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Introduction

The potential of the human body to regenerate tissue
and organs is inherent. However, there are several rea-
sons that the reparative response may be limited and
self-healing may not succeed, including infection or
a large defect resulting from a serious medical con-
dition. Regeneration solution is important from the
perspective of society’s aging, the incidence of life-
style diseases, interest in sports activity and result-
ing injuries, and patients’ expectations for quality of
life. Therefore, the utilization of implants and tissue
engineering constructs to replace tissue or promote
tissue regeneration and healing is necessary [1]. Tissue
engineering is a comprehensive and multidisciplinary
subject that endeavors to develop biodegradable and
bioactive biomaterial constructs, commonly named
scaffolds, capable of maintaining or enhancing tis-
sue function. This is a highly evolving discipline that
employs a variety of biomaterials, growth factors,
manufacturing, and modification methods to stimulate
particular biological responses [2—4]. It requires the
application of knowledge from a number of cutting-
edge disciplines, including materials science, bioen-
gineering, design and manufacturing, medicine, and
informatics [5].

Biomaterial development for tissue engineering
applications is a very challenging process. The mate-
rial to be engineered should have the desired func-
tionality, and it needs to exhibit great biocompatibil-
ity in a human physiological environment. From the
design of tissue-engineered material to its applica-
tion, there is a long development process consuming
a vast amount of time and resources consisting of prior
rational design choices followed by iterative trial-and-
error experimentation. Computational materials sci-
ence offers a variety of material design tools to speed
up and lower the cost of developing new materials in
line with industry demands. Models based on science
and various length scales can determine how designed
materials behave at various levels, including the atom-
istic, microstructural, and product/component scales
[6]. The machine learning approach is the new path
with the potential to accelerate the progress in tissue
engineering.

Machine learning is the subset of artificial intelli-
gence, which uses mathematical algorithms to predict
a statistically likely outcome of a defined problem.
It aims to process large datasets, find relationships
and correlations, and thus improve and fasten the
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interpretation of data. In the last decade, there has
been revolutionary progress in this field, which has
pushed forth advanced tools in the financial sector,
logistics, motorization, e-commerce, cybersecurity ser-
vices, and many other areas. ML approaches also influ-
enced the development of many fields of science, such
as image analysis in medicine or drug discovery. As
it is an extensive and rapidly developing discipline of
knowledge, we recommend reading the recent reviews
on this topic [7-9]. In the next chapter, we briefly intro-
duce the most important aspects of machine learning
that could be helpful for the reader.

Considering the complexity and multitude of fac-
tors and dependencies in both scaffold manufactur-
ing and interaction with the human body, machine
learning can address a lot of TE needs. ML can acceler-
ate progress in this field, opening new opportunities
and solving existing challenges when combined with
advanced biomedical technologies (Scheme 1). This
review article focuses on the current state of machine
learning applications in tissue engineering. As the tis-
sue engineering is a very broad discipline drawing
from many fields including bioprinting, drug delivery
incorporation, gene&RNA therapies, and many others,
we have chosen several important areas of TE in this
review. We discuss these areas that are fundamental
in TE and currently present many examples of ML/
Al implementation, namely optimization of bioprint-
ing and other scaffold design techniques, predicting
material-cell interactions, optimizing drug delivery
systems, biological structures images analysis, and
modeling the in vivo performance of scaffolds. By
exploring the latest achievements and critically assess-
ing the possibilities of AI/ML in tissue engineering,
this article aims to provide a comprehensive view of
the current knowledge and future directions of this
dynamically developing field.

Need for AI/ML solutions for the TE field

Currently, the phrase "tissue engineering" generates
89,374 original article results in the Scopus database,
including 5432 articles published in the year 2023
[10]. So far, huge research work in TE has been done,
including, among others, the development of scaf-
fold manufacturing methods, scaffold composition,
specific surface modification and enrichment in dedi-
cated biomolecules, as well as the development of
analytical methods. Examples of the last 30 years’
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Scheme 1 The concept of data-driven tissue engineering and expected benefits.

achievements in the TE field are stimuli-responsive
materials [11-13], injectable hydrogels [14], 3D bio-
printed constructs [15], 3D-printed scaffolds [16],
bioactive coatings [17, 18], release systems of growth
factors and drugs [19], various compositions of bio-
active glasses [20], and many others.

So far, the development of biomaterials proceeded
by intuitive selection and modification of manufac-
turing procedures together with biological assess-
ment [19]. Material engineering requires a wide
knowledge of process—structure—property (PSP)
linkages to optimize its design for a specific applica-
tion. This approach requires initial design decisions,
followed by a process of repeated experimentation
and refinement. For example, many authors reported
methodical studies on the optimization of bioprint-
ing parameters [21, 22]. Webb B. et al. optimized
extrusion-based bioprinting to limit the shear stress
acting on the bioink thus reducing cell viability,
while maintaining maximum geometric quality[23].
Moreover, the problem with a systematic compen-
dium on how material feature affects biological reac-
tion results from a large number of sub-parameters
of a given feature, combined effects of material fea-
tures, and heterogeneity of material structures [1,
19]. For example, Mackay B.S. et al. presented the dif-
ficulty and time limitations in conventional analysis
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of the material feature-cell response on the example
of topography and its sub-parameters complexity [1].

For many years, there have been attempts to
improve and fasten research in TE using computer
modeling (CM) [24, 25], mostly applying the finite
element method, which is commonly used to mini-
mize the need for experiments in empirical sciences.
For example, CM was used in dental tissue engineer-
ing to answer the question of how scaffold-bone com-
pound stiffness is affected by macroporosity, crack
density, and resorption/bone formation rates [26].
What is important is that in the CM approach, the
given problem is defined by providing relationships
between input and output indicators to build devised
mathematical models for the simulation of the process.
In contrast, in the ML approach, there is no need for
prior knowledge of physical, chemical, and biological
correlations and mechanisms, which seems to be a big
advantage for the investigation of TE systems.

ML is based on building the mathematical model
by training on large datasets, which means finding
key features and correlations among data based on
an enormous amount of examples [27]. The key char-
acteristic of the machine learning approach is the
ability to recognize complex patterns in big datasets.
Machine learning is based on three components: the
input layer including initial data for processing, the
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hidden layer meaning computation with mathemati-
cal algorithms, and the output layer, which are pre-
dicted results. Taking into consideration the charac-
teristics of the training process, three main categories
of machine learning can be distinguished: supervised
learning, in which the user provides input and accu-
rate output data for training the model; unsuper-
vised learning, in which only input data is provided,
and the program itself has to recognize data patterns;
and reinforcement learning, in which additionally
"punishments and rewards" are defined to make the
learning process faster. Examples of commonly used
machine learning algorithms are linear regression,
logistic regression, support vector machine (SVM),
decision trees, K-nearest neighbor (KNN), ran-
dom forest classifier [9], and artificial neuron net-
works (ANNs). “Deep learning” is a subcategory of
machine learning, that uses ANNs with at least four
hidden layers guaranteeing very high computation
accuracy, but requiring more computing power and
longer training time. It is important to emphasize
that different ML algorithms may be more suitable
and achieve better results depending on the specific
problem and data characteristics.

