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Mathematical modelling of atherosclerosis
as an inflammatory disease
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Atherosclerosis is an inflammatory disease. The atherosclerosis process starts when
low-density lipoproteins (LDLs) enter the intima of the blood vessel, where they
are oxidized (ox-LDLs). The anti-inflammatory response triggers the recruitment of
monocytes. Once in the intima, the monocytes are transformed into macrophages and
foam cells, leading to the production of inflammatory cytokines and further recruitment
of monocytes. This auto-amplified process leads to the formation of an atherosclerotic
plaque and, possibly, to its rupture. In this paper we develop two mathematical models
based on reaction–diffusion equations in order to explain the inflammatory process. The
first model is one-dimensional: it does not consider the intima’s thickness and shows
that low ox-LDL concentrations in the intima do not lead to a chronic inflammatory
reaction. Intermediate ox-LDL concentrations correspond to a bistable system, which
can lead to a travelling wave that can be initiated by certain conditions, such as infection
or injury. High ox-LDL concentrations correspond to a monostable system, and even a
small perturbation of the non-inflammatory case leads to travelling-wave propagation,
which corresponds to a chronic inflammatory response. The second model we suggest
is two-dimensional: it represents a reaction–diffusion system in a strip with nonlinear
boundary conditions to describe the recruitment of monocytes as a function of the
cytokines’ concentration. We prove the existence of travelling waves and confirm our
previous results, which show that atherosclerosis develops as a reaction–diffusion wave.
The results of the two models are confirmed by numerical simulations. The latter show
that the two-dimensional model converges to the one-dimensional one if the thickness of
the intima tends to zero.
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1. Atherogenesis process

Several theories have been developed to explain the pathogenesis of athero-
sclerosis, but none of these theories can explain the whole process because of
the large number of risk factors involved (Fan & Watanabe 2003). Despite these
multiple theories, the concept that is now accepted is that atherosclerosis is an
inflammatory disease (Ross 1999).

The initiation of atherosclerosis begins with the entry of low-density
lipoproteins (LDLs) into the intima of the blood vessel (Ross 1999; Fan &
Watanabe 2003; Østerud & Bjørklid 2003), where they are oxidized (ox-LDLs).
The latter is considered as a dangerous agent, hence an anti-inflammatory
reaction is launched: monocytes adhere to the endothelium, then they penetrate
into the intima, where they are transformed into macrophages.

The macrophages phagocytose the ox-LDLs but this eventually transforms
them into foam cells, which in turn have to be removed by the immune
system. Hence, they set up a chronic inflammatory reaction (auto-amplification
phenomenon) by secreting pro-inflammatory cytokines (tumour necrosis factor
TNF-α, interleukin IL-1) that promote the recruitment of new monocytes and
the production of new pro-inflammatory cytokines.

This auto-amplification phenomenon is compensated by two anti-inflammatory
reactions: a ‘biochemical’ one mediated by the anti-inflammatory cytokines (IL-
10), which inhibit the production of pro-inflammatory cytokines; and a ‘mechani-
cal’ one when the smooth muscle cells migrate and proliferate to create a fibrous
cap over the lipid deposit, which isolates this deposit centre from the blood flow.

The atherosclerotic plaque formed by the fibrous cap and the lipid deposit
changes the geometry of the vessel and interacts with the blood flow. This
interaction may lead to a thrombus, or to the degradation and rupture of the
plaque (Li et al. 2006a,b).

In this paper we consider only the setting up of the inflammatory reaction with
its biochemical and mechanical inhibitions. The first model is one-dimensional.
It is a simplified model and captures some essential features of atherosclerosis
development, but it does not take into account the finite width of the blood
vessel wall. This approximation implies that the vessel wall is very narrow and
the concentrations across it are practically constant.

The second model is two-dimensional. It will allow us to describe in more detail
the recruitment of monocytes from the blood flow. The flux of monocytes depends
on the concentration of cytokines at the surface of endothelial cells that separate
the blood flow and the intima. This should be described by nonlinear boundary
conditions that change the mathematical nature of the problem. We will study it
in this paper.

