ICML 2024 Next Generation of Sequence Modeling Architectures Workshop

MoE-Mamba: Efficient Selective State Space Models with Mixture of
Experts

author names withheld

Under Review for NGSM 2024

Abstract

State Space Models (SSMs) have become serious contenders in the field of sequential modeling,
challenging the dominance of Transformers. At the same time, Mixture of Experts (MoE) has
significantly improved Transformer-based Large Language Models, including recent state-of-the-art
open models. We propose that to unlock the potential of SSMs for scaling, they should be combined
with MoE. We showcase this on Mamba, a recent SSM-based model that achieves remarkable
performance. Our model, MoE-Mamba, outperforms Mamba and matches the performance of
Transformer-MoE. In particular, MoE-Mamba reaches the same performance as Mamba in 2.35x
fewer training steps while preserving the inference performance gains of Mamba against Transformer.

Log Perplexity Comparison Between Architectures

—Vanilla Mambagy
3.4 — Transformer-MoE 1gom
—MoE-Mamba gy

w
N

Log Perplexity
w
w =y

N
©

2.35x fewerlt’r:ing‘s;ps\\\\'\—\\

5B 10B 15B 20B 258 30B
Processed Tokens

N
©

o

Figure 1: Log perplexity throughout the training. @ From top to bottom: Mambajgom;
Transformer-MoEgom; MoE-Mambajggpm.

1. Introduction

Large Language Models (LLMs) have emerged as a cornerstone in the ongoing Al revolution [1, 2,
15, 20, 28]. Their remarkable effectiveness is primarily attributed to the Transformer architecture
[32] and training on an internet-wide scale, e.g., [29]. Yet, questions remain: Should Transformers
be the only architecture used for LLMs? Can we scale language models even further, and if so, how
can this be achieved?

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

Regarding the first question, State Space Models (SSMs), e.g., [7-9, 16, 18, 25], have been
increasingly gaining attention. Notably, a recent addition to this category, Mamba [6], has shown
impressive results, positioning it as a promising contender to the attention-based Transformer
architecture. Scaling is believed to be a critical factor in developing powerful Al systems [27]. The
Mixture of Experts (MoE) approach [10], a set of techniques that enables an increase in model
parameters with minimal impact on computational demands, plays a significant role. Due to their
sparse activation, MoEs can be efficiently scaled up to trillions of parameters, as demonstrated by [5].

In this paper, we advocate that to unlock the potential of SSMs for scaling up, they should be
combined with MoE. To this end, we introduce MoE-Mamba, combining Mamba [6] with a Switch
layer [5] and enabling efficiency gains of both SSMs and MoE. We confirm that the effect is robust
to various design choices. In summary, our contributions are as follows:

* We introduce MoE-Mamba, a model that combines Mamba with a Mixture of Experts layer.
MoE-Mamba enables efficiency gains of both SSMs and MoE while reaching the same
performance as Mamba in 2.35x fewer training steps, see Figure 1.

* Via comprehensive studies, we confirm that the improvement achieved by MoE-Mamba is
robust to varying model sizes, design choices, and the number of experts.

* We explore and compare multiple alternative methods of integrating Mixture of Experts within
the Mamba block.

More recently, MoE models have found their way onto the open scene [34]. In particular, the
Mixtral 8 x 7B model [11] fares comparably to Llama 2 70B [30] while requiring only around 1/6 of
its inference computational budget.

2. MoE-Mamba architecture

The vanilla Mamba architecture consists of multiple Mamba blocks stacked one after another, with
each layer’s output being added to the residual stream; see Figure 2. In MoE-Mamba, we replace
every other Mamba layer with a MoE layer (see Figure 2). We use the well-established [35] and
easy-to-implement Switch Transformer MoE layer [5] (for details, see Appendix B). This way,
in MoE-Mamba, we separate unconditional processing of every token by the Mamba layer and
conditional processing by an MoE layer. The idea of interleaving conditional and unconditional
processing is used in some MoE-based models, typically by alternating vanilla and MoE feed-forward
layers [5, 14].

3. Experiments
3.1. Training Setup

We compare MoE-Mamba to three baselines: Mamba, Transformer, and Transformer-MoE. To be
able to compare MoE-Mamba to Transformer-based and Mamba baselines, we scale down the size
of each expert in our model as compared to traditional MoE approaches (we set dexpert = 3dmodel
instead of 4dode1), keeping the number of blocks and the number of active parameters per token
roughly the same in all models of similar size. Active parameters denote those used to calculate the
output for a given token (e.g., typically, only one expert in each MoE layer is active). For a discussion
of the relation of active parameters and FLOPs, see Appendix C.