Taking into account the specificity of the tissue engi-
neering field, we pointed out several areas, in which
the discipline can benefit from using ML approaches:

e More rational scaffold design—understanding the
process-structure—property linkage and optimiza-
tion of process parameters,

o Predicting biological response to scaffold—understand-
ing the complex interaction of cell and scaffold
interaction,

o [Image analysis—automatic and more precise image
analysis, for example recognizing cell differentia-
tion stages,

o Modeling biological and mechanical scaffold perfor-
mance—using ML algorithms to improve or replace
currently used computation methods,

o More precise and faster data analysis and results inter-
pretation —improving analysis of big datasets origi-
nating from high-throughput screening studies,

o Knowledge organization and procedure standardiza-
tion —implementation of ML approaches can sup-
port experimental and results publishing stand-
ardization,

e Reducing animal testing—modeling biological per-
formance of scaffold can result in less need for
in vivo testing,
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e Ecological and economic benefits thanks to experiment
limitation —using well-trained ML algorithms can
cause experiment reduction with ecological and
economic savings from a further perspective.

Application areas of the AI/ML methods
in the TE field

Artificial intelligence (Al) tools and machine learning
(ML) have great potential for advancing the overall
effectiveness of tissue engineering projects. The key
application areas of machine learning in tissue engi-
neering include optimization of bioprinting and other
scaffold design techniques, predicting material—cell
interactions, optimizing drug delivery systems, sup-
porting image analysis, and modeling the in vivo scaf-
fold performance. Besides, ML approach can widely
contribute to analysis of experimental results, such as
those originating from FTIR spectroscopy [28].

These components significantly contribute to
advancing the field of tissue engineering, creating
innovations with the promise for the future of health-
care. Table 1 presents current examples of AI/ML utili-
zation showing wide spectrum of application in tissue
engineering. In the following chapters, we analyze the
most significant application areas in detail.

Scaffold designing

ML offers the breakthrough potential to improve the
scaffold designing in TE by the systematic analysis
of linkage between fabrication parameters, mate-
rial properties and biological response. Currently,
ML algorithms are a tool supporting manufacturing
optimization, which has potential to limit the conven-
tional trial-and-error experimental approach in the
near future. In the first subsection of this chapter we
in particular consider bioprinting, which is currently
the leading manufacturing technique in TE, and in the
second one, we review the other important scaffold
designing methods, such as electrospinning, freeze-
drying, and self-assembly of peptide hydrogels.

3D bioprinting
3D bioprinting is one of the fundamental techniques in

tissue engineering. Bioprinting was defined by Guil-
lemot F. et al. as the use of computer-aided transfer

@ Springer
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processes for patterning and assembling living struc-
tures together with non-living materials with a pre-
scribed 2D or 3D organization in order to produce
bio-engineered structures serving in regenerative
medicine, pharmacokinetic and basic cell biology stud-
ies [43]. It should be emphasized that 3D bioprinting
cannot be used as the synonym for 3D printing tech-
niques implemented in tissue engineering, which rely
on post-fabrication cell seeding [44]. Within 3D bio-
printing three most important methodologies can be
distinguished: extrusion-based [44], jetting-based [45],
and vat-photopolymerization-based bioprinting[46].
Extrusion-based bioprinting relies on the deposition
of bioink through a nozzle into the designed 3D con-
structs thanks to the fine control of computer design-
ing and device processing. The technology of extru-
sion-based bioprinting gained the greatest popularity
with rapid commercialization and the offer of special-
ized equipment from many companies. This technique
allows for using a wide spectrum of hydrogels of vari-
ous viscosities, obtaining large-scale constructs, and
applying high cell densities. However, the resolution
of printing is limited to a minimum of 200-1000 um.
Also, the balance between the mechano-rheological
properties of bioinks and their biological properties
has to be always considered [47]. The second type
of most common bioprinting techniques, the jetting-
based one, is based on ejecting cell-laden sub-nanoliter
droplets of hydrogel on the substrate with high control
of its spatial arrangement. In comparison to other bio-
printing techniques, it provides a more precise control
of cell density[45]. There are several sub-types of this
technique including inkjet-, micro-valve-, acoustic-,
laser-assisted-, and electrospun/electrohydrodynamic
jet printing [48]. The last one, vat-photopolymeriza-
tion-based bioprinting, known also as stereolithogra-
phy, relies on using photoactivatable bioresin placed
in a vat, which is systematically cured via the light
projected by laser (e.g., UV) [49]. This technique can
be equipped with a digital micromirror device, which
shortens the process time but decreases bioprinting
resolution [46]. Advantages of vat-photopolymeriza-
tion-based bioprinting include high printing resolu-
tion (even 10 um), high process efficiency, and high
cell viability thanks to low shear stress and reduced
printing time [50].

3D bioprinting requires a suitable combination
of rheometric and mechanical properties of printed
material and constructs spatial architecture, mate-
rial composition and degradability, and biological
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response to ensure good material processing, appro-
priate mechanical behavior, and integration and func-
tioning of construct in the organism. Though a lot of
effort has been put into printability optimization,
including rheological bioinks analyses, mathematical
modeling of the flow properties of bioinks, and analy-
sis of the printed scaffold using imaging techniques,
researchers still depend heavily on trial-and-error
methods for producing bioprinted scaffolds [51]. The
picture becomes even more complicated when taking
into account cell behavior. There are many studies in
the literature on the optimization of shear thinning
behavior of bioinks affecting both printability and cell
survival after printing [52]. With the existence of big
data collection, ML can facilitate adjusting bioprint-
ing parameters to obtain given properties [53]. Moreo-
ver, ML can be also used for in-real-time monitoring
and tuning of bioprinting parameters when learning
to detect defects and errors in bioprinted constructs.
Below, we present examples of ML applications in the
three most common bioprinting techniques.

Wang J. used the ML approach to investigate the
printability of alginate/methylcellulose hydrogel as
the bioink in extrusion bioprinting. The study was
divided into two screening steps and the total data-
set included: alginate concentration in two variants,
methylcellulose concentration in four variants, tem-
perature in two variants, nozzle shape in two variants,
nozzle size in two variants, printing speed in two var-
iants, and printing pressure in twenty variants. The
filament spreading ratio (FSR) parameter calculated
as the width of the printed filament divided by the
diameter of the nozzle tip was established to assess
the bioink printability. 1-5 values were assigned as
printable and “0” and “above 5” values as unprint-
able due to failure in filament extrusion or filament
breaking, and poor printing resolution, respectively.
Firstly, ML binary classification models were used
to recognize the parameter combinations resulting
in printable inks. Then, eight ML regression models
were applied to quantitatively assess the printability
of bioink. The results indicated XGBoost model as per-
forming the best with the R? value of 0.783, whereas
the DNN model has the lowest prediction accuracy
with the R? value of 0.464. The study proved the feasi-
bility of predicting hydrogel printability by applying
a systematic approach [54].

Huang X. et al. predicted the number of printed
cells in an inkjet-based bioprinting process based
on droplet velocity profile [55]. They measured and
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collected the reduction in droplet velocity between
two points along the distance from the nozzle to the
substrate. The testing set included 540 droplets with
20 droplets-set chosen for the comparison of five ML
algorithms: linear regression (LR), support vector
regression (SVR), decision tree regressor (DTR), ran-
dom forest regression (RFR), and extra tree regression
(ETR). The best accuracy with a mean error of 17%
was achieved for ETR. Further, the performances of
algorithms were as follows: SVR with a mean error of
19%, DTR with a mean error of 20%, RFR with a mean
error of 22%, and LR with the lowest accuracy at a
mean error of 31%.