2. One-dimensional model

We consider a reaction–diffusion system of equations on an interval representing
the intima:

∂M
∂t

= d1
∂2M
∂x2

+ f1(A) − λ1M

and
∂A
∂t

= d2
∂2A
∂x2

+ f2(A)M − λ2A

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

Phil. Trans. R. Soc. A (2009)
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for x ∈ [0, L]. Here M is the density of immune cells (monocytes, macrophages)
and A is the density of the cytokines secreted by the immune cells. The
function f1(A) = (α1 + β1A)/(1 + A/τ1) models the recruitment of the immune
cells from the blood flow, promoted by the inflammatory cytokines, with α1 = f1(0)
corresponding to the beginning of the inflammation, that is, the recruitment of
monocytes due to the presence of ox-LDLs, promoted by endothelial adhesion
molecules, chemoattractants and growth factors. The factor β1 represents the
auto-amplification of the recruitment of monocytes due to the inflammatory
cytokines secreted by the monocytes themselves. The factor 1 + A/τ1 represents
the mechanical saturation of the recruitment of M , with τ1 being the characteristic
time for the fibrous cap formation. The term f2(A)M models the cytokine
production rate, with f2(A) = α2A/(1 + A/τ2), where α2A represents the secretion
of pro-inflammatory cytokines promoted by the pro-inflammatory cytokines
themselves and 1 + A/τ2 represents the inhibition of the pro-inflammatory
cytokines’ secretion mediated by the anti-inflammatory cytokines, with τ2 being
the necessary time for this inhibition to act. The terms −λ1M and −λ2A represent
the degradation of the immune cells M and the cytokines A, respectively, and
d1(∂

2M/∂x2) and d2(∂
2A/∂x2) describe their diffusion (or cell displacement) in

the intima.
All the parameters of the model, α1, β1, τ1, α2, τ2, λ1, λ2, d1 and d2, are assumed

to be non-negative. Besides, for f1 to be an increasing function of A, we impose
the condition that

τ1 >
α1

β1
. (2.2)

(a) Kinetic system

In order to determine the conditions for the setting up of the inflammatory
reaction, we first study only the reaction part of system (2.1), that is, we consider
the kinetic system of equations

dM
dt

= f1(A) − λ1M

and
dA
dt

= f2(A)M − λ2A.

⎫⎪⎪⎬
⎪⎪⎭

(2.3)

The point E0 = (0, α1/λ1) is an equilibrium point for any value of the parameter.
The existence of other equilibrium points is determined by the equation

F1(A) = F2(A). (2.4)

Three cases are possible:

(i) There is only one positive solution of equation (2.4), denoted by Ar , with
Er = (Ar , Mr ) its corresponding equilibrium.

(ii) There exist two positive solutions of equation (2.4), denoted by Al and
Ar , where Al < Ar . The corresponding equilibrium points are denoted by
El = (Al , Ml) and Er = (Ar , Mr ).

(iii) There is no positive solution to equation (2.4).

Phil. Trans. R. Soc. A (2009)
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Denoting E1 = (0, λ2/α2), we observe that, if E0 is situated below E1, then E0 is
a stable equilibrium, otherwise it is unstable, El is unstable and Er is a stable
equilibrium.

(b) Biological interpretation

The equilibrium points of the kinetic system admit the following biological
interpretation: E0 (no cytokines and low concentration of immune cells)
corresponds to the non-inflammatory state, whereas Er (large concentrations of
cytokines and immune cells) corresponds to the inflammatory state; E0 can be
stable or unstable, and Er is always stable when it exists.

The intermediate equilibrium El is always unstable when it exists. It represents
a threshold that the system has to overcome in order to move from the non-
inflammatory state E0 to the inflammatory state Er .

Hence, the biological interpretation can be given in terms of the parameter α1
(ox-LDL concentration):

(i) If α1 is small (low ox-LDL concentration), E0 is the only equilibrium and
it is stable. No chronic inflammatory reaction can be set up.

(ii) If α1 is intermediate, there are three equilibrium points: E0 and Er are
stable and El is unstable. This is called the bistable case. The system
will reach Er if the initial conditions are large enough and E0 otherwise.
Hence, a chronic inflammatory reaction may be set up, but for that it has
to overcome a threshold.