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

—~ \ .
| Mixture of I Mixture of 1

. \ !
Feed-Forward ; Experts | ; Experts]
.

Nx Nx

S I I I

Attention Attention m

Figure 2: Diagrams of the architectures. From the left: vanilla Transformer, Transformer-MoE,
Mamba, MoE-Mamba.

Model # Parameters * Active Parameters | Final Lf)g saf)rfi(;&ul{)/lgr::);
per Token Perplexity (Training Steps)
Mambassy 27TM 27M 3.34 1
MoE-Mambassy (ours) 542M 26M 3.19 1.76
Transformer-MoEssym 545M 25M 3.23 1.56
Transformerosy 25M 25M 343 >1
Mambaigom 121M 121M 2.99 1
MoE-Mambajggwm (ours) 2439M 117M 2.81 2.35
Transformer-MoEgom 2454M 114M 2.88 1.79

Table 1: Comparison between different architectures. The [a5y models were trained on ca. 10B
tokens and the [ygopm models were trained on ca. 30B tokens. For further discussion of
parameter counting and design choices, see Appendix E

We train decoder-only models on the task of next token prediction using cross entropy as the loss
function. For further details, refer to Appendix A. Due to computational constraints, we perform
most of our experiments on smaller, (a5 models and validate our findings on [ygop models.

3.2. Main Results

Table 1 presents the comparison between training results of MoE-Mamba and baselines; see also
Figure 1 for log perplexity curves. MoE-Mamba shows a remarkable improvement over the vanilla
Mamba model. Notably, MoE-Mambajggy was able to achieve the same performance as vanilla
Mamba; gy with 2.35x speedup in terms of processed tokens, similar to Transformer-MoE1ggm,
strengthening the findings of [6] that Mamba is a competitive alternative to the Transformer. For
Uasm model size, the performance gains are even higher, however in Mamba; ooy, the gains might

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

have been greater when trained on a larger number of tokens. For a detailed discussion of the speedup,
see Appendix D.

3.3. Ablations

Number of Experts We investigate the impact of the number of experts used in Switch layers on
MoE-Mamba and find that our approach scales favorably with the number of experts. MoE-Mamba
outperforms vanilla Mamba, when the number of experts iS Nexperts = 4. This is consistent with [6]
reporting that Mamba interleaved with feed-forward layers (which corresponds to a single-expert
MOoE layer) is worse than vanilla Mamba. We obtain the best result with the highest investigated
expert count (32) and expect further gains with even more experts. For detailed results, see Appendix
G.

Optimal Ratio of Active Parameters in Mamba and MoE We investigate the optimal ratio of
active parameters in the Mamba layer to active parameters in the MoE layer while keeping the total
number of parameters fixed. We observe that increasing the number of active Mamba parameters
improves the performance. However, the gains become marginal after reaching the 3 : 3 ratio, and
higher ratios are impractical due to inefficient hardware utilization and high routing costs caused
by a large number of experts. We default to this choice in all other experiments. More details on
selecting the optimal ratio as well as final results can be found in Appendix F.

Parallel MoE-Mamba Inspired by [33] and [2], we experiment with an alternative block design in
which the MoE feed-forward layer and the Mamba layer are placed in parallel instead of sequentially
(see Figure 6 in Appendix). We compare this design to MoE-Mamba for various numbers of experts;
see Figure 4 (right). MoE-Mamba outperforms this variant in all tested settings. The parallel MoE-
Mamba matches vanilla Mamba when Nexpers = 8 while requiring between 2 and 4 times as many

experts and total parameters to match the performance of the sequential variant. For detailed results,
see Appendix F

3.4. Inner MoE

Pursuing a uniform layer design, we experimented with replacing each of the three linear projections
within the Mamba block with an MoE layer. Inspired by [5], we also performed experiments in which
only half of the Mamba blocks were modified to include MoE. For more details on the experiments,
see Appendix H. Three of the designs (Table 7 in Appendix) achieved results marginally better than
vanilla Mamba, with none outperforming MoE-Mamba. These results suggest the most promising
research directions for future work.