Xu H. et al. employed the ML approach to predict
cell viability in dynamic optical projection stereo-
lithography-based bioprinting as the existing physics-
based models are not able to forecast cell viability with
suitable accuracy due to the complexity of biological
systems [56]. They collected input experimental data
including four crucial process parameters: UV inten-
sity, UV exposure time, GelMA concentration, and
layer thickness. Output cell viability was investigated
with fluorescence assays and calculated as the ratio of
the living (green) cells over the total number of cells.
Neural networks, ridge regression, K-nearest neigh-
bors, and random forest (RF) were combined in an
ensemble learning algorithm. Three training sets con-
taining 70%, 80%, and 90% of the total data were used
with the remaining data for the validating set. The best
results were observed in the case of a 90%-training
set, for which the ensemble algorithm performed with
R? equal to 0.953, RE—0.013, and RMSE—0.015. Also,
it was presented that an ensemble learning model
achieves higher prediction accuracy than its individual
constituents in all training set cases. Moreover, Bao Y.
stated that the machine learning approach could facili-
tate the selection of the most suitable photoinitiators
for vat-photopolymerization-based bioprinting, espe-
cially tricomponent systems, based on the reported
data with a reduction of experimental work [57].

Rafieyan et al. created an open-access dataset
related to bioprinted and 3d-printed scaffolds includ-
ing 60 materials, crosslinkers, enzymes, etc., 49 cell
lines, cell densities, and different printing condi-
tions with the total amount of data records equal
to 1171, whereas cell response was assigned only
for bioprinted constructs. Data were collected from
papers and datasets available in the literature. Over
40 machine learning and deep learning algorithms
were tested in predicting cell response, printability,
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and scaffold quality. Neural networks performed
with accuracy values equal to 0.804, 0.934, and 0.794
for qualitatively assessed features of scaffold quality,
printability, and cell response, respectively [58]. This
shows the high potential of currently existing data,
which should encourage researchers to unify data col-
lection and sharing.

The fine control of 3D bioprinting process param-
eters with the involvement of computer design cre-
ates suitable conditions for machine learning appli-
cations. The current state of the art includes mostly
applying ML to optimize the printability of bioinks,
predicting cell response and scaffold quality. On the
basis of the literature, it can be said that researchers
see great potential in machine learning as a new para-
digm in bioprinting [59-61]. Overall, the use of ML in
bioprinting is still in its early development phase. The
attention of researchers should be paid to the choice
of the type of ML algorithm model or considering an
ensemble learning approach. As it was shown in many
studies the prediction accuracy can differ a lot depend-
ing on the model. There are also other directions that
so far are less commonly investigated such as scaffold
vascularization or shape designing. Moreover, there is
no doubt about the need for an open-source platform
for data sharing in bioprinting, especially taking into
account the promising results of ML implementation
on literature data. We discuss the topic of data collec-
tion and database existence in tissue engineering in
more detail in chapters 4. and 5.

Other scaffold designing methods

In this chapter, we present the application of the ML
approach in other common fabricating methods in tis-
sue engineering, such as 3D printing, electrospinning,
freeze-drying, and self-assembly of peptide hydrogels.

Bayesian optimization was applied to obtain the
best structural and biomechanical properties of
3D-printed PCL/magnesium nanocomposite scaf-
folds [62]. The goal was to optimize printing param-
eters including air pressure, printing speed, and noz-
zle temperature to achieve accurate printability and
print resolution. Using machine learning techniques,
the authors create a predictive model that is then used
in the Bayesian optimization process. The results
suggest that using the Bayesian optimization tech-
nique can effectively improve the adjusting process
evidenced by limiting the experiment number to 11
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iterations for each target width. It was proved that the
introduction of magnesium into the PCL structure has
a positive effect on the mechanical properties and bio-
compatibility of the scaffolds. This research illustrates
the potential of combining modern 3D printing tech-
niques, nanocomposites, ML approach, and Bayesian
optimization to improve structures used in advanced
biomedical applications.

In the study of Nair M. et al., random forest regres-
sion was applied to investigate the impact of freeze-
drying parameters on pore size, percolation diame-
ter, and median interconnection diameter of collagen
sponges [63]. Eleven input features were taken into
consideration, namely drying pressure, temperatures,
choice of solvent, presence of additives, collagen con-
centration, whether dialysis was performed, mini-
mum and maximum spectral intensity from circular
dichroism dataset, pH, and solute content. The authors
assessed the feature importance via analysis in two
variants: mean impurity decrease-based importance
and permutation importance. For the first one, colla-
gen concentration or pH was indicated as the most
important feature influencing three structural param-
eters, and for the second one—collagen concentration
was pointed as the most important in all cases. The
RMSE values were equal to 14%, 7%, and 18% for pore
size, percolation diameter, and median interconnec-
tion diameter, respectively.

Lopez-Flores et al. [64] predicted the production or
not of aligned nanofibers by binary classification meth-
ods together with the orientation, angle, and diameter
of the nanofibers by regression models and ANNSs.
ANN's performed with very high accuracy equal to
0.94 in binary classification and accuracy equal to 0.90
for the validation test. In the literature, there are other
examples of the utilization of ML models in designing
electrospun scaffolds [65, 66]. Carotenuto et al. [67]
carried out a rational methodology based on the DOE
for electrospun scaffolds, obtaining heuristic models
that capture the relationships between process param-
eters (Xs) and scaffold properties (Ys). Five polycapro-
lactone scaffolds were fabricated according to a 22-fac-
tor combinatorial scheme in which the two X’s, i.e,,
flow rate and applied voltage, vary between two given
levels plus the midpoint. The scaffolds were character-
ized to measure a set of properties (Ys), i.e., fiber diam-
eter distribution, porosity, wettability, Young’s modu-
lus, and adhesion of mouse C1C12 myoblast cells. The
results of this study confirm that the implementation
of statistical mapping of electrospinning processes is
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possible and that the resulting statistical models can
be useful for the development of TE scaffolds. Thus,
electrospinning technique has a great potential for the
wide usage of ML approach.

In the work of Li et al.,, machine learning was
employed to predict the formation of self-assembled
peptide hydrogels [68]. The authors created a library of
2304 compounds synthesized by Ugi reaction from 31
monomers, including 8 amines, 8 aldehydes/ketones,
12 Fmoc-amino acids, and 3 isocyanides as a training
set for machine learning. The precisions of 54%, 57%,
and 62% for the random forest, logistic regression, and
gradient boosting, respectively were achieved. These
indicators probably could be higher when increasing
the quality of the dataset. The authors drew attention
to the fact that data were highly imbalanced (less than
4% of cases corresponding to hydrogel-forming), thus
data resampling was applied. What's more, feature
importance calculation indicated the top 20 molecu-
lar descriptors for gel-forming prediction, whereas
the most important were the presence of Fmoc-amino
acids, the largest absolute of Burden modified eigen-
value, and the smallest absolute of Burden modified
eigenvalue.

So far, the ML approach is most commonly used
in 3D bioprinting and 3D printing due to the high-
est level of fine control of process parameters, pro-
cess replicability, and feasibility to create high-qual-
ity datasets. There is no doubt that the ML approach
has the potential to enhance the statistical design of
experiments (DOE) in other fabrication methods as it
was presented in examples of ML application in this
chapter. Nevertheless, the ML approach is much less
popular in some techniques. For example, we did not
find a study on using ML methods in the thermally
induced phase separation technique. We are convinced
that in that case ML implementation could help adjust
the key process parameters, such as polymer concen-
tration, solvent type, temperatures, or cooling rate to
obtain the desired scaffold structure. The above stud-
ies show that the ML approach is a crucial step toward
developing advanced technologies, where data-driven
methodology supports and improves the fabrication
process.

