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A B S T R A C T

We employ pDyn (derived from ‘‘pandemics dynamics’’), an agent-based epidemiological model, to forecast the
fourth wave of the SARS-CoV-2 epidemic, primarily driven by the Delta variant, in Polish society. The model
captures spatiotemporal dynamics of the epidemic spread, predicting disease-related states based on pathogen
properties and behavioral factors.

We assess pDyn’s validity, encompassing pathogen variant succession, immunization level, and the
proportion of vaccinated among confirmed cases. We evaluate its predictive capacity for pandemic dynamics,
including wave peak timing, magnitude, and duration for confirmed cases, hospitalizations, ICU admissions,
and deaths, nationally and regionally in Poland.

Validation involves comparing pDyn’s estimates with real-world data (excluding data used for calibration)
to evaluate whether pDyn accurately reproduced the epidemic dynamics up to the simulation time. To assess
the accuracy of pDyn’s predictions, we compared simulation results with real-world data acquired after the
simulation date.

The findings affirm pDyn’s accuracy in forecasting and enhancing our understanding of epidemic mecha-
nisms.
1. Introduction

The first confirmed case of coronavirus disease 2019 (COVID-19) in
Poland was identified on March 4, 2020, approximately a month behind
Western Europe countries (Ministerstwo Zdrowia, 2020) (cf. Fig. 1(a)).
On March 10, the World Health Organization declared the local trans-
mission of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) in Poland (Pinkas et al., 2020). Within two days, the country
recorded its first COVID-19-related fatality (Duszyński et al., 2021).
As the epidemic spread, Poland’s government declared an epidemic
emergency, subsequently introducing mitigation policies (Pinkas et al.,
2020) (see Fig. 1(d)). Critical pharmaceutical and non-pharmaceutical
interventions (NPIs) implemented between March 4, 2020, and Decem-
ber 31, 2021, are detailed in Table A.2 in Appendix A. These measures

∗ Corresponding author.
E-mail address: k.niedzielewski@icm.edu.pl (K. Niedzielewski).

primarily included isolating infected individuals, quarantining contacts
(with basic contact tracing), and SARS-CoV-2 testing. Public social
distancing measures, such as gathering bans and school and workplace
closures, began in the second week of March 2020, culminating in a
national lockdown on March 24, 2020. Further mandates for indoor
and outdoor face coverings followed on March 30 and April 14, 2020.
The national COVID-19 vaccination program commenced on December
27, 2020.

The evolving nature of the epidemic, with factors such as new
virus variants, seasonal transmission fluctuations, regional outbreaks,
and the introduction of vaccinations, necessitated a dynamic approach
to epidemic mitigation. This approach involved localized and reactive
strategies. For instance, a reactive policy was initiated on August
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Fig. 1. Timeline of SARS-CoV-2 epidemic in Poland. (a): The epidemic curve showing the progression of reported daily new confirmed cases in Poland (red), number of COVID-19-
related deaths (purple), and excess mortality (dashed). (b): Proportions of dominating variants. (c): Full vaccination share. (d): Government mitigation measures by implementation
areas and ranks of restrictive strength. (e): Map of inhabitants density in voivodships. (f): Map of reported cases during the Delta wave in voivodships. (g): Map of deaths during
the Delta wave in voivodships. (h): Map of vaccinations per 100,000 inhabitants in voivodships up to May 2022. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Source: Data sources: Daily cases & COVID-19-related deaths: Ministry of Health https://gov.pl/web/koronawirus/wykaz-zarazen-koronawirusem-sars-cov-2. Vaccinations: . Excess
mortality: Eurostat (Eurostat, 2023b). SARS-CoV-2 variants: GISAID study (Khare et al., 2021) . Mitigation measures: own elaboration based on governmental information please
see Table A.3 in Appendix A
7, 2020, with school closures and remote work mandates triggered
by defined case thresholds per 10,000 inhabitants in administrative
units. Compliance with prevention measures, including face mask use,
exhibited temporal and demographic variations. Older adults, urban
areas, and different epidemic stages demonstrated varying levels of
adherence (Haischer et al., 2020; Delussu et al., 2022).

Moreover, ongoing research on SARS-CoV-2 pathogen properties,
such as transmission modes, asymptomatic case infectivity, naturally
induced immunity, its duration, and reinfection risks, added to the com-
plexity of forecasting SARS-CoV-2 spread. Consequently, the demand
for accurate forecasts, encompassing new infections, hospitalizations
(general and intensive care units [ICUs] admissions), and COVID-19-
related fatalities, intensified in response to the imperative of managing
SARS-CoV-2 transmission.