4. Conclusions

In this work, we present the first integration of Mixture of Experts with Mamba architecture, MoE-
Mamba. This novel method inherits the inference benefits of Mamba and MoE while requiring 2.35 x
fewer training steps to reach the same performance as Mamba. We also run extensive ablations. Our
work opens a new research direction of combining Mixture of Experts with State Space Models. We
believe that this path will enable more efficient scaling to even larger language models.

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

References

[1]

(2]

(3]

[4]

[10]

[11]

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1-113, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces,
2023.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state-space layers,
2021.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as
structured state spaces. Advances in Neural Information Processing Systems, 35:22982-22994,
2022.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 3(1):79-87, 1991. doi: 10.1162/neco.1991.3.1.
79.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,

https://arxiv.org/abs/2005.14165

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,
Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mixtral of experts, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations, 2020.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding, 2020.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning
problems with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=IFXTZERXdM7.

Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. What makes convolu-
tional models great on long sequence modeling? arXiv preprint arXiv:2210.09298, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: moving average equipped gated attention. arXiv preprint
arXiv:2209.10655, 2022.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain,
Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson
Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. In-context learning and induction heads. Transformer
Circuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html.

OpenAl. Gpt-4 technical report, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huangi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He,

https://openreview.net/forum?id=IFXTZERXdM7

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]

[32]

[33]

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

Haowen Hou, Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra,
Hayden Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru
Tang, Bolun Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang,
Qihang Zhao, Peng Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. Rwkv: Reinventing rnns
for the transformer era, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine Learning Research, 21(1):5485-5551, 2020.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers
for sequence modeling, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding, 2023.

Richard Sutton. The bitter lesson. Incomplete Ideas (blog), 13(1), 2019.
Gemini Team. Gemini: A family of highly capable multimodal models, 2023.

TogetherComputer. Redpajama: An open source recipe to reproduce llama training dataset,
2023. URL https://github.com/togethercomputer/RedPajama-Data.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaeli,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mi-
haylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi
Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,
Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang,
Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open
foundation and fine-tuned chat models, 2023.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn
better: On the importance of pre-training compact models, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

Ben Wang. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language
Model with JAX. https://github.com/kingoflolz/mesh-transformer-jax,
May 2021.

https://github.com/togethercomputer/RedPajama-Data
http://arxiv.org/abs/1706.03762
https://github.com/kingoflolz/mesh-transformer-jax

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

[34] Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
You. Openmoe: Open mixture-of-experts language models. https://github.com/
XueFuzhao/OpenMokE, 2023.

[35] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqgian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2023.

[36] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania,
Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp:
Experiences on scaling fully sharded data parallel, 2023.

[37] Yangi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai,
Zhifeng Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing,
2022.

https://github.com/XueFuzhao/OpenMoE
https://github.com/XueFuzhao/OpenMoE

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

Appendix A. Hyperparameters and Training Setup

We train the models on C4 dataset [24] on the next token prediction task using cross entropy as
the loss function. We process only a small fraction of the training set, allowing us to use EMA-
smoothed (o = 0.001) training log perplexity as the comparison metric for both final loss and
speedup measurements. All models use the GPT2 tokenizer [23]. We tune the learning rate separately
for all [Ja5p models and divide it by 2 when training their [1;ggy counterparts. The main experiments,
described in section 3.2, use around 30B tokens (10B for [la5y models), while the experiments
described in further sections use 1B tokens.

Basic model hyperameters (dmodel, dsf, the number of attention heads, the number of layers) used
in this work were inspired by BERT [3, 31], with the [o5) models being equivalent to BERTvgpium
and [yggm models copying BERTg s configuration while increasing the number of blocks from 12
to 16. The learning rate schedule, as well as weight decay and gradient clipping values were set per
community’s standard practices. We used the AdamW optimizer [17]. We tune the maximum learning
rate value for each of the [la5); models separately and divide it by 2 when training [1;ggnm counterparts.
We train the models using PyTorch [21] and utilize FSDP [36] for facilitating multi-GPU setup.

Hyperparameter \ Transformerssyg Mambas sy Transformer-MoEo5y MoE-Mambassy
Total Blocks 8 16 8 8
dmodel 512 512 512 512
Model # Parameters 25M 27M 545M 542M
Active P; 1
ctive Parameters 25M 2TM 25M 26M
per Token
Feed-Forward dgt | 2048 - - -
: dexpert - - 2048 1536
Mixture of Experts Nexpers)) 3 10
Position Embedding | RoPE - RoPE -
Attention Nheads ‘ 8 - 8 -
Training Steps 150K 150K 150K 150K
Context Length 1024 1024 1024 1024
Batch Size 64 64 64 64
Max Learning Rate Se-4 le-3 Se-4 Se-4
Training LR Warmup 1% 1% 1% 1%
LR Schedule Cosine Cosine Cosine Cosine
Final LR Ratio 0.1 0.1 0.1 0.1
Weight Decay 0.1 0.1 0.1 0.1
Gradient Clipping 0.5 0.5 0.5 0.5

Table 2: Hyperparameters ([osm Models). In Transformer models we use Rotary Position Embed-
ding [26].