Predicting the biological response
to the scaffold

There is a belief that the machine learning approach
can give new insight into the biological response to
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scaffold by identifying correlations between mate-
rial parameters and biological outcomes, finding
the weight of scaffold characteristics, and correla-
tions between scaffold parameters. TE researchers
have to face challenges regarding the high complex-
ity of mimicking the tissue structures and the very
dynamic nature of the biomaterial and human body
interaction. Once a biomaterial is introduced into the
organism, it initiates a series of reactions within the
surrounding tissues and at the interface with the bio-
material. Interaction between scaffold and organism
is dependent on the multiplicity of physicochemical
factors from the scaffold side and the very intricate
matter of biochemical signaling pathways [69]. In
vitro tests are aimed to investigate cell response to
given scaffold parameters and sub-parameters [70].
However, despite commonly performed in vitro
studies picture of cell-scaffold interaction is still
very complex. Based on the work of Roy et al. [71],
we propose a mathematical expression of the cor-
relation between scaffold parameters and biological
response:

Biological response =f (physicochemical or
mechanical property),

Y = ap + a1X1 + a2X2 + -+ aan,

where Y is the dependent variable denoting the biolog-
ical response (e.g., protein adsorption, cell metabolic
activity), X, X,,..., X, are the independent variables
representing scaffold features (topography, porosity,
pore size, surface stiffness, surface charge, wettabil-
ity, surface chemistry, fiber diameter etc.), and the a,
a,, ..., a, are the contributions of given feature to the
response with g, being a constant.

However, there are also internal correlations
between scaffold properties, which have to be taken
into account. For example, it is known that the
roughness of electrospun fiber is correlated with its
diameter [72]. The existence of these correlations
makes it very difficult to distinguish the impact of a
given characteristic and predict the biological result
of a given system. Moreover, it has to be taken into
consideration that the specific biological reactions
to scaffold indicators are different depending on the
cell type. For example, a rough surface was found as
be more favorable for osteoblast-like cell adhesion
in comparison to a smoother one, and the reverse
dependence was observed for the fibroblast cells [70].
So it’s not surprising that currently, the matter of
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Corelations between
scaffold parameters

INPUT EXAMPLES OUTPUT EXAMPLES

Material chemistry Cell number

Porosity Cell differentiation
potential
Pore size
Protein adsorption
Roughness

Fiber diameter

Process-structure-

studies b—0o
property (PSP) Water contact angle
linkages
Databases & Young's modulus
repositories -
collection of data and
images
Biomaterialomics -

biomaterial development
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research on the impact
of biomaterial properties
on biological effects

through the integration of
theory, experiment, big data
and Al tools

Scheme 2 The concept of the ML-assisted prediction of biological response to scaffold with the associated components and examples

of input and output items.

cell-biomaterial interactions is the area of very active
research in the TE sub-field known as Materiobiol-
ogy [73]. Going forward, the Biomaterialomics concept
was established recently based on the development
of the data science paradigm [19]. Biomaterialomics
aims to integrate process—structure—property (PSP)
linkages of the biomaterials with biological science
and data science approaches. Scheme 2 presents the
concept of the ML-assisted prediction of biological
response to scaffold with the associated components
and examples of input and output items.

Table 2 presents currently available examples
on using machine learning to predict the biological
response to scaffolds/biomaterials. In the paper of
Sujeen L.Y. et al., physicochemical characteristics of
nanofibrous scaffolds for skin tissue engineering were
correlated with their in vitro performance [74]. The
authors used thirteen scaffold families consisting of
various polymers, and in some cases, also of nano-
silica, and produced at least four blend compositions
for each family. The dataset of 182 in-house observa-
tions included four features of nanofibrous scaffold
(pore diameter, fiber diameter, water contact angle,
and Young’s modulus) and the MTT test result as the
number of cells after 7-day culture. 80% of the data
was used for training the algorithms and 20% for test-
ing the cross-validated model and evaluating the pre-
diction accuracy. Six regression methods were used
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as machine learning algorithms: linear regression,
support vector regression (SVR), lasso regression, ran-
dom forest regression, decision tree regression, and
k-NN regression. Pearson correlation matrix showed
that none of the four scaffold features are correlated.
Feature importance graphs computed using the ran-
dom forest regression algorithm indicated the fiber
diameter and pore diameter as the most significant
features for the performance of the model. The mod-
els performed accuracy from 53.91% to 62.74% being
the highest for random forest regression. It shows that
analysis requires more data points or methodology
modification to perform better.

In the work of Le et al. [75], two machine learn-
ing methods were applied: multiple linear regres-
sion with expectation maximization (MLREM) and
nonlinear Bayesian regularized artificial neural net-
works (BRANNSs). The study aimed to find the quan-
titative relationships between the surface chemistry
of the SAMs and protein adsorption. 176 data points
concerning the percentage protein monolayer cover-
age on mixed SAMs were collected from the work
of Ostuni et al. [76] Lysozyme and fibrinogen were
used as model proteins and exposure times of 3 and
30 min were taken into consideration. Firstly, MLREM
results indicated positive and negative contributors to
protein adsorption. Hydrophilicity and the presence
of hydrogen bond-accepting functional groups were
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identified as having the most negative impact on pro-
tein adsorption and a larger number of hydrogen bond
donor groups promoted greater protein adsorption.
Further, a combined method of MLREM and nonlin-
ear BRANNGP and BRANNLP (Bayesian regularized
artificial neural network with Laplacian prior) was
employed to quantitatively connect protein adsorp-
tion with 67 descriptors. The most negative effect on
protein adsorption on studied SAMs was associated
with the molar refractivity representing ligand size
and polarizability, and the most positive one with a
higher ratio of aromatic groups.

In the other study, the authors were concerned
with predicting cell behavior on cardiac tissue engi-
neering scaffolds based on data collected from the
literature [32]. Three features were included in the
analysis: material composition, cell line, and fabrica-
tion method. Cellular response to the scaffold was
evaluated according to the 4-value scale. The dataset
included 33 different materials, 16 different cell lines,
and 6 different fabrication methods and is available
in open-access repository [77]. Twenty-eight algo-
rithms were compared in the study, namely decision
trees, logistic regression, K-nearest neighbor (KNN),
XGBoost, CatBoost, multi-layer perceptron (MLP),
support vector machine (SVM), deep learning, and
ensemble learning. The highest accuracy of 87% was
achieved in the case of the XGBoost algorithm. Fur-
thermore, the ensemble learning approach of 5 algo-
rithms increased accuracy to 93%. However, it must
be considered that both material and biological data
have been greatly simplified in this study. The authors
granted online access to the final model together with
a step-by-step guide.

In the literature, there are also examples of stud-
ies on nanoparticles (NPs) toxicity and their in vivo
performance. Here, we briefly mention it as the great
number of biomaterial scaffolds contain NPs.

In the work of Desai et al. [78], the authors built
decision tree (DT) and random forest (RF) models
to predict the toxicity of silver NPs based on lit-
erature data. They collected 1315 data points from
40 articles with NPs physicochemical indicators as
the input data and MTT assay results as the output.
Various normal and cancer cell lines were included
in their analysis. The comparison of regression met-
rics R? (0.97 for DT and 0.87 for RF) and RMSE (4.22
for DT and 9.75 for RF) showed that Decision Tree
prediction was more precise and accurate in cell
response prediction, however performances of both
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algorithms are very promising. In another study, the
authors compared five classifier algorithms (deci-
sion tree, random forest, support vector machine,
Naive Bayes, and artificial neural network) in pre-
diction of nanoparticle toxicity [79]. The training
data included NPs’ physicochemical properties,
exposure conditions, and cellular responses of dif-
ferent cell lines. The random forest model demon-
strated the highest accuracy among studied algo-
rithms on the given data.