Agent-based models (ABMs) have been a robust method for model-
ing infectious disease spread for over three decades (Fox et al., 1971;
Elveback et al., 1976). They offer a direct representation of dynamic
social networks of agents and their heterogeneous interactions across
georeferenced locations (Dilaver and Gilbert, 2023; Epstein, 1999;
Millington et al., 2012). These models often rely on synthetic societies
that mirror the demographic structure of specific territories (Banks
and Hooten, 2021). They usually incorporate dynamic microsimulation
methodology with elements of agent-based modeling. However, due to
the convergence of these concepts, particularly as microsimulation be-
comes more and more intricate (Railsback and Grimm, 2019; Richiardi,
2 
2014; Vincenot, 2018), we employ the term ‘‘agent-based model’’ as an
umbrella term in this article. ABMs require input from a georeferenced
network of setting where agents can operate and interact, like house-
holds, schools, workplaces, and public spaces, referred to as contexts.
ABMs, as generative models, excel in replicating complex outbreak
phenomena, accounting for regional disparities, demographic structure,
behavioral responses, and parameter calibration at finer spatial scales.
In contrast, data-based, phenomenological models, such as uniform
mixing compartment models, lack implicit interactions among crucial
factors like virus variants and social networks (Silverman et al., 2021).

The ABM developed by the Ferguson group (Ferguson et al., 2005)
stands as a textbook ABM approach for modeling infectious disease
processes. Designed initially for simulating influenza spread and as-
sessing the effectiveness of targeted antiviral prophylaxis in Southeast
Asia, this model classifies individuals into households with distinct
generational layers. In 2020, it underwent adaptation to predict SARS-
CoV-2 transmission dynamics by adjusting disease parameters to align
with the virus’s characteristics (Ferguson et al., 2020) . These forecasts
informed the intermittent lockdown strategy in the UK, known as ‘‘The
Hammer and the Dance’’ (Pueyo, 2020).

Agent-based models (ABMs) have proven effective in modeling and
predicting epidemics. They function as virtual laboratories that enable
the formalization and testing of epidemic dynamics (Priesemann et al.,
2021). Unlike models that rely on general factors and aggregate vari-
ables, ABMs focus on modeling individual agents and their interactions,
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allowing for the development of agent-level theories, identification of
undamental principles and assumptions, and uncovering research gaps
nd inconsistencies in theoretical systems (Dilaver and Gilbert, 2023;

Epstein, 1999; Frias-Martinez et al., 2011). Consequently, the predic-
tion accuracy of ABMs depends on accurately representing elementary
epidemic processes and supporting hypotheses regarding their impact
n real-world data (Dilaver and Gilbert, 2023; Epstein, 1999; Millington

et al., 2012). However, implementing complex epidemic processes and
adhering to real-world rules come at the cost of numerous param-
eters and high computational expenses. Additionally, the calibration
process poses a significant challenge, demanding substantial resources
to achieve reliable calibration (Millington et al., 2012; Macal, 2016;
Epstein, 1999).

Our initial model, known as pDyn, was developed in 2008 to depict
nfluenza spread scenarios in Poland (Rakowski et al., 2010a,b), draw-
ng inspiration from the Ferguson group model (Ferguson et al., 2005).

In response to the COVID-19 pandemic, we adapted this simulation
platform to meet the specific requirements of decision-makers based
n the pandemic’s unique characteristics (Niedzielewski et al., 2022).

The model can simulate and forecast various SARS-CoV-2 transmission
scenarios. The pDyn model has received official endorsement from the
government, alongside the MOCOS model (Adamik et al., 2020) and
he Ministry of Health Department of Analysis and Strategy model, as

one of the primary tools for providing scientific insights and epidemic
orecasts to policymakers and medical advisory councils on a long-term

basis. Our analyses were presented and communicated to the aforemen-
tioned decision-makers. However, there was no feedback regarding the
extent to which they were utilized in the decision-making process. It is
certain that the forecast was one of many influencing factors.

In Poland, several ABM models have been developed. Compared to
he MOCOS model (Adamik et al., 2020), pDyn distinguishes itself with
 detailed and georeferenced structure of various contexts, while MO-

COS incorporates advanced contact-tracing analytical methods. Other
models, such as those developed as conceptual models (Pałka et al.,
2022; Latkowski and Dunin-Kęplicz, 2021; Regulski et al., 2021) of-
ered valuable methodological insights but were primarily employed
ocally and did not transition into operational use.

During the initial year of the pandemic, the pDyn model stood
out as one of the few robust models subjected to validation against
real-world data. A systematic review of 126 SARS-CoV-2 ABMs high-
lighted that only 17% underwent validation against real-world data,
3% were compared with other models, and 2% underwent systematic
testing (Lorig et al., 2021). Furthermore, pDyn has continuously under-
gone external validation with real-world data as part of the German
and Polish COVID-19 Forecast Hub since November 2020 (Bracher
et al., 2021, 2022). Both ABMs, pDyn and MOCOS, have demonstrated
significant performance improvements in long-term case forecasting
in Poland, thanks to their tailored approaches adapted to the specific
circumstances of the country (Bracher et al., 2022).

