity from

outside the regions occupied by the LSs. This was done by

spanning a membrane across the regions of the LSs. An

iterative algorithm was used, as described in [38], Chapter

6.2.1. In the present application that algorithm becomes

radically simplified to finding the averages of the neigh-

bouring pixels, with a 4-neighbourhood. This corresponds

to the iterative convolution of the image with the mask

shown in Fig. 3a, until the result stabilises. The interme-

diate calculations were performed in the floating-point

arithmetic. The method was similar to that used in [10] in

that the convolution equivalent to averaging was used,

while the main difference was that the convolution was

repeated until the surface received stabilised.

5.2.2 Directional analysis

Spanning an isotropic membrane across the regions occu-

pied by the LSs yields undesirable results where the linear

structure crosses the regions having different signs of the

curvature, that is, the ‘‘hills’’ and ‘‘valleys’’, as shown in

Fig. 4a–c. To reduce the saddles near the ridges and bottoms

an anisotropic membrane was used. The direction of larger

stiffness was across the LS, as found by the line detector.

These directions were rounded to four characteristic

m

b

0
w/2w0/20-w0/2-w/2

I(
s)

s

max gradient

0

d

1

-w/2    -(1-d)w/2 0 (1-d)w/2 w/2

D
(s

),
 µ

(s
)

s

µ I (s)

µM(s)

D(s)

a

b

Fig. 2 In both subimages, s is the variable running across the line and

w is the actual width of the LS. a Extending the width of a linear

structure in the mammogram. w0 line width found by the line

detection algorithm; b, m local background and maximum image

intensity, respectively. b Weighting functions for insertion of the

membrane into the image. D(s) relative distance transform (thin solid
line), lI(s), lM(s) weighting functions of the image and membrane

(medium solid line and dashed line), respectively, d dimensionless

width of the transient stripe between the image and the membrane,

measured in the terms of the distance transform. Thick lines parts of

the D(s) graph corresponding to the transient stripe

Fig. 3 Examples of masks used for interpolation in the membrane

spanning algorithm. The sum of elements is divisible by four to make

it easier to construct the isotropic mask. a Isotropic membrane; b
membrane stronger in the W–E direction; c membrane stronger in the

SW–NE direction
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directions differing by 45�, and for each pixel in the LS a

convolution mask which expressed the anisotropic mem-

brane stiffness was used. The examples of the masks are

shown in Fig. 3b and c and the result of using this approach

can be seen in Fig. 4d. As it can be seen in the masks, the

ratio of the stiffnesses in the perpendicular directions was

close to 10, which was enough to receive a clear improve-

ment in relation to the described effect.

5.2.3 Improving the continuity

The membrane maintains C0 continuity with the image

intensity function, but due to the multiple averaging pro-

cess it is much more ‘‘smooth’’ (in the commonsense

meaning) than that function. To avoid abrupt changes of

smoothness of the resulting intensity function, a superpo-

sition in a transient stripe was used. Let us start with the

formulation without the superposition:

Iðx; yÞ ¼ IMðx; yÞbLSðx; yÞ þ I0ðx; yÞbIðx; yÞÞ; ð8Þ

where IM is the intensity found with the membrane, bLS is

the binary mask of the LSs, bI(x,y) = 1-bLS(x,y) is the

binary mask of the image out of the LS regions, and the

remaining notations are as described before. Now, let us

superimpose the intensity functions IM and I0 so that they

pass from one to another gradually:

Iðx; yÞ ¼ IMðx; yÞlLSðx; yÞ þ I0ðx; yÞlIðx; yÞ; ð9Þ

where lLS, lI are real weighting functions such that in a

narrow transient stripe belonging to the LS and neigh-

bouring its boundary, they pass from one to another

gradually (in the simplest case, linearly), as shown in

Fig. 2b. These weighting functions can be found in a

straightforward way from the relative distance transform of

the LSs found in the line detection phase. The width of one

transient stripe can be calculated as a fraction of the line

width: wt = ft w. On the other hand, given the relative

distance transform D(s) of the line, the extent of the tran-

sient stripe can be found from this transform by specifying

the limit d for the transform: wt = d w/2. There are two

stripes, one at each side of the line. In the presented cal-

culations the transient stripe extended through the part of

the LS width added to compensate for the too small width

of the lines originally found by the detector, as shown in

Fig. 2a, that is, between w0 and w. Assuming that

fw = 1.25 it can be calculated that ft = 0.1.