Figure 1 presents 2-D and 3-D single-cell mor-
phology quantification and metrics used for early
time-point human bone marrow stromal cell mor-
phology classifiers reported in the work of Chen D.
et al. inluded in Table 2 [80].

Drug delivery

Following the advancements of TE as both in vitro and
in vivo approaches, the modern drug delivery field
has also evolved rapidly in biomedical applications.
The simplest approach for delivering medication to
diseased tissue is through local administration, but
this method can only be used on easily accessible
organs due to the physiological and anatomical barri-
ers in the local tissues. Over the past years, many stud-
ies have focused on developing advanced biomaterial
systems to address the challenges in the controlled
and efficient release of therapeutic agents to the target
site. Biomaterial systems intended to tissue engineer-
ing often provide functionality of drug delivery with
the advantages including local and targeted delivery,
controlled degradation, and advanced biocompatibil-
ity [83].

Designing of innovative drug delivery systems
including smart drug delivery, implantable micro-
chips, and nanomaterials as drug reservoirs with a
variety of geometries capable of delivery of multiple
drugs for targeted delivery, sustained release, efficient
therapy with minimum side effects has been the focus
of intense research in recent years [84, 85]. Currently,
there is a need for improved comprehension of how
drug delivery materials interact with the drugs and
the extracellular matrix in the target tissue and along
the route in order to overcome biological barriers and
hence achieve efficient delivery at the targeted tissue
and cellular levels [86-88]. ML possesses the potential
to establish strong and complex relationships between
release kinetics and formulation parameters, optimize
drug delivery system performance, and predict in vivo
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Figure 1 2-D and 3-D single-cell morphology quantification and metrics used for early time-point human bone marrow stromal cell
morphology classifiers. Adapted with permission from reference [80]. Copyright [2021], [Elsevier].

response of material/pharmaceutics and suitable dos-
age [89]. It can be strong candidate as an effective tool
advancing research and development for new phar-
maceuticals, predicting efficacy and reducing failure
in clinical trials, and fostering automation in high
workflows. Scientists can assess different situations
and improve drug delivery systems without conduct-
ing plenty of laboratory tests by modeling the drug
formulation and distribution processes. This signifi-
cantly reduces the time and cost compared to tradi-
tional lab-based approaches and improves efficiency.
There are many different tools and algorithms devel-
oped for different applications including novel drug
discovery, dosage form designs, pharmacokinetics,
and drug delivery [90].

One of the most up-to-date and real-life examples
for the Al power in healthcare sector stood out during
COVID 19 pandemic. For example, Pfizer effectively
used Al to manage vaccination trials and accelerate
distribution. On the other hand, it made use of Al
throughout the COVID-19 vaccine development pro-
cess to make sure that all necessities were addressed
[91]. It helped to accelerate to costly and long process
of vaccine development. In addition, Moderna and
Astra-Zeneca were the other leading companies using
Al technologies for the development and streamline
processes[92].

Due to these and more such compelling healthcare-
related instances, scientists conducting research in a
variety of fields are finding it increasingly crucial to
employ such powerful tools and benefit from their
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advantages. Here, we explored it more specifically in
the field of drug delivery from the point of tissue engi-
neering applications. So far, Al and ML implementa-
tion in this field is promising with various application
examples but still, there is a long way to go in practi-
cal applications. Also, more effort toward the develop-
ment of such novel delivery approaches for controlled
and efficient delivery of therapeutics at the cellular
level within the target tissue is required.

In a few works, artificial neural networks (ANNs)
have been applied to predict the physicochemical
properties of nanomaterials, and analyze complex
relationships between the drug delivery carriers and
release profiles from the particular carriers [89, 93].
For example, an ANN model has been applied to
identify the factors influencing the nanoparticle size
of PLA-PEG-PLA copolymer prepared as a drug car-
rier [94]. Three-layer feed-forward backpropagation
ANN was used to model the process of producing
nanoparticles and the concentration of the polymer
was found to have the greatest influence among the
processing parameters((Fig. 2A). Practical experi-
ments also confirmed the accuracy of the predic-
tions made by machine learning systems. Results
suggested that such developed algorithms appear
to hold promise for gaining a better understanding
of the process of production associated with devel-
oping drug carriers with controlled diameter and
size distributions, which is crucial from the point of
application areas. In another study, the ANN model
was used to optimize the formulation of polymer-
lipid nanoparticles for pharmaceutical delivery
[95]. Multi-objective optimization was performed
by applying validated ANN models and continu-
ous genetic algorithms. As a result, the generated
nanoparticles showed favorable characteristics as
a drug carrier such as a drug loading efficiency of
92%. Another study suggests the regularized least
squares classifier as an efficient way to predict
drug-target interactions among supervised learning
systems [96]. As a different application approach,
ANNSs were applied to find a quantitative correlation
between the release pattern of loaded anti-infective
agent and the formulation and physiological fac-
tors of female intravaginal mucoadhesive barrier
device [97]. ANNs were applied to assess diffusion
coefficient, affecting release profile mostly for such
system forms, under different physiological and for-
mulation conditions employing generated datasets.
It was found that effect of physiological conditions
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of the target area on the release pattern was more
significantly over formulation variables. It has been
claimed that this could lead to the development of
parameter-specific prevention methods for diseases
associated with sexually transmitted infections. In
another research, ANNs were applied to predict
optimum formulation parameters providing desired
drug release profiles from cochlear implant coatings
to avoid post-surgical problems after implanta-
tion [98]. The predictions made by ANN modeling
closely matched the experimentally obtained out-
comes showing the model efficacy. This study dem-
onstrated how artificial neural networks could help
reduce the period needed to produce formulations
and the associated expenses with aimed outcomes. In
another recent work, ANNs were applied to optimize
physicochemical properties for the formulation of a
self-nanoemulsifying system containing rosuvastatin
(Ros) (Fig. 2B [99]. The experimentally prepared Ros
samples, predicted by the ANN approach, possessed
physicochemical properties that satisfied the optimi-
zation requirements including droplet size <100 nm,,
polydispersity index < 0.3, and Ros entrapment > 90%
providing high solubility of the drug and compat-
ibility with rosuvastatin. It was reported that the
application of ANNSs for the formulation shortened
time and reduced research costs.

Al is also able to evaluate massive data sets and
model the behavior of 3D-printed pharmaceutical
ingredient carriers by utilizing machine learning and
computational modeling. This enables rapid prototype
development and optimization of dosage strengths,
geometries, and drug release profiles [100, 101]. In a
recent research study, key components of the 3D print-
ing formulation process and in vitro dissolving char-
acteristics were predicted using literature data includ-
ing 968 different formulations to create AI machine
learning models [93]. The machine learning methods
investigated could learn from and deliver 93% accu-
racy for the data. Furthermore, an artificial neural
network produced the best forecast, with a mean
error of +24.29 min in predicting the drug release
times of a formulation. It is worth noting that use of
Al in 3D-printed dosage forms provides promising
opportunities to advance personalized medicine and
enhance patient outcomes.