As for other single-country ABM models across European states,
umerous models are dedicated to Austria (Bicher et al., 2018, 2023),

Germany (Müller et al., 2021; MONID - MOdeling Network for se-
vere Infectious Diseases, 2023), Spain (Singh et al., 2022; Merino
t al., 2023), France (Hoertel et al., 2020), UK (Ferguson et al., 2020),

Italy (Bouchnita and Jebrane, 2020; Giacopelli, 2021; Lombardo et al.,
2022; Fazio et al., 2022) and Ireland (Novakovic and Marshall, 2022).
However, these models are tailored to countries other than Poland (or
heir respective regions) and have not undergone validation within the
uropean COVID-19 Forecast Hub (Sherratt et al., 2023). Therefore,
omparing the performance and validity of these models with pDyn in a
eaningful manner would be challenging, if not impossible. Nonethe-

ess, considering the population size of European nations, pDyn ranks
mong the top 10 in terms of simulated populations.

This report utilizes the ABM pDyn to forecast the spatiotemporal dy-
namics of the COVID-19 epidemic in Poland. Our methodology encom-
asses disease transmission, disease progression, and epidemic course
3 
(see Fig. 2). Disease transmission considers multi-variant pathogens,
artial immunity, and social contacts. The disease progression com-
onent includes a detailed representation of disease-related states,
ge-dependency, and undetected cases estimation. Lastly, the epidemic
ourse encompass changes in risk exposure due to NPIs or other shifts in
ehavior, vaccination policies, cross-immunity, and immunity waning.
e validate the dynamics implemented in the model by inspecting

heir consistency with real-world data not used for calibration. Many of
hese features are model enhancements related to COVID-19 epidemics
indicated by asterisks ∗ in Fig. 2).

This investigation spans from the onset of the epidemic to the end of
2021, covering four SARS-CoV-2 waves in Poland. The first and second

aves (March 4, 2020–July 12, 2020, and July 13, 2020–February
4, 2021) were driven by the wild-type virus variant, followed by the
hird wave with the Alpha variant (February 15, 2021–July 5, 2021)
nd the fourth wave with the Delta variant (July 6, 2021–December
1, 2021). During this period, Poland reported 4,106,914 SARS-CoV-
2 cases, 96,967 COVID-19-related deaths, and 173,376 total excess
deaths (Ritchie et al., 2020) (see Fig. 1(a) and (b)).

The forecast, formulated on October 28, 2021, using pDyn
Niedzielewski et al., 2022), targets the fourth (Delta) wave of the

epidemic in Poland. This wave is noteworthy as it subsided sponta-
neously, without the imposition of restrictions or contact limitations,
signifying the attainment of herd immunity. Subsequent waves in 2022
represented reinfections and conveyed reduced risks of severe illness
and death due to decreased susceptibility to new variants. The forecast
did not include the emerging Omicron wave in January 2022 due to a
lack of information on this variant at that time. To be precise, Omicron
variant was not introduced to the forecast of interest, formulated on
October 28, 2021. Therefore, any comparison between the forecast and
real-world data should only consider the period until December 31,
2021, as the Omicron variant emerged in early 2022.

This study aimed to achieve three specific objectives: (1) assessing
he validity of the dynamics embedded in the pDyn model, (2) evaluat-
ng its capacity to predict the dynamics of disease-related states at the
ational level, and (3) gauging its ability to predict epidemic dynamics

in Poland’s highest administrative units (voivodships) using nationally
reported data. We compared real-world data on SARS-CoV-2 variants,
immunization dynamics, and the ratio of vaccinated individuals among
confirmed cases with our model’s estimates to assess its validity. Addi-
tionally, we compared simulation results with real-world data obtained
after the simulation date to evaluate pDyn’s predictive accuracy. We also
assessed regional forecasts made using nationally reported data, taking
into account the synthetic society’s reflection of geographical variations
in the social-demographic structure of the Polish population.

As demonstrated, the generative, epidemiology-driven dynamic ap-
proach of pDyn achieved high predictive accuracy when modeling the
pread of COVID-19 epidemics.

2. Materials and methods

2.1. The pDyn model

Our research utilizes pDyn, the detailed epidemiological ABM de-
veloped at the Interdisciplinary Center for Mathematical and Computa-
ional Modelling at the University of Warsaw, Poland (ICM)
Niedzielewski et al., 2022). The simulator is written in C++, was

optimized for High-Performance Computing environment and runs in
the ICM supercomputing facility. The code is publicly available under
Apache License 2.0. Details regarding data and code accessibility are
in Section ‘‘Data and Code Availability’’.