5.2.4 Multiscale analysis

According to the multiscale organisation of the mass

detector used, the line elimination process was also per-

formed in four scales. However, the line detection was

done only in the scale 1:4 (the second least detailed scale)

due to that this scale was fine enough to make the LSs

detection accurate, but still coarse enough to keep this

detection time-efficient. Its results were recalculated to

the remaining three scales. This was done for each line by

appropriately deleting pixels of the skeleton belonging to

each second image line and column, or inserting inter-

polated pixels into the skeleton of the detected line, and

plotting the line by creating its width in each such

obtained skeleton pixel. The line elimination was per-

formed with the primary image as the initial value at the

lowest scale level and with the value obtained at the

previous scale as the initial value at the remaining three

scales.
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Fig. 4 Using the anisotropic

membrane to interpolate an LS

crossing a ‘‘hill’’ in the image

intensity function. a Original

image intensity: detected LS

along Ox, ‘‘hill’’ along Oy; b
binary mask of the detected LS;

c LS eliminated with the

isotropic membrane: saddles

present in the ridges and

bottoms of the intensity graph;

(d) LS eliminated with the

anisotropic membrane, stronger

in the direction across the LS:

saddles greatly reduced
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6 Results and discussion

6.1 The FROC graphs

As described in our previous paper [18], the first obser-

vation indicated that the elimination of the linear structures

from the mammograms improved the results of detection in

a number of cases, especially when the tumour was

occluded by a strong view of a blood vessel or milk duct.

However now the feasibility of the method has been tested

on the whole MIAS mammographic database. First, the

cancerous masses were detected in the original 321 images

from this base with the detector described in Sect. 4. Then,

the linear structures were detected and eliminated, as

described in Sect. 5 and the masses were detected one more

time. Thus, two series of detection results were obtained.

Both series of the results were evaluated against the ref-

erence data form the MIAS database as described above in

Sect. 3 for a series of thresholds of the cancerous mass

detector, and overall characteristics of the results were

aggregated in the FROC curves [1, 34, 39]. The quantity on

the abscissa is the ratio of false positive detections per

image, FPI. On the ordinate, there is the true positive ratio,

TPR. The graphs are shown in Fig. 5. The following

observations can be made. First, the elimination of LSs did

not yield a general improvement in the performance of the

detector. Second, the only range where the results with line

elimination are better, is the range of large FPI rates for the

malignant tumours. The TPI value approaches 0.95 in this

range (namely, it is 0.9487 for FPI C 12.77).

This second observation can suggest that the elimination

of LSs could improve the sensitivity of the correlation-

based detector, so this detector could be used more suc-

cessfully as a preprocessor which finds the regions of

interest for other, more computationally demanding clas-

sifiers, without producing a significant number of

omissions of malignant tumours. This is possible in spite of

that as a stand-alone classifier the considered simple and

efficient detector yields too many false positive results.

6.2 Assessment by a human eye

The first one of the above described observations evoked

our doubts towards the encouraging preliminary results

reported in [18]. However, bearing in mind the discussion

from Sect. 3, we decided to verify this by carrying out a

review and classification of the results for the database

considered by a human eye. The results shown in the

FROC graphs in Fig. 5 were obtained from a number of

series of the images taken at different thresholds. In the

detection we are interested primarily in the malignant

tumours, so for the review we have chosen two series

which should have very similar results as far as the

malignant tumours are considered. These results have been

marked in the FROC graph for the malignant cases in

Fig. 5b with a large square, while in the graph for all the

tumours in Fig. 5a the results are less similar and have

been marked with two squares. For malignant tumours the

series have nearly equal FPI measures and should have

equal overall numbers of true-positive detections, while for

all the tumours the number of true-positive detections

should be lower in the case of eliminated LSs than in that

with no elimination. The pairs of images compared were

the images after detection, without and with the LSs

elimination, with marked detection results and reference

regions from the database and from the radiologist. The

degree to which each result has been changed by the LSs

elimination was assessed. The following grades were given

to each pair: strong improvement, medium improvement,

weak improvement; strong deterioration, medium
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Fig. 5 Free receiver operating characteristics for the correlation-

based cancerous mass detection for the whole MIAS database: a all

tumours; b malignant tumours. Solid lines, full circles detection

results for the original images; dashed lines, empty circles detection

results for the images with linear structures eliminated. Large squares
Series of images chosen for the assessment by a human eye described

in Sect. 2
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deterioration, weak deterioration, and three types of no

change in the quality of detection: good to good, weak to

weak and finally bad to bad. The task was relatively easy

so we considered the review made by ourselves as suffi-

cient. The detection of cancerous masses was assessed,

so 25 images containing calcifications were not taken

into account. In this way, the analysis was performed on

321 - 25 = 296 images, of which 91 contained the

symptoms of abnormalities of various types and 205 were

normal (see [13] or http://peipa.essex.ac.uk/info/mias.html).