(iii) If α1 is large, there are two equilibrium points: E0 is unstable and Er is
stable. This is called the monostable case. Even a small perturbation of E0
will lead to Er . Hence, even a small perturbation of the non-inflammatory
state leads to the setting up of a chronic inflammatory reaction.

(c) Existence of travelling waves

In this subsection we study the conditions for the propagation of the chronic
inflammatory reaction. To this aim we turn back to system (2.1). For the
theoretical study the space domain will be the entire real line ]−∞, +∞[ and
for the numerical simulations it will be the segment [0, L]. A travelling-wave
solution of system (2.1) is a particular solution representing a front with constant
velocity connecting two equilibria of system (2.3), that is, a solution of the form
W (x − ct), where the constant c is the speed of the wave and limx→±∞ W (x) =
W±, with W+ and W− being two equilibria of system (2.3).

Theorem 2.1. In the bistable case, there exists a unique travelling-wave solution
connecting the non-inflammatory state E0 and the inflammatory state Er , i.e. a
constant c and a vector-valued function W (x − ct), the solution of system (2.1 )
on the real line ]−∞, +∞[ and satisfying W− = Er and W+ = E0.

In the monostable case, there exists a constant c∗ such that, for all c ∈
[c∗, +∞[, there exists a travelling-wave solution of velocity c connecting the non-
inflammatory state E0 and the inflammatory state Er , i.e. a vector-valued function
W (x − ct), the solution of system (2.1 ) on the real line ]−∞, +∞[ and satisfying
W− = Er and W+ = E0.

The results on the existence of waves are confirmed by numerical simulations
(El Khatib et al. 2007).

Phil. Trans. R. Soc. A (2009)
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3. Two-dimensional model

(a) Mathematical model

We consider the system of equations

∂M
∂t

= dM �M − βM (3.1)

and

∂A
∂t

= dA�A + f (A)M − γA + b (3.2)

in the two-dimensional strip, Ω ⊂ R
2,

Ω = {(x , y); −∞ < x < ∞, 0 ≤ y ≤ h};
with the boundary conditions

y = 0:
∂M
∂y

= 0,
∂A
∂y

= 0; y = h:
∂M
∂y

= g(A),
∂A
∂y

= 0; (3.3)

and the initial conditions

M (x , y, 0) = M0(x , y), A(x , y, 0) = A0(x , y). (3.4)

The functions f and g are sufficiently smooth and satisfy the following
conditions:

f (A) > 0 for A > 0, f (0) = 0, f (A) −→ f+ as A −→ ∞,

g(A) > 0 for A > A0, g(A0) = 0, g(A) −→ g+ as A −→ ∞,

and g ′(A) > 0. We put A0 = b/γ . This is a constant level of cytokines in the intima
such that the corresponding concentration of the monocytes is zero, and they
are not recruited through the boundary. The constant vector (M , A) = (M0, A0),
where M0 = 0 is a stationary solution of problem (3.1)–(3.3).

The function f (A) represents the flux of monocytes into the intima through
the endothelium of the blood vessel; it depends on the concentration of cytokines.

(b) Stationary solutions in the interval

Consider the problem in the perpendicular section of the strip:

∂M
∂t

= dM M ′′ − βM , (3.5)

∂A
∂t

= dAA′′ + f (A)M − γA + b, (3.6)

y = 0: M ′ = A′ = 0; y = h: M ′ = g(A), A′ = 0. (3.7)

Here a prime denotes the derivative with respect to y. It has a constant
stationary solution

M = 0, A = A0.

Phil. Trans. R. Soc. A (2009)
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We linearize (3.5)–(3.7) about this solution and consider the corresponding
eigenvalue problem:

dM M ′′ − βM = λM , (3.8)

dAA′′ + f (A0)M − γA = λA, (3.9)

y = 0: M ′ = A′ = 0; y = h: M ′ = g ′(A0)A, A′ = 0. (3.10)

We consider the case λ = 0. From (3.8) and (3.9) we get

M (y) = c1eσ1y + c2e−σ1y , A(y) = c3eσ2y + c4e−σ2y + kc1eσ1y + kc2e−σ1y ,

where σ1 = √
β/dM , σ2 = √

γ /dA and k = f (A0)/[dA(σ 2
2 − σ 2

1 )].
From the boundary conditions at y = 0 and the boundary at y = h we get

c1 = c2, c3 = c4

and
μ1 coth(σ1h) = 1 + μ2 coth(σ2h), (3.11)

where

μi = kg ′(A0)

σi
= f (A0)g ′(A0)

dAσi(σ
2
2 − σ 2

1 )
, i = 1, 2.