There are lots of different approaches in Al-driven
predictive modeling for particular applications and
this facilitates the optimization of drug formulations
and dosage regimens, fostering advancements toward
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Figure 2 A The 3-D plot of particle size (nm) predicted by the
ANN model for (a) polymer concentration and drug, (b) polymer
concentration and mixing rate, (c) polymer concentration and sol-
vent ratio, (d) solvent ratio and mixing rate, (¢) drug and solvent
ratio and (f) drug and mixing rate. In cach figure, the effect of
variation of two input factors is shown against the particle size
(output). Reprinted from ref. [94] with the permission from Tay-

personalized medicine in tissue engineering applica-
tions. To fully realize the potential of Al in drug deliv-
ery, further efforts are needed to enhance interpret-
ability, define machine learning models, as well as
improve the quality of the data gathered [86].

Support for image analysis

Artificial intelligence can greatly improve and aut-
omize image analysis in tissue engineering. Thanks
to its classification and recognition possibilities, it can
help in the evaluation of cell morphology, cell differen-
tiation states or analysis of histological images. Moreo-
ver, considering the growing applications of related
cutting-edge technologies such as 3D tissue models or
organ-on-a-chip, the use of medical imaging tools and
Al for analysis could be the mainstream methodolo-
gies soon [111]. It is worth noticing since conventional
light microscopy cannot penetrate deeply into the tis-
sue, medical imaging techniques are extensively uti-
lized and hold great significance in tissue engineering
technologies. The development trend of the number
of publications bringing together tissue engineering
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lor & Francis, Copyright 2011. B Diagram of ANN where the
output variables were separately trained by a three-node one-hid-
den layer neural network. X1 represents the percentage of drug
molecules, while X2, X3, and X4 represent the proportion of sur-
factant, oil, and cosurfactant, respectively. Adapted with permis-
sion from reference [99]. Copyright [2020], [Open Science Pub-
lishers LLP].

and different medical imaging techniques is depicted
in Fig. 3 for the years 2013-2023.

Deep learning has gained importance in particu-
larly classification [113], and resolution enhancement
[114] in microscopy images. SEM is one of the most
common instruments used in nanotechnology and
material science to explore the materials” structure.
Since it is often employed, each user in each field of
application produces an enormous amount of images.
Considering the massive data stored, its long-term
use and reproducibility are required to employ new
approaches to have the ability to identify and rec-
ognize specific features in many numbers of images
[115]. In this context, Modarres et al104 employed
neural networks for SEM image recognition and
automatic categorization. They proposed a compre-
hensive method for automatically categorizing SEM
images using deep convolutional neural networks for
feature extraction and transfer learning techniques.
The approach would enable the user to automatically
make a first selection of the most pertinent cases from
a significant number of SEM images.

Additionally, image recognition algorithms could
be used to do a more thorough investigation on the
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chosen images. There have been many studies work-
ing on several different deep learning techniques for
similar goals [116, 117]. For example, ANNs were
applied by using recognition imaging for cellular
identification in images from scanning probe micros-
copy [118]. In another study, it was demonstrated
that pre-trained CNNs were effective for feature
extraction from micrographs of dendrites [119]. Such
cases demonstrate the effectiveness of a well-trained
and built network at categorizing physical proper-
ties across large amounts of data [120]. An automatic
classification based on predefined criteria saves time
and allows for high-throughput analysis of large
datasets. Moreover, as it makes it possible to quickly
and thoroughly analyze experimental data, tissue
engineering research can advance more quickly. Dis-
covery and development procedures become more
efficient as a result of researchers’ ability to promptly
decide on interesting materials or configurations for
further investigation. In another case, deep learn-
ing is applied for image quality enhancement. In a
study, the results of the investigations using deep
learning for resolution enhancement demonstrated
that the trained model could double the resolution
of SEM pictures while maintaining their quality
[114]. Trained CNNs provided enhanced resolution

Figure 3 Number of publi-
cations in PubMed from 2013

to 2023. Gray bars represent 82005
a search for combining tissue
engineering and medical 3000 4
imaging keywords (TE&MI). -
Blue bars represent a search
for combining tissue engi- 2 2500
neering, medical imaging, '% (]
and artificial intelligence Q
(TE&MI&AL). (National g 200
Library of Medicine, https:// &
pubmed.ncbi.nlm.nih.gov/ © 1500 4
[112]. Accessed January 27, 8
2024). =

= 1000 ~

500
0 —
N
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of lower magnification of SEM images which were
highly matched with higher magnification of
SEM images of the same samples (Fig. 4). Such an
approach may provide advantages in decreasing
sample charging and beam damage through enabling
the implementation of a lower magnification scan
across a greater field of view without losing image
quality. Researchers may be able to observe the com-
position, characteristics, and behavior of the materi-
als employed in tissue engineering with greater clar-
ity because of this improved visualization.

Recently, deep CNNs were applied for identifying
and quantifying vascular metrics in an angiogenesis
model for vascular tissue engineering [121]. High-
throughput vascular density measurements of fluo-
rescent or phase contrast images were achieved by a
newly developed machine learning detection tool. The
method achieved highest accuracies for high magnifi-
cation fluorescent images in which accuracy percent-
ages ranged from 82.79 to 98.74% and from 56.4 to
98.48% for phase contrast images at the same magnifi-
cation. It has been reported that it can quickly and pre-
cisely measuring vascular characteristics from micro-
scopic images saving huge amounts of time where
periodic evaluation may be necessary for fabricated
tissue structures.

[ TE&MI
B TEAMIGAI
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In another study [122], CNNs were employed for
exploiting the information in bright-field single-cell
images for prospective identification of neural stem
cell differentiation even at the early stages of the cell
culture. Such a well-architected image classification
may improve the understanding of differentiation out-
comes and pave the way for more effective cell-based
therapies. In the thesis of MacKay, B. S., cell density on
glass substrates was approximated based on the bright-
ness of the original, unprocessed fluorescent image of
cells as a part of neural networks training to predict cell
behaviors to topographical cues [123]. Chen D. et al.
used support vector machines (SVMs) to evaluate the
response of human bone marrow stromal cells (hBM-
SCs) to fibrous vs flat microenvironments [124]. The
authors used the SVM/supercell paradigm, meaning
considering cell shape phenotypes of small groups of
cells, so-called “supercells”, to avoid disorders result-
ing from the single-cell heterogeneity (Fig. 5). Analysis
showed that a minimum of 57 cell cases are required for
processing the phenotyping. Minor axis length, solidity,
and mean negative curvature of the cell were the most
important indicators of the hBMSCs response.

CNNs as a deep learning method are also a promis-
ing tool in the applications for bone tissue engineer-
ing. In research in the field, it has been found that 3D
CNNis, trained using layered 2D images obtained by
digital tomographies, are an effective tool for predict-
ing the mechanical characteristics of designed scaf-
folds [41]. In another recently reported study [125],
CNNs were utilized for recognizing complex pro-
cesses of composite material design and prediction of
morphological and functional properties, e.g., porosity

Figure 4 Comparison of
input images which are
processed by neural networks
with their output images and
corresponding higher mag-
nification SEM images. A
spatial feature with consider-
able resolution enhancement
is displayed. Adapted with
permission from reference
[114]. Copyright [2019],
[Springer Nature].

Input (10000 x)
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and stiffness of engineered bone scaffolds. It was
claimed that smart manufacturing scaffolds may be
made possible by approach. Overall, such approaches
by deep learning tools can facilitate accurate meas-
urement of factors including cell dispersion, scaffold
form, and porosity —all important for determining if a
material is suitable for tissue engineering applications
(Table 3).