The normal images were not taken into account in the

assessment by a human eye, as by definition they contained

only the false-positive detections, which were approxi-

mately equally numerous in both series, as it can be seen in

the graphs in Fig. 5. The results of the assessment are

gathered in the Table 1.

Examples of pairs of the images which received some of

the grades used will be presented in the following sub-

section to give an insight into how the grades were

assigned. We tended to be rather critical than permissive in

qualifying the improvements.

The results in Table 1 show that in the results with the

elimination of the linear structures, the improvements tend

to prevail over the deteriorations. The numbers characte-

rising the improvements are small, but also the numbers of

the images in which the differences could be seen are not

large. The low numbers make it unreasonable to calculate

any statistics on such data, but it can be noticed that the

differences in the FROC graphs are also grounded upon the

numbers of the same order of magnitude. Nevertheless, if

an attempt of finding out whether the improvement was

larger in the malignant cases alone or in all the cases

together, then a following calculation could be done: the

prevalence of the improvements over deteriorations versus

all the image pairs with differences was (6 - 2)/

(6 + 2) = 50% in malignant cases and (17 - 8)/

(17 + 8) = 36% in all the cases. If these prevalences were

related to the totals of image pairs, the numbers would be

(6 - 2)/39 = 10.3% and (17 - 8)/91 = 9.9%, respec-

tively. These results seem to be above rather than below the

negligibility level.

The meaning of the presented numbers is contradictory

with respect to what can be seen in the FROC graphs for

the image series considered. In the human eye assessment,

the results with the LSs eliminated are better than those

without elimination, and this difference is similar in both

the malignant cases and in the malignant and benign cases

merged together.

The conclusions will be given in Sect. 7.

6.3 Examples of images used in the assessment

The pairs of images presented in this Section have been

selected from all the images used in the FROC analysis and

the human-eye assessment. Typical images showing

Table 1 Comparison of the results of cancerous mass detection in

pairs of images: without and with the elimination of LSs

Malignant R39 Benign R52 All R91

""" "" " R """ "" " R """ "" " R

2 1 3 6 5 4 2 11 7 5 5 17

;;; ;; ; R ;;; ;; ; R ;;; ;; ; R

2 0 0 2 2 0 4 6 4 0 4 8

Good ? Good Good ? Good Good ? Good

29 32 61

Weak ? Weak Weak ? Weak Weak ? Weak

0 1 1

Bad ? Bad Bad ? Bad Bad ? Bad

2 2 4

Each pair was graded as belonging to one of the nine classes: """:
strong improvement, "": medium improvement, ": weak improve-

ment; ;;;: strong deterioration, ;;: medium deterioration, ;: weak

deterioration; and three classes with no change in the quality of

detection: good to good, weak to weak, bad to bad

Fig. 6 Examples of results for mammogram MDB124RM from the

MIAS database, malignant case, strong improvement of the detection

result: a in the original image; b in the image with LSs eliminated; c
relative distance transforms of the LSs. White circle reference region

from the database; white irregular contour reference region indicated

by the radiologist; black circles regions found by the detector. The

lower, black part of the image has not been shown

Pattern Anal Applic (2009) 12:377–390 385

123

http://peipa.essex.ac.uk/info/mias.html


differences between the detection results with and without

the LSs elimination were chosen.

In Fig. 6 an example of the results for a strong

improvement for a malignant case is shown. A map of the

detected linear structures is added to this pair of images to

make it easier to see where are the differences between the

images. In Fig. 7 there is an example of one strong and one

medium improvement for a malignant case. Examples of a

strong deterioration in malignant cases is shown in Fig. 8.

Further, the benign cases are displayed: a strong

improvements in Fig. 9, and a medium improvement and a

strong deterioration in Fig. 10. The next Fig. 11 needs an

explanation. The image is problematic due to that the

radiologist’s indication and the ground truth data from the

database do not conform. The pair of images has been

graded as strong deterioration due to that a small indica-

tion by the detector located in the centre of the database

reference region disappeared after LSs elimination. In fact,

according to the README file of the MIAS database, this

mammogram shows an architectural distortion of a breast,

not a cancerous mass, so it could be excluded from the

analysis as well.

The examples of no change of the quality of detection

do not have to be shown.

The locations and dimensions of windows presented in

Figs. 6–10 have been collected in Table 2.