Solutions of equation (3.11) give zero eigenvalues of problem (3.8)–(3.10).

Proposition 3.1. Suppose that μi 	= 0, σi 	= 0, i = 1, 2, and σ1 	= σ2. For all h
sufficiently small, the principal eigenvalue of problem (3.8)–(3.10) is in the right
half plane. If f (A0) or g ′(A0) are sufficiently small and h sufficiently large, then
the principal eigenvalue is in the left half plane.

Proposition 3.2. If the principal eigenvalue of problem (3.8)–(3.10) crosses the
origin from negative to positive values, then the stationary solution M = 0, A = A0
of problem (3.5 )–(3.7 ) becomes unstable and two other stable stationary solutions
bifurcate from it. For one of these solutions, Ms(y), As(y), the inequality

Ms(y) > 0, As(y) > A0, 0 < y < h, (3.12)

holds.

The existence and stability of a bifurcating solution follows from the standard
arguments related to the topological degree (Mawhin 1979). Inequality (3.12)
follows from the positiveness of the eigenfunction corresponding to the zero
eigenvalue. The proofs of these propositions and the assertions below will be
presented elsewhere.

(c) Existence of waves in the monostable case

In this section we consider problem (3.1)–(3.3) assuming that the stationary
solution (M , A) = (M0, A0) = (0, A0) is unstable and that there exists a stable
stationary solution Ms(y), As(y) in the section of the cylinder such that

M0 < Ms(y), A0 < As(y), 0 ≤ y ≤ h.

Here, we will study the existence of waves with the limits (M0, A0) at x = −∞
and (Ms, As) at x = +∞. We assume that there are no other stationary solutions

Phil. Trans. R. Soc. A (2009)
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M (y), A(y) to system (3.8) and (3.9), such that

M0 ≤ M (y) ≤ Ms(y), A0 ≤ A(y) ≤ As(y), 0 ≤ y ≤ h. (3.13)

Consider the problem

dM �M − c
∂M
∂x

− βM = 0, (3.14)

dA�A − c
∂A
∂x

+ f (A)M − γA + b = 0, (3.15)

y = 0:
∂M
∂y

= 0,
∂A
∂y

= 0; y = h:
∂M
∂y

= g(A),
∂A
∂y

= 0. (3.16)

Here c is the wave velocity. We will look for a solution (M (x , y, t), A(x , y, t)) such
that, for all y ∈ [0, h] and all t ≥ 0:

(M (x , y, t), A(x , y, t)) −→ (M0, A0) for x −→ −∞,

(M (x , y, t), A(x , y, t)) −→ (Ms(y), As(y)) for x −→ +∞.

}
(3.17)

Let μ(x , y) and α(x , y) be some functions continuous together with their second
derivatives and such that

∂μ

∂x
> 0,

∂α

∂x
> 0, (x , y) ∈ Ω, (3.18)

y = 0:
∂μ

∂y
= 0,

∂α

∂y
= 0; y = h:

∂μ

∂y
= g(α),

∂α

∂y
= 0. (3.19)

Denote

S1(μ, α) = sup
(x ,y)∈Ω

dM �μ − βμ

∂μ/∂x
, S2(μ, α) = sup

(x ,y)∈Ω

dA�α + f (α)μ − γα + b
∂α/∂x

.

Proposition 3.3. Let functions μ(x , y) and α(x , y) satisfy conditions (3.18 ) and
(3.19 ). If

c > max(S1(μ, α), S2(μ, α)), (3.20)

then there exists a solution of problem (3.14)–(3.17).

The main result of this section is given by the following theorem.

Theorem 3.4. Problem (3.14)–(3.17) has a solution if and only if c satisfies the
inequality

c ≥ c0 = inf
μ,α

max(S1(μ, α), S2(μ, α)),

where the infimum is taken with respect to all functions satisfying conditions (3.18)
and (3.19). These solutions are strictly monotone with respect to x.