The simulator originated as the influenza epidemic model (Rakowski
et al., 2010a) with following features implemented: airborne trans-
mission, pathogen characteristics (i.e. transmissibility), self-isolation,
social contacts settings (i.e. households, workplaces, schools, univer-
sities, public places, long distance travels), SIR states. Subsequently,
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Fig. 2. Features of the current version of the pDyn model. The model encompasses three main classes of features: (1) Disease transmission, which incorporates airborne transmission
dynamics, multi-variant pathogens, vaccine characteristics, partial immunity, and social contacts structure; (2) Disease progression, which models disease-related states, their durations
and transition probabilities, age-dependency, and estimates of underreporting; and (3) Epidemic course, modeling changes in risk exposure, vaccination policies, cross-immunity,
and immunity waning. Many of these components represent enhancements related to COVID-19 epidemics (indicated by asterisks [∗]) compared to the original model version.
during the COVID-19 pandemic, it has been expanded with features
tailored to represent characteristics of the SARS-CoV-2 infection, to
facilitate the Polish government’s infection prevention and control
the decision-making process. The following new components have
been implemented: partial immunity, variants of pathogen/vaccines,
quarantine, partial school closure (i.e. age dependent), reactive NPIs,
regional NPIs, changing contact rates, vaccination, immunity waning,
cross-immunity, undetected cases, times and transition probability
table (i.e. of the disease-related states), age-dependency of time and
transition to disease states, new social contact settings (i.e. kinder-
gardens), new disease-related states (i.e. asymptomatic, symptomatic,
hospitalized pre-ICU, at ICU, not at ICU).

To better illustrate the pDyn’s scale and complexity, we present a
mind map in Fig. 2 that organizes the model elements in a transparent,
modular way. It explicitly depicts the version of the model used in
the study. Functions developed by adapting the original version of the
simulator to the COVID-19 are marked in the figure by asterisk (∗).
The detailed description of the pDyn model following the Overview, the
Design concepts, and the Details protocol (ODD, (Grimm et al., 2020))
is publicly available (Niedzielewski et al., 2022).

The overall purpose of the pDyn model is to describe and explain
the spatial and temporal dynamics of SARS-CoV-2 spread across Polish
society. The model predicts the dynamics of the number and locations
of disease-related states of agents in response to specific changes in the
properties of the pathogen and the social structure and behavior.

Two types of entities are included in the model: agents and contexts.
Agents represent members of the society. Contexts capture interactions
4 
between agents; they represent locations at which the agents come
in contact, such as households, workplaces, kindergartens, schools,
universities or public places. Their geo-localized representations are
included in the synthetic society as model input (Rakowski et al.,
2010b). The synthetic society is based on data provided by the Statistics
Poland (Statistics Poland, 2019) and reflects the state at the beginning
of 2019. The spatial resolution of the contexts is a grid of 1 × 1 km2 (for
Poland, it requires 800 × 800 grid cells). Additionally, pDyn models the
mobility of agents via random long-distance travels (i.e. when an agent
leaves its household for more than a day). Each agent is assigned to one
or more contexts (household at least) that it visits daily.

Both agents and contexts are characterized by state variables. The
agent’s state variables are as follows: age, list of contexts to which it is
assigned (including primary household), disease-related state, presence
of symptoms, being on quarantine, travel status, transmission location,
and history of immunization events. The context’s state variables are
as follows: spatial coordinates of a given context, transmission rate
in this context, the number of agents in this context, the number of
symptomatic infectious agents in this context, and the number of non-
symptomatic infectious agents in this context. The time resolution in the
simulation is one day.

The most important process of the model is airborne transmission.
For a given susceptible agent, for a given day of the simulation, and

a given variant of the virus, the probability of becoming infected by
that variant on the following day is computed based on three factors:
(1) the infectivity parameter specific to the variant, (2) the infectivity
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Fig. 3. The possible paths through disease-related states in the pDyn model. The
state abbreviations stand for SP — susceptible, L — latent, A — asymptomatic,
S — symptomatic, HPI — hospitalized, pre-ICU, HI — hospitalized, at ICU, HNI —
hospitalized, not at ICU, D — dead, R — recovered. In addition, there are three surefire
paths (with transition probability equal to 1; marked with solid arrows) regardless of
the agent’s age.

of the contexts visited during the day which we define as the fraction of
infectious agents infected with the considered variant in that context,
(3) the weights of the daily visited contexts which represent the contact
rate of the agents in that context. In the formula no. (1) it is assumed,
to keep it brief, that there is just one virus variant and a susceptible
agent has no immunity. The complete formulas are provided in the
ODD protocol (Niedzielewski et al., 2022). The probability of each
susceptible agent getting infected on the next day of the simulation is
given by:

𝑝 = 1 − 𝑒𝑥𝑝(−𝛼
∑

𝑗
𝑤𝑗𝐼𝑗 ) (1)

where 𝛼 is a virus infectivity, 𝑤𝑗 is a contact rate of 𝑗th context and
𝐼𝑗 is a 𝑗th context infectivity. In simple terms context infectivity may
be interpreted as the fraction of infected agents in a given context on
a given day.