Appendix B. Switch MoE Layer

In each Switch MoE layer, we assume Nexperts €Xperts {Ei}ﬁ\i“lpm, each being a trainable feed-

forward network with the same number of parameters. For each token embedding x, we calculate

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

Hyperparameter Mambai;gom Transformer-MoE ooy MoE-Mambaigom
Total Blocks 32 16 16
Model dmodel 768 768 768
Parameters 121M 2454M 2439M
Active Parameters 12IM 114M 117M
per Token
. dexpert - 3072 2304
Mixture of Experts Nepers i 3 1
Position Embedding ‘ - RoPE -
Attention Nheads \ - 12 .
Training Steps 30K 30K 30K
Context Length 1024 1024 1024
Batch Size 1024 1024 1024
Max Learning Rate le-3 2.5¢e-4 Se-4
Training LR Warmup 1% 1% 1%
LR Schedule Cosine Cosine Cosine
Final LR Ratio 0.1 0.1 0.1
Weight Decay 0.1 0.1 0.1
Gradient Clipping 0.5 0.5 0.5

Table 3: Hyperparameters (Lljoom Models). In Transformer-MoE;gom we use Rotary Position
Embedding [26].

scores h(z) = Wa € RNexwens where W is a trainable linear projection. These are normalized using

softmax:
exp (h(z);)
Nex erts ’
>imtexp (h(z)i)
Prior to Switch, top-k routing selecting £ > 1 most suitable experts for each token was deemed

necessary. However, Switch successfully simplifies previous MoE approaches by setting £ = 1.
Namely, the output of the MoE layer for x is given by:

pi(x) =

y=prEr(z),

where I = argmax; p;(z).

During batched execution, e.g., in training, each batch contains /N tokens. Following the standard
procedure, in a case where the assignment of tokens to the experts is not perfect, i.e., some expert Iy
is selected by more than N/ Neyperts tokens in the current batch, the excess tokens are dropped and
not updated (capacity factor = 1). To further encourage an even distribution of tokens to experts,
load balancing loss as described by [5] with weight o = 0.01 is added to the training objective.

Appendix C. Active Parameters vs FLOPs

In this work, we report the number of active parameters (excluding embedding and unembedding
layers) and not the number of floating-point operations (FLOPs), following [37]. Both numbers will

10

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

MoE-Mamba
of Experts Sequential Parallel
1 3.76 3.79
2 3.74 3.77
4 3.71 3.74
8 3.69 3.72
16 3.67 3.70
32 3.66 3.69

Table 4: Comparison of sequential and parallel MoE-Mamba - final log perplexity (1B tokens).

be roughly proportional [12], but the number of FLOPs is both harder to calculate and less relevant
for hardware-aware architecture like Mamba with its optimizations, especially during inference.

Appendix D. Relation between Speedup and Training Time

In our experiments, we notice that as the training continues, the speedup of MoE-Mamba compared
to vanilla Mamba generally increases (see Fig. 3). That is, the ratio

processed tokens vanilla Mamba took to reach loss [

dup(l) =
speedup(l) # processed tokens MoE-Mamba took to reach loss [
increases as [decreases. Speedup in [asy models oscillates between 1.6 and 1.9, while the speedup
in [yggm models rises steadily.

Appendix E. Counting Model Parameters

For all models and their variants, we report the number of trainable, non-embedding parameters,
i.e., we exclude the parameters in the input (embedding) and output (unembedding) layers. This
convention is proposed by [12], who note that using just non-embedding parameters gives their
scaling laws a clearer form. The relatively low importance of the number of the embedding parameters
for the final performance has been noted by [13].

Also note that the numbers of total and active parameters are not matched exactly between
similarly sized models due to, among other reasons, the MoE models including routers and Mamba
layer not containing precisely 6alr2md|el parameters - a design choice we did not want to modify. We
consider those differences to be too small to be significant for our results.