4. Numerical simulations

In this section we present numerical simulations of problem (3.1)–(3.3) in the
bounded domain Ωs = (x , y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, with the additional boundary

Phil. Trans. R. Soc. A (2009)
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Figure 1. (a) Comparison between the two-dimensional model with a small thickness (upper part)
and the one-dimensional model (lower part). (b) Dependence of the wave speed on the thickness
of the strip (width = 1e−3).

conditions at the sides of the rectangle:

x = 0, 1: A = M = 0.

The functions f (A) and g(A) are taken in the form

f (A) = A
1 + 43A/42

, g(A) = ε
2 + 8A
1 + A

.

We carry out the simulations using the software COMSOL MULTIPHYSICS.
In the approximation of a thin domain, for such functions f and g we obtain the

one-dimensional system (2.1) in the monostable case. Therefore, we can expect the
monostable behaviour in the two-dimensional case. This means the absence of
the threshold where even small perturbations of the disease-free solution lead to
disease development. In this case, concentrations A and M grow and spread in the
form of travelling waves. Figure 1a presents the propagation of the travelling wave
in both the one-dimensional and two-dimensional models. The comparison shows
a good agreement between these two cases when the strip thickness is small.
Figure 1b demonstrates how the speed of propagation in the two-dimensional case
depends on the strip thickness. The speed of the two-dimensional wave converges,
numerically, to the speed of the one-dimensional wave as the width of the domain
goes to zero. Figure 2 shows the wave propagation for wide domains. In this case
the wave is essentially two-dimensional. To watch videos of the simulations, please
see the electronic supplementary material.
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Figure 2. (a) Beginning of wave development. (b) The wave propagation (width = 1e−2).

5. Discussion

Atherosclerosis and other inflammatory diseases develop as a self-accelerating
process that can be described using the reaction–diffusion equations. In the first
part of this paper, we have developed a one-dimensional model for the early
stage of atherosclerosis. The model is applicable for the case of a small thickness
of the intima (blood vessel wall), which corresponds to biological reality. We prove
the existence of a travelling-wave solution of the reaction–diffusion system and
explain the chronic inflammatory reaction as the propagation of a travelling wave.

In the second part, we take into account the thickness of the intima by
developing a two-dimensional model in which the recruitment of monocytes is
described by a nonlinear boundary condition. The latter is a function of the
cytokines’ concentration in the intima. We proved the existence of a travelling-
wave solution in the monostable case and explain, as in the one-dimensional
system, the inflammatory reaction as a wave propagation. Then we verified these
theoretical results with numerical simulations. We also verified numerically the
limiting passage from the two-dimensional model to the one-dimensional one.

Further development of atherosclerosis results in remodelling of the vessel.
This means that the lumen (the channel where the blood flow takes place)
can retract and the vessel wall takes a specific bell shape. This can essentially
modify the characteristics of the flow, and mechanical interaction of the flow
with the vessel walls become crucial because it can result in the rupture of the
plaque. There are numerous studies of these phenomena (e.g. Li et al. 2006a,b).
The blood flow influences the development of the plaque: the shear stress
activates the receptors of the endothelial cells and accelerates the recruitment
of monocytes.

Another important question is related to risk factors like hypercholesterol-
aemia, diabetes or hypertension. They determine some parameters of the
mathematical model. A more complete description would consist in supposing
that this influence increases slowly during life. The parameters of the model would
then evolve slowly, and the system would pass from the disease-free case to the

Phil. Trans. R. Soc. A (2009)
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bistable state to finally reach the monostable state. In each state, the ignition
itself would be due to an accidental disturbance, such as an injury that can
initiate infection.

Another approach to modelling atherosclerosis is based on cellular automata
(Poston & Poston 2007). The authors investigate ‘the hypothesis that plaque
is the result of self-perpetuating propagating process driven by macrophages’.
The macrophage recruitment rate is considered as a steeply rising function of
the number of macrophages locally present in the intima. The main result of
Poston & Poston (2007) confirms the conclusion of this work that atherosclerosis
development can be viewed as a wave propagation.
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