Thus, the probability of each susceptible agent getting infected on
the next day of the simulation is a function of the disease-related states
of all agents with whom it has been in contact in contexts during the
current day (Niedzielewski et al., 2022). Immediately after the recovery
or after taking a vaccine, the agent is immune to the infection variant
of the pathogen, but the level of immunity wanes over time. The level
of immunity calculated on a given day of the simulation modifies the
probability of infection with the variant. In addition, recovery from
infection with a particular variant of the virus generates a certain level
of cross-immunity to other variants. Furthermore, the context weights
are adjusted using multipliers in time to represent the changes in the
contact rates (i.e., the number of contacts made divided by the number
of contact opportunities) due to behavioral reactions to the epidemic,
both spontaneous or in response to the control measures.

The model of possible disease-related states in pDyn expands the SEIR
(Susceptible, Exposed, Infected, Recovered) compartmental model (Li
and Muldowney, 1995). An agent can find itself in one of the following
disease-related states: susceptible, latent, asymptomatic, symptomatic,
hospitalized outside the ICU, hospitalized before ICU, hospitalized at
ICU, dead, or recovered state. These disease-related states form an
ordered graph that defines possible courses of infection (Fig. 3). At
each branching, probability parameters have been introduced to control
the likelihood of the specific transitions between states (specific to the
pathogen variant).

In addition, the duration of each state is defined. The transition
probabilities and the duration of states depend on agent’s age. It
is assumed that both the asymptomatic and symptomatic states are
infectious and that infectivity in the symptomatic state is higher than in
the asymptomatic one (Sayampanathan et al., 2021; Han et al., 2020;
Zhao et al., 2020). On the other hand, there is a possibility for an agent
in a symptomatic state to undergo self-isolation or quarantine, meaning
the agent withdraws from all contexts except for the household. The
probability and duration parameters were selected based on several
studies (Gold et al., 2020; Carrillo-Vega et al., 2020; Petrilli et al., 2020;
5 
Ko et al., 2021; Twohig et al., 2022) and their values implemented in
the present simulation are presented in Appendix B.

In the pDyn, the number of infected agents includes both detected
and undetected cases. Undetected cases impact various aspects of pan-
demic dynamic such as the true disease spread, the number of im-
munized individuals, numbers of hospitalized cases and deaths. The
model introduces a dark figure representing the number of undetected
cases, generating outputs for both real cases (detected and undetected)
and detected cases. The dark figure changes over time and is esti-
mated by considering factors such as the ratio of non-symptomatic to
symptomatic cases, testing strategies, test types, test numbers, contact
tracing, public trust, and seroprevalence screening studies (National
Institute of Public Health, 2023).

The pDyn model simulate vaccination programs, considering factors
like geographical distribution, agent’s age, and the number of vaccines
administered. However, the presented simulation is agnostic to the
type of vaccination, treating boost vaccinations the same as first doses,
and not differentiating between various vaccines. The model offers
fine-tuned control of vaccination, allowing for region-specific and age-
based vaccination strategies with limited supply considerations based
on data provided by Polish government under the license defined in a
Non-Disclosure Agreement.

The pDyn explicitly addresses the cross-immunity phenomenon. The
model assumes that the agent is immune to the infection variant
immediately after recovery or after taking a vaccine, albeit the immu-
nity level is waning over time. The decline in the immunity level is
described in the function of elapsed time since recovery and can take
values between 0 and 1 (Fig. B.9 in Appendix B). The immunity level
of an agent computed on a given day of the simulation modifies the
probability of infection with the variant subject to immunity. More-
over, we model the phenomenon of cross-immunity by assuming that
recovery from an infection with a specific virus variant generates some
immunity level to other variants. The parameters related to (cross-
)immunity were estimated from Scobie et al. (2021) and presented in
Appendix B.

The pDyn allows to model risk exposure changes, whether seasonal
(e.g. school closure during holidays) or behavioral (e.g. in response
to NPIs, e.g., online schooling), by switching off or tuning contexts,
using context weight multipliers. To our best knowledge, no systematic
studies of contact rates changes were carried out during the COVID-19
epidemic in Poland. Instead, the models use intermediate (e.g., esti-
mates based on measurements of the use of mobile networks) or partial
(e.g., social mixing surveys) measures. In pDyn, the initial contacting
rates were adopted from original influenza model (Rakowski et al.,
2010a). Changes in contact rates during the outbreak and subsequent
restrictions were implemented through multipliers.