Appendix F. Exploring the Optimal Mamba to MoE Active Parameters Ratio and
Other Design Possibilties

The assignment of FLOPs and parameters to different components is an important design choice in
heterogeneous architectures. For example, in Transformer, the shape of the model has been studied
extensively by [12].

In our work, we investigate the optimal ratio of active parameters in the Mamba layer to the
number of active parameters in the MoE layer. We vary the ratio while keeping dpogel, the number of

11

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

Speedup - MoE-Mamba over Vanilla Mamba

— MoE-Mamba,sy, /

— MoE-Mamba g

24

2.2

1.8

1.6

1.4

1.2

Speedup over Vanilla Mamba

0.8

0 0.2 0.4 0.6 0.8 1
Fraction of Total Tokens Processed (Vanilla Mamba)

Figure 3: Speedup of different sizes of MoE-Mamba compared to their vanilla Mamba counterparts
as training progresses.

blocks and the total number of parameters fixed. Under these constraints, a given ratio determines the
so-called expansion factor ' of the Mamba layer, the number of experts, and their size as detailed
in Table 5 (see also Figure 6 for Mamba design). Figure 4 may suggest that increasing the ratio
strengthens the performance and maybe assigning all the active parameters to Mamba would result
in the best performance (ratio “6:0”). It should, however, be noted, that all the investigated models
contain the same number of both total parameters and active parameters per token. A hypothetical
model described above (*’6:0”) could not achieve this property. If we loosen the requirements and
place all the parameters in Mamba, lowering the umber of total parameters, the resulting model is the
same as Mambagsy with the expansion factor £/ = 4 and 8 instead of 16 Mamba layers. This model
achieves marginally worse final log perplexity than Mambassy (3.73).

Appendix G. Optimal Number of Experts

Figure 5 shows the training runs for different numbers of experts. The results show that our approach
scales favorably with the number of experts. MoE-Mamba outperforms vanilla Mamba, when the
number of experts iS Nexperts = 4. We obtain the best result with 32 experts and expect further gains
with even more experts. Table 6 shows the final results.

Appendix H. Inner MoE

As described in Section 3.4, we experimented with replacing each of the three linear projections
within the Mamba block with an MoE layer; see Figure 6. Enumerating all the possible placements
results in 23 — 1 = 7 possible designs (we discard one combination that would feature no MoE inside
the block). We maintain a similar number of total parameters and FLOPs in all models by assuring

12

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

Loss for Different Ratios of Active Parameters Comparison of Number of Experts
3.8 3.8 = Sequential
= Parallel

2 2
X 3.75 . %375
5 Vanilla Mamba s Vanilla Mamba
s R O I e
o o
o 3.7 > 3.7
o o
) -
IS ©
f= c
- I . I I -

36 5:1 4:2 3:3 2:4 1:5 36

Ratio (Mamba:MoE) Number of Experts

Figure 4: Left: Final loss at different ratios of active Mamba-to-MoE parameters. Note that MoE
contains the majority of the total parameters in each model. Right: Final loss varying
number of experts in sequential and parallel MoE-Mamba.

Ratio Bxpansion | g | Number
act. params | act. params .

Nutamba— + Nytoi E (Mamba) Size Experts
1:5 % 2560 19
2:4 1% 2048 24
3:3 2 1536 32
4:2 2% 1024 48
5:1 3% 512 96

Table 5: Comparison of different ratios of parameters between Mamba and MoE. The £ = 2
corresponds to MoE-Mambassy. The total number of parameters in all models is 542M
and the number of active parameters per token is 26M.

the total number of expert feed-forward layers in a block sums up to 24 regardless of the placement,
i.e., the 24 experts are split evenly between one, two or three MoE’s inside the block. Inspired by [5],
we also performed experiments in which only half of the Mamba blocks were modified to include
MoE, but the number of experts was increased to 48 to maintain the total number of parameters.

Three of the designs (Table 7) achieved results marginally better than vanilla Mamba, with none
outperforming MoE-Mamba.