ML-based modeling of the scaffold in vivo
performance

Machine learning algorithms are currently tested in
supporting or replacing conventional methods for
modeling the mechanical and biological performance
of scaffolds. Wu C. et al. demonstrated for the first
time a ML-based multiscale modeling and remod-
eling approach to predict bone formation in ceramic
scaffolds as an alternative to the conventional mul-
tilevel finite element (FE?) method [126]. The both
in silico predictions were compared with previously
obtained in vivo data. The authors randomly gener-
ated 40,000 representative volume elements (RVE)
samples and another 55,992 sequentially generated
RVE samples at the microscopic level to train and
evaluate the model. A fully connected NNs with a
single layer with nine independent material parame-
ters was used for ML modeling. The model predicted
the homogenized elastic tensors and unit strain
energy density (SED) components to simulate bone
remodeling. The outcome of the ML modeling was
in agreement with the FE* method with linear regres-
sion values being equal to 0.99721 for homogenized
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Figure 5 Correlation between a supercell size with selected
metric combinations and training accuracy, b number of single
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elastic tensors and 0.97237 for SEDs. Moreover, the
ML-based approach was much more effective taking
32 h for training and 300 s to perform prediction vs
150 h for FE? analysis.

Horikawa S. et al. used Gaussian mixture regres-
sion to build two models estimating bone-forming
ability of porous hydroxyapatite ceramics [127]. The
first model was used to predict material properties
based on fabrication conditions, and the second one
for predicting the rate of bone formation from mate-
rial properties and conditions of in vivo procedure.
The study indicates material crystalline structure
as the most influential on bone-forming ability. The
four values of FWHMs of XRD peaks of the HAp and
[-TCP turned out to be the most important mate-
rial features in the analysis. The authors obtained
good agreement in predicted bone formation rates
and in vivo outcomes with a standard deviation
of error between estimated values and actual ones
being +12.93%.

Entekhabi E. et al. used artificial neural networks
and kernel ridge regression (KRR) to predict the deg-
radation rate of genipin crosslinked gelatin scaffolds
[128]. In the analysis, they included fifteen samples
with seven input parameters: gelatin percentage,
genipin percentage, swelling ratio, pore size, ultimate
tensile strength, elongation, and degree of crosslink-
ing. The mean-squared error (MSE) being the measure
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support vector machines classifier. Adapted with permission from
reference [124]. Copyright [2016], [Elsevier].

of model accuracy was equal to 2.68% for ANN and
4.78% for KRR. Interestingly, it was shown that
excluding the degree of crosslinking from the analysis
has very low significance on accuracy due to the cor-
relation of other input parameters with this indicator.

Methods for big data gathering in tissue
engineering

The basis for the relevant application of machine learn-
ing in any area is the existence of high-quality big
data, which provides algorithms with the appropri-
ate dose of information on a specific issue. Currently,
good examples of the successful usage of ML methods
can be found for example in financial analysis, pro-
duction optimization, e-commerce, and drug design,
which can be clearly associated with the availability of
big datasets in these areas.

In tissue engineering, data for machine learn-
ing processes can originate from two sources—can
be self-produced or can be gathered from exist-
ing experimental studies. Good-quality dataset for
machine learning approaches can be provided from
high-throughput screening studies. Examples of such
screening methods are microarrays, which are studied
in the biomaterial structure-properties correlation and
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biomaterial—cell interactions [129, 130], and microflu-
idic systems, which are used in the development of
hydrogels for TE applications [131].

Literature collected experimental data, which are
the second potential source of data are generally
narrow and tend to be conflicting with each other
because of variations in data analysis techniques or
experimental methodologies, especially in biological
assessment. This makes the collecting process difficult
and demands a lot of specific experimental knowl-
edge. However, even if the current usage of literature
data and ML approach is very challenging, we believe
published data should be analyzed in systematic meta-
analysis. This could indicate the direction for further
standardization of experimental procedures and
results publishing.

There is no doubt about the necessity of an easily
accessible, reliable data source to extend ML tech-
niques for the development of biomaterials, choosing
additives, and identifying processes to be applied to
tissue engineering applications. Although thousands
of polymers can be found in online databases along
with some of their structural properties, images, and
other identification techniques [132, 133], this doesn’t
allow for predicting the properties of fabricated poly-
mers. These types of chemical structure databases are
well implemented in the synthesis of small molecules
in chemistry and drug discovery [134, 135]. However,
in tissue engineering, the number of variables is much
greater including different materials, fabrication meth-
ods, modification techniques, etc., which makes build-
ing such a database much more difficult and requires
sharing the data in a standardized way.

For ML implementation in image analysis, it is
necessary to have a great number of items to train
the algorithm. ML-assisted analysis has been widely
developed and implemented on a high level in detec-
tion of cancer tumors in ultrasound images [136].
There are a few publicly available datasets collecting
tumor images, which were launched thanks to the
efforts of the cancer research community. An example
of such a database is The Cancer Iinaging Archive oper-
ating within The Cancer Genome Atlas (TCGA) Database
[137]. So far, this type of image repository is not avail-
able in the tissue engineering field.

There is a promising, recently launched data-shar-
ing platform called Community Resource for Innovation
in Polymer Technology (CRIPT) [138]. CRIPT’s data
model is aimed to have all kinds of data including pol-
ymer synthesis, material processing/characterization,

References
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and raw experimental data which provides descriptive
and comprehensive information. The aim is to address
the high level of complexity involved in defining a
polymer structure and the complexities of character-
izing material properties. This scalable polymer infor-
matics solution intends a community-driven polymer
science data ecosystem supported by FAIR (findable,
accessible, interoperable, and reusable data concept)
and open-source principles [139]. For the implemen-
tation of the data, a Python tool called CRIPT Python
Software Development Kit (SDK) has recently been
launched [140]. It aims to enable the manipulation of
the CRIPT data using the Python programming lan-
guage and can assist with automating the data upload-
ing to CRIPT.

Another example of a big data initiative is an EU-
funded project named BIOMATDB, which aims to
create a database providing detailed information on
chemico-physical, biological, and toxicological prop-
erties of biomaterials [141]. It is designed to support
researchers and user groups in searching information
about biomaterials together with making it easier
for companies to offer their products. The base will
include several Al-assisted data analysis and visu-
alization tools to support the search process. Such
approaches to provide well-organized data would
give rise to new ideas and make it possible for the
scientific community to share information and discov-
eries more quickly.

Difficulties, challenges, and perspective

In this section, we will indicate the most important
difficulties in the implementation of ML in tissue engi-
neering that should gain the attention of the scientific
community together with giving the perspective that
emerged after the literature review.

There is no doubt that high-quality open databases
would support the wide implementation of ML meth-
ods in tissue engineering, which was discussed in the
previous chapter. The difficulty in creating such data-
sets in tissue engineering results from the heterogene-
ity of data including different materials, fabrication
methods, modification methods, analytical methods,
cell lines, and medical application sites. In particular,
biological assessment is challenging to compare due
to the variability of experiment conditions. Moreover,
it was reported that scaffold material and architec-
ture can affect the performance of biological tests. For
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example, it has been shown that nanofibrous materi-
als can influence the reaction of cytotoxicity assays,
probably, because of dye sorption and the possibil-
ity of reducing tetrazolium salt to formazan by [142].
The authors of this study also demonstrated incom-
patibility between MTT, XTT, CCK-8, alamarBlue,
PrestoBlue, and Live/Dead assays used to evaluate
cell proliferation. They proposed that the minimum
incubation time of cell culture in direct contact with
nanofibrous materials should be equal to 72 h and
recommended Live/Dead assay as the most accurate
method.