In order to model changes in the contact rate for a particular
context, we utilized the calibration experiments method, except for
educational units, for which these multipliers were estimated based on
the proportion of pupils attending them. Multipliers for the households,
workplaces, and public places were adjusted with an assessment of the
change in contact rates (based on changes in the number of people and
their compliance with social distancing measures in a given context).
The calibration experiments were executed in the following way: first
we established the optimistic and pessimistic contact rate scenarios by
assessing the minimum and maximum values of multipliers (such as low
vs. high face mask use compliance). For example, on March 12, 2020,
the mandate of remote work and social distancing at the workplace was
introduced, therefore we reduced the value of the workplace context
multiplier from 1 to 0.5 in the optimistic scenario and to 0.8 in the
pessimistic scenario. Then, we tested several multiplier values in the
selected range to compare the results with the actual data of the
identified cases from 14 days after the introduced change and adjusted
the value of multipliers as necessary. In order to determine the best set
of multipliers, the Fréchet distance between the number of confirmed
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cases predicted by the model and the real-world data was minimized.
The final list of all context multipliers is presented in Appendix B.

Regional diversity of the predicted epidemic dynamic on voivodship
level is only due to a spatial structure of the synthetic society, some
egional differentiation of weight multipliers motivated by regional
PIs in force before the Delta wave as well as location of infected agents

patially placed at the simulation date.

2.2. Input data and calibration

In pDyn, the infection spread is simulated on a synthetic representa-
ion of Polish society comprising about 38 million agents representing

Poland’s population in 2019, simulated based on Statistics Poland data,
both publicly (Statistics Poland, 2019; Rakowski et al., 2010b) and
ot publicly available. Non-public data was provided under the license
efined in a Non-Disclosure Agreement and can be made available
ith the permission of the data provider. The spread of epidemics and

individual virus variants begins with initial infections, which serve as
an initial condition of the simulation. Data on the date and location of
he initial infections have provided by the Polish Ministry of Health
please see Appendix C, containing data sources). Initial parameters

are loaded together with the synthetic society at the beginning of the
simulation. The initial parameters include pathogen properties (infec-
tivity, probabilities and times of disease-related states per variant), the
proportion of undetected cases, quarantine probability, cross-immunity
nd immunity waning parameters, and context weights, and their
ultipliers.

Two parameters, namely the basic pathogen variant infectivity (𝛼)
nd the fraction of not self-isolating symptomatic agents (𝑓 ) were fitted

in the model calibration process using Bayesian optimization (Shahriari
t al., 2016) to the real-world number of confirmed cases provided ini-

tially by MichałRogalski and then by the Polish Ministry of Health. The
remaining parameters were taken from the literature (as indicated in
the model description) or estimated based on calibration experiments,
such as those described for modeling changes in the contact rates
for different contexts (multipliers). Similarly to setting optimistic and
pessimistic scenarios for multipliers, we dealt with the uncertainty for
the remaining model parameters by setting specific prediction intervals
based on optimistic and pessimistic scenarios.

In stochastic models, such prediction intervals may arise from sev-
eral interrelated sources. Firstly, it can be derived from a number of
simulations carried out with alternating seeds of the pseudo-random
umber generator. Secondly, it can be derived from several simulations
ith alternating input parameter values taken from appropriate distri-
utions. Thirdly, the assumed or prepared initial state of the system,
.g. the immunization of the population, might strongly affect the
utcome values of the simulation. Finally, the result of time-dependent
urve prediction intervals for each time point forms a confidence
nterval.

As a result, broad prediction intervals can be obtained in the simu-
lations of highly non-linear systems, where the small random change of
nput parameters might result in a significant output change. However,
he broad prediction intervals appear when input parameters are deliv-
red with a broad range of possible values or where the system’s initial
tate features are largely unknown. In our case, the nonlinearity of the
odel is limited, and the main source of the output uncertainty comes

rom the uncertainty of various parameter values and the system’s
nitial state. In such a situation, apart from computing the confidence
orridors resulting from the randomness of the process, the two extreme
cenarios have been formulated: the lowest (optimistic) and the highest
pessimistic), regarding possible but still realistic values of parameters
nd initial states of the system. The two scenarios determine the

prediction interval for our forecast. The contrast in uncertainty coming
from different sources (random seed vs two scenarios) is illustrated for
the simulation described in Appendix D.
6 
2.3. Simulation setup

2.3.1. Hardware
Computations are performed on Cray XC40 (Okeanos) that is part of

ICM computing infrastructure. System is composed of 1084 computing
nodes. Each node has 24 Intel Xeon E5-2690 v3 CPU cores with a 2-way
Hyper Threading (HT) with 2.6 GHz clock frequency. Single simula-
tion on single nodes takes around 2 h (time depends on parameters
configuration).