Appendix I. Accuracy and Perplexity

We have observed a curious case of metric inconsistency between two models that achieved similar
performance but were based on different architectures, namely MoE-Mambassy with 32 instead
of 42 experts and Transformer-MoEssy. We hypothesize that this discrepancy hints at a potential
failure mode of Mamba and other SSMs. Due to the compression of the history into a finite hidden

13

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

Active Log Perplexity After Spe.edup Over
Number of Experts # Parameters Parameters 1B Tokens Vanilla Mamba
per Token (Training Steps)
N/A - Vanilla Mamba 27TM 27TM 3.72 1
1 26M 26M 3.75 <1
4 experts 64M 26M 3.72 1.03
8 experts 114M 26M 3.70 1.10
16 experts 215M 26M 3.67 1.21
32 experts 416M 26M 3.67 1.23

Table 6: Log perplexity after 1B tokens for various numbers of experts. Note that the parameter
counts exclude the embedding and output (unembedding) layers.

Comparison of Number of Experts

—Vanilla Mamba
44 —1 Expert
—2 Experts
>4.2 4 Experts
'5 8 Experts
= 16 Experts
& 4 32 Experts
o) N
]
| 3_8 \

w
o

0 0.1B 0.2B 0.3B 0.4B 0.5B 0.6B 0.7B 0.8B 0.9B
Tokens Processed

Figure 5: Training loss (log perplexity) for a differing number of experts for MoE-Mamba with ca.
26M active non-embedding parameters. The final log perplexity improves monotonically
as the number of experts increases.

state, their ability for verbatim token-copying is limited. The related ability to predict the token [B)]
given a prefix ...[A][B]...[A] (where [A], [B] can be any tokens) has been mechanistically studied
by [4] and has been conjectured to be responsible for Transformer’s remarkable in-context learning
capabilities [19].

[22] mentions that their attention-free model, RWKYV, may have limited performance on tasks
that require recalling precise information over long contexts due to a fixed-sized hidden state, a
property that Mamba and other SSMs share. However, since the perplexity of Mamba can match
the perplexity of a similarly-sized Transformer, we can suspect that Mamba compensates for that

14

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

Model Name / MOoE in Mamba
Modified Projection Al Every Other

Layers Layer

Vanilla Mamba 3.72

MoE-Mamba (16 experts) 3.67
Conv Projection 3.79 3.71
Gate Projection 3.89 3.70
Output Projection 4.05 3.70
Conv + Gate Projection 3.95 3.72
Conv + Output Projection 4.17 3.76
Gate + Output Projection 4.16 3.88
Conv + Gate + Output Projection | 4.39 3.88

Table 7: Comparison of different variants of MoE in Mamba - final log perplexity (1B tokens).

Output
Projection

\ SSM

" Mixture of

Nx | Experts |
Ve o

j Conv

Conv Gate
Projection, Projection,

Figure 6: Diagram of Parallel MoE-Mamba architecture (left) and Mamba Block (right). The outputs
of the Gate and Conv Projections are E (expansion factor) times bigger than the input,
i.e., Conv and SSM operate on vectors € RE dmodet . Vanilla Mamba assumes E = 2 [6].
Expansion factor E determines how much the input vector is scaled up by Gate and Conv
Projection and then scaled down by Output Projection, and because of that, it is also
proportional to the number of FLOPs and parameters in the Mamba layer.

I°

<

failure mode in other ways and might show a relative advantage on other tasks when compared to
Transformer. In particular, it might outperform Transformers in O-shot tasks in contrast to tasks
allowing few-shot demonstrations or requiring in-context learning.

15

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE MODELS WITH MIXTURE OF EXPERTS

Training Accuracy

0.41
04 — MoE-Mamba (32¢) S
— Transformer-MoE
0.39 -

Top1 Accuracy
o o
g 8

o
w
>

o o
w w
2 a

.

o
w
@

1B 2B 3B 4B 5B 6B 7B 8B 9B
Tokens Processed

Log Perplexity
w w w w w w
N o w r o N

w

Training Loss

— MoE-Mamba (32e)
— Transformer-MoE

1B 2B 3B 4B 5B 6B 7B 8B 9B
Tokens Processed

Figure 7: Discrepancy between accuracy and log perplexity: MoE-Mamba with 32 experts and

Transformer-MoE.

Appendix J. Reproducibility

We will open-source the code and configuration files used to produce the results described in this

work.

16

	Introduction
	MoE-Mamba architecture
	Experiments
	Training Setup
	Main Results
	Ablations
	Inner MoE

	Conclusions
	Hyperparameters and Training Setup
	Switch MoE Layer
	Active Parameters vs FLOPs
	Relation between Speedup and Training Time
	Counting Model Parameters
	Exploring the Optimal Mamba to MoE Active Parameters Ratio and Other Design Possibilties
	Optimal Number of Experts
	Inner MoE
	Accuracy and Perplexity
	Reproducibility