Predicting biological phenomena and the produc-
tion of materials by advanced data analytics has been
the focus of recent efforts. Therefore, standardized
data collection, cross-disciplinary cooperation, and
robust safety and validation protocols are essential
to enhance the processing of enormous datasets by
machine learning algorithms [143]. Data mining is a
valuable method for collecting data to train models
and inform future designs by using decades of pub-
licly available research. However, challenges arise
from incomplete datasets and inconsistent reporting in
the literature. To address these issues, automated algo-
rithms are being developed to extract and standard-
ize data from scientific papers, although this remains
a complex process[144]. Criteria for data supporting
open science were formulated and published in Nature
Scientific Data in 2016 [145]. According to this source,
data should be findable, accessible, interoperable,
and reusable (FAIR). Such a standardization requires
the joint effort of community representatives. These
days, several publications demand that all raw data
be submitted in the supporting documentation or on
openly accessible database platforms such as the Mate-
rials Data Facility (MDF), Polymer Genome, Polymer
Property Predictor and Database, caNanoLab, and the
Community Resource for Innovation in Polymer Tech-
nology (CRIPT) [144, 146].

In the past and now, there are examples of exten-
sive, international projects engaging many research-
ers for particularly complex and important matters
like The Human Genome Project generating the first
sequence of the human genome, Global Genome Initia-
tive, the goal of which is to capture and understand the
Earth’s genomic biodiversity, or Material Genome Ini-
tiative being US federal multi-agency initiative to dis-
cover, manufacture, and deploy advanced materials
[147]. These examples would be a good inspiration to
develop and promote such an initiative among the TE
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scientific community. Moreover, in the literature, there
are a few systematic reviews and meta-analyses for
example on the topic of materiobiology and preclini-
cal and clinical studies of TE scaffolds, which could
indicate a direction for the standardization of research
planning and results publishing in tissue engineering
[148, 149]. Furthermore, we believe high-throughput
studies should gain more attention from the TE com-
munity as these screening studies can provide good-
quality data for machine learning approaches.

In addition, there are many ML frameworks such as
the TensorFlow, and Pytorch, which are incompatible
with each other. Therefore, it is also critical to establish
a unified ML framework to make it easier for research-
ers to share ML models [150]. Furthermore, such data-
driven ML techniques including deep learning trained
by large data sets might be computationally expensive
and time-consuming. To avoid these, it is important to
choose the correct method depending on the problem
to be solved, the size of the dataset, and computational
resources.

After all of the above, the incorporation of AI/ML
technology into useful biological applications requires
the resolution of ethical and regulatory concerns.
Regulatory concerns from the point of application
of such technologies might arise from standardized
input data, data bias in large datasets, data protec-
tion legislation, and privacy issues while gathering
vast amounts of data for model training [151]. Those
matters and more must be addressed by regulators to
maintain the principles of medical ethics and integrate
Al-driven technologies.

A unified regulatory framework for biomedical
applications can be formed by combining many cru-
cial European regulatory acts, such as those related to
clinical trials, data protection, and medical devices.
Moreover, to further address the concerns associated
with the widespread implementation of Al the Euro-
pean Commission recently introduced the Artificial
Intelligence Act [152]. This proposed act requires that
high-risk Al systems have to go through pre-deploy-
ment compliance examinations and post-market moni-
toring to make sure they comply with all of the act’s
provisions for the responsible deployment of the Al
technologies [153].

Ethical concerns arise from possible data bias,
efficacy, lack of transparency and accountability,
and moreover safety for clinical trials. In current
applications, transparency and accountability are
the fundamental problems [34]. Understanding the
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decision-making process underlying ML-driven
material design requires ensuring the transparency
of the ML model. When a machine learning system
makes a decision that has unanticipated consequences,
accountability and liability issues arise especially if it
harms people or the environment. In particular, if the
guidance directly impacts human health, researchers
must be aware of the rationale behind an Al system’s
recommendation for a given material or design [154].
In order to apply Al-driven biomaterial research to
biomedical technologies, including tissue engineering
applications, research on improving the practicabil-
ity of Al in biomaterials must be forcefully pursued.
The intention of ethical principles is to improve the
design and application of these technologies by pro-
viding guidance to developers, users, and regulators.
Recently, a comprehensive guideline of fundamental
ethical principles including accountability, transpar-
ency, explainability, safety, and autonomy associ-
ated with the development and implementation of Al
technologies was established by WHO in 2021[155].
Following these ethical guidelines will be essential to
the appropriate and successful integration of Al, as it
will promote innovation while preserving public con-
fidence and safety in biomedical applications.

Despite the above-mentioned challenges, we believe
machine learning will be an important tool in tissue
engineering research in the coming years. There are
many benefits that ML approaches can bring to tissue
engineering including high analysis accuracy, cost-
and time savings, limitation of harmful laboratory
experiments, and animal testing. At this moment, ML
is tested in many areas of TE research including scaf-
fold design, predicting the biological response to the
scaffold, optimization of drug delivery, support for the
image analysis, and modeling of the scaffold in vivo
performance. There is no doubt that in comparison
to other areas, the nature of TE requires greater effort
from researchers so that ML can be implemented into
it.

Natural language processing tools
supporting the research

With the development of artificial intelligence, many
tools supporting the research work have been created.
Here, we briefly present chosen Al-assisted software
that can improve and fasten the process of paper
review and information finding.
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Elicit, available on elicit.com, is projected to imme-
diately get a response to research questions, for exam-
ple, “What are the methods of scaffold surface modi-
fication?” or “How does aminolysis reaction affect
material surface properties?”. In the basic mode, the
response is referenced to four scientific articles. The
second functionality is extracting data from uploaded
papers. There is the possibility to choose from many
proposed items, such as summary, main findings,
hypotheses tested, limitations, etc.

AskyourPDF, available on askyourpdf.com, allows
users to upload research papers and ask very pre-
cise and specific questions about the documents. In
the example of our recent paper, the accuracy of the
responses was evaluated as very high.

Scispace available on typeset.io is an advanced tool
that enables literature review, asking questions on pdf
documents, and extracting data. Similarly, the results
of our exemplary paper analysis were highly accurate.

ChatGPT 4.0 version with an accurate plugin such
as ScholarAl can analyze scientific literature in a very
detailed way.

There is no doubt about the supportive role of these
tools, however, ethical regulations have to be formu-
lated before their wider implementation in research.

Summary

Machine learning approaches are currently support-
ing numerous scientific disciplines. The applications of
ML in tissue engineering are vast and promising, from
scaffold design to predicting biological responses,
optimizing drug delivery, supporting image analy-
sis, and modeling scaffold in vivo performance. This
review presents a range of impressive examples of ML
applications in these areas and gives an overview on
the potential of this approach in the TE field.

There is no doubt that great ML-assisted progress
can be achieved in bioprinting optimization, cell image
analysis, and modeling of the scaffold performance.
However, in some fields of tissue engineering, such
as predicting cell response, using ML algorithms is
still challenging due to data quantity and quality. Nev-
ertheless, even if satisfactory status in this particular
area is not currently possible, it is essential to popular-
ize the standardization of the experiments and results
publishing for the future development of ML-assisted
approaches.
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Employing large datasets is key to achieving high
identification and prediction precision. Having solid
data collection methodologies and standardizing data
to qualify as reliable datasets has become increasingly
critical as novel materials and processes are published
in the literature. Standardized data collection and pro-
cessing would ensure efficient data sharing and pro-
mote engagement within science.

It is important to emphasize that the nature of the
TE field requires much greater effort from scientists to
implement ML approaches. There is no doubt that the
application of machine learning approaches in tissue
engineering is still at the very beginning stage. The
question of whether machine learning will revolution-
ize the TE discipline or whether it will be the tool of
evolution remains open.
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