2.3.2. Model calibration
The simulation used in this study was conducted on October 28,

021. In order to account for the uncertainty, we have formulated
pessimistic and optimistic scenarios differing in the dark figure pa-
rameter (see Appendix D) that was estimated using seroprevalence
and registered cases data. The pessimistic scenario proved to yield a
more accurate prediction of the Delta-variant wave than the optimistic
scenario. Therefore, all presented results come from the pessimistic
cenario.

2.3.3. Testing validity of the model dynamics
It should be noted at the beginning that when testing the validity

of the model, we compared the real-world data (other than those to
which we calibrated the model) to our model estimates to evaluate

hether the pDyn reproduced the dynamics of the epidemic accurately
p to the time of simulation (i.e., October 28 2021). When testing the
ccuracy of the pDyn’s predictions, we retrospectively compared the
esults obtained in the simulation with real-world data acquired after
he simulation date to evaluate pDyn as a tool for predicting the future
pidemic spread.

We tested the validity of the epidemic dynamics implemented in the
odel by comparing our simulations with real-world data regarding the
ominating SARS-CoV-2 variant, immunization level in the population,
nd the fraction of vaccinated amongst detected cases.

The emergence of the variants of pathogen in the real world is
monitored, and data are collected and accessible via Global Initiative
on Sharing Avian Influenza Data (GISAID) portal (Khare et al., 2021).

he distribution of SARS-CoV-2 variants in our model was validated by
omparison with the genomic data from the GISAID. Before the day of

our simulation, three dominant variants have been detected in Poland
(namely, the wild type, Alpha, and Delta). To account for the possible
low representativeness of the GISAID samples available for Poland, we
assessed whether the curves representing the temporal succession of the
wild type, Alpha and Delta variants obtained from our model mirrors
the analogous ‘‘succession curves’’ obtained from GISAID by comparing
the time convergence of reaching 25%, 50%, and 75% prevalence for
each variant.

Similarly, to establish the immunization level (the fraction of agents
who have been vaccinated or have undergone disease and are still
immune), we compared the model results with the results of a nation-
wide seroprevalence survey of adults aged 19 years and older (named
OBSER-CO) run by the National Institute for Public Health in Poland
(National Institute of Public Health, 2021, 2023). This data was col-
ected in four rounds (I round: 29 March to 14 May 2021, II round:

27 July to 10 September 2021, III round: 16 November to 23 Decem-
er 2021, IV round: 14 March to 4 May 2022) alongside with 95%
onfidence intervals for each estimate. The OBSER-CO seroprevalence
stimates were used to approximate the validity of pDyn’s predictions
f the cumulative sum of recovered and vaccinated agents. As only the
dult population was studied in the OBSER-CO study, data of agents
ounger than 19 years were not included in our analysis.

Lastly, using the Ministry of Health data on the age, time, and
location distribution of vaccinations, pDyn model computed the fraction
f vaccinated among the detected cases. We tested the validity of this
stimate by comparing it with the Ministry of Health’s estimate of the

fraction of vaccinated detected cases in the population using mean
absolute error (MAE) method.
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2.3.4. Testing the forecast accuracy
In order to evaluate the performance of our model and the accuracy

of the simulation in reproducing the COVID-19 dynamics, we compared
its results to real-world data (from the Ministry of Health Appendix C)
using three key measures of discrepancy: (1) the difference in peak
date, (2) the difference in peak value, and (3) the difference in wave
length. The choice of measures was dictated by the interpretability by
humans and, especially, by decision-makers, journalists and readers of
this article. Unlike root mean squared error or similar, the peak fit
measures are clear and straightforward to understand. Furthermore,
when planning of the medical resources we can clearly state that
specific capacity is required (i.e. peak value) for specific moment in
time (i.e. peak date) and a state of high alert should be there for specific
period (i.e. wave length).

To calculate the differences, we first characterized the peaks of the
COVID-19 pandemic by fitting a parameterized analytical function to
the data indicating the occurrence of a wave. As the logistic curve is
typically used to approximate a cumulative number of infected cases in
epidemics (Lee et al., 2020; Postnikov, 2020), its derivative, known as
the logistic distribution, is a natural choice for a description of daily
cases. The logistic distribution is parameterized by three quantities,
which can be matched to our measures: (1) the mean (peak date, the
central point of the wave peak), (2) the height (peak value), and (3) the
width (wave length). The latter was adapted for our analysis as a full
width at half-maximum (FWHM) (Bonifazi et al., 2021). In Appendix E
we provided a mathematical formula for calculating FWHM, as well as
details and examples of the fitting procedure.