7 Conclusion

To reduce the number of false-positive detections while

maintaining the number of true-positive detections in the

cancerous mass detection method applied to mammograms,

the elimination of linear structures was applied. The mass

detection method used was the the hierarchical correlation-

based detection described previously in [4]. The linear

structures (LSs) were detected with the accumulation-

based line detector [14, 15, 17] and the elimination was

performed by interpolation of the image intensity in the

regions of the LSs with an anisotropic membrane being a

simple derivation of the model described in [38].

The results were assessed with a commonly used mea-

sure of correctness of a single result of detection with

respect to a reference indication using the notion of the

coverage factor (1), (4). The FROC graphs were used to

this end. The results with and without the elimination of

LSs which should appear similar according to the FROC

analysis were assessed with a human eye. The assessment

were made for all the relevant images from the MIAS

database (i.e., only the images containing the calcifications

were not considered in the human-eye assessment).

The conclusions which can be drawn from the presented

considerations, mainly those given in Sects. 3 and 6, are as

follows.

Fig. 7 Examples of results for

fragments of mammograms

from the MIAS database,

malignant cases: a original

images; b images with LSs

eliminated; 1 MDB274RX: strong

improvement; 2 MDB090RM:

medium improvement. White
circle: reference region from the

database; white irregular
contour: reference region

indicated by the radiologist;

black circles: regions found by

the detector
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Fig. 8 Examples of results for

fragments of mammograms

from the MIAS database,

malignant cases: a original

images; b images with LSs

eliminated; 1 MDB125LL: strong

deterioration; 2 MDB141LX:

strong deterioration. White
circle reference region from the

database; white irregular
contour reference region

indicated by the radiologist;

black circles regions found by

the detector

Fig. 9 Examples of results for

fragments of mammograms

from the MIAS database, benign

cases: a original images;

b images with LSs eliminated;

1 MDB148RX: strong

improvement; 2 MDB175LM:

strong improvement. White
circle reference region from the

database; white irregular
contour reference region

indicated by the radiologist;

black circles regions found by

the detector
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The results of the human eye assessment are not in good

conformity with those obtained with the measure using the

coverage factor. The human eye assessment indicated that

the impact of the LSs elimination on the result is positive,

while this did not result from the coverage factor measure.

A possible reason for this fact is that the human eye cap-

tures the similarities in the location and size of irregular

shapes better than simple formulae. The design of the

measures using the coverage factor strongly depend on the

definition of this factor and the threshold used, which can

make the results impossible to compare or even unrea-

sonably optimistic. The strict definition of the measure of

results quality should always be given, which is not the

case in some publications. This measure should at least be

checked for its reasonability against what has been called

the trivial detector which is the detector that always returns

the whole image as a single indication. The measure used

should not yield a positive result for this unreasonably

simple detector. Finally, a suggestion can be made that

more effort is necessary to develop a better measure of

correctness of the indications of detectors versus the ref-

erence, ground truth data.

The elimination of the linear structures from the mam-

mograms improved the results of cancerous mass detection

to some extent. This improvement is visible in the human

eye assessment at least at the false positive per image (FPI)

index around 10.5. In the assessment with the measure (1)

and (4), it is visible only for the malignant tumours, in the

range of large values of the false positive per image ratio:

FPI [ 13. In this range the value of the true positive ratio is

FPI & 0.95.

The presented template-matching cancerous mass

detector is clear in structure, simple in implementation

and efficient in calculation. The hitherto experience with

this single-feature detector is that it is capable of signif-

icantly reducing the area of the mammogram which

should be processed further while missing very few sus-

pected regions and keeping a very high sensitivity of

0.90–0.95. Therefore, it can be considered as a good

candidate as a front-end detector of the regions of interest

(ROI) for any complex cancerous mass detection and

classification system.
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Fig. 10 Examples of results for

fragments of mammograms

from the MIAS database, benign

cases: a original images;

b images with LSs eliminated;

1 MDB160RL: medium

improvement; 2 MDB121LL:

strong deterioration. White
circle reference region from the

database; white irregular
contour reference region

indicated by the radiologist;

black circles regions found by

the detector

388 Pattern Anal Applic (2009) 12:377–390

123



References

1. Sampat MP, Markey MK, Bovik AC (2005) Computer-aided

detection and diagnosis in mammography. In: Bovik AC (ed)

Handbook of Image and video processing. Academic Press, New

York, pp 1195–1217

2. Dziukowa J, Wesołowska E (eds) (2006) Mammography in breast

cancer diagnosis (in Polish), 2nd edn. Medipage, Warszawa

3. Zwiggelaar R, Parr TC, Schumm JE et al (1999) Model-based

detection of spiculated lesions in mammograms. Med Image Anal

3(1):39–62

4. Bator M, Nieniewski M (2006) The usage of template matching

and multiresolution for detecting cancerous masses in mammo-
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