This analysis was applied to the peaks of new confirmed cases,
COVID-19-related deaths, hospitalized patients, and ICU patients, both
at the national and regional levels, and both for model results and real-
world data. Although within the real-world data the Delta wave peaks
are usually partially overlapped with arising Omicron wave peaks (not
taken into account in the forecast), a sum of two logistic distributions of
individual parameters were fitted in this case, and only the first peak
of Delta wave was taken for further analysis. The same method was
employed to test the accuracy of predictions at the level of voivodships,
which are the basic administrative units in Poland where epidemic data
is collected and potential NPIs are introduced.

3. Results

3.1. Evaluation of the model validity

In this section, we assess the validity of the model’s dynamics by
comparing its outputs with real-world data pertaining to the dominant
variant of concern, immunization levels, and the fraction of vaccinated
detected cases.

3.1.1. Dominating variant of pathogen
Before the simulation date, three predominant variants had been

identified in Poland: the wild type, Alpha, and Delta. In Fig. 4(a), the
distribution of these variants (wild type [blue], Alpha [orange], and
Delta [green]) among infected agents is depicted. Panel (b) compares
the model’s variant succession dynamics with real-world data from
GISAID (Khare et al., 2021). This assessment excludes the Omicron
variant, which was not part of our October 2021 forecast.

Given that GISAID data relies on samples of varying sizes and
considering potential biases in the data due to relatively small samples
for Poland (as shown in Fig. 4(c)), we primarily compared the relative
prevalence of variants, expressed as percentages. To validate our find-
ings, we compared the timing of variant succession at the 25%, 50%,
and 75% percentile thresholds.

The pDyn model reached 25% prevalence of the Alpha variant one
week after the reference GISAID data, while it reached 50% and 75%
prevalence two weeks after the reference GISAID data.
7 
Fig. 4. Comparison of the dynamics of a succession of SARS-CoV-2 variants obtained
from the pDyn model (colors) with the dataset obtained from GISAID study (dashed
lines). All the data is aggregated in weekly intervals. The vertical dotted line marks
the simulation date. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Source: Data source: GISAID study (Khare et al., 2021).

Regarding the Delta variant, our model reached 25% prevalence two
weeks after the reference GISAID data, 50% prevalence three weeks
after, and 75% prevalence four weeks after the reference GISAID data.
This transition from the Alpha to Delta variant occurred during a period
of relatively low newly detected cases, supporting the realism of our
model’s predictions.

3.1.2. Immunization level
The immunization dynamics during the epidemic originating from

the pDyn model, categorized as disease-induced, vaccination-induced,
and total immunization, are presented in Fig. 5. This model output
is systematically compared with data from the OBSER-CO nationwide
seroprevalence study conducted by the National Institute for Public
Health in Poland (National Institute of Public Health, 2021).

Fig. 5 reveals a close alignment between the cumulative sum of
recovered and vaccinated individuals predicted by the model and the
estimates derived from the seroprevalence study at all four study
rounds. The percentage of the entire population represented by these
estimates is as follows: 48.1 (model) vs. 49.9 (study, 95% CI [47.9;
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Fig. 5. Comparison of immunization dynamics between the model output and the
OBSER-CO study. The lines show the cumulative percentage of the agents (left axis)
that are recovered (red), vaccinated (green), or recovered or vaccinated (yellow). The
blue markers indicate the estimated fraction of the population with SARS-CoV-2-specific
antibodies from four rounds of the OBSER-CO. The horizontal marker line denotes
the duration of each round, the vertical one represents the 95% confidence interval
of the estimate. A vertical dotted line indicates the simulation date. The gray shape
represents the number of real-world confirmed cases (right axis). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
Source: Data source: OBSER-CO study (National Institute of Public Health, 2021).

Fig. 6. Comparison between the fraction of vaccinated detected cases generated from
the pDyn (red line) and epidemiological data (black line). The vertical dotted line
indicates the simulation date, and the solid vertical line — the end of the estimation
period for the model-to-real-data fit indices. The gray shape in the background
represents the number of real-data new cases. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

51.9]) in April/May 2021, 76.8 (model) vs. 77.0 (study, 95% CI [75.0;
79.0]) in September 2021, 85.8 (model) vs. 80.8 (study, 95% CI [78.8;
82.8]) in December 2021, and 92.9 (model) vs. 92.2 (study, 95% CI
[91.2; 93.2]). Notably, rounds I and II of the OBSER-CO study fell
within the calibration stage of the simulation. In contrast, the model
results for rounds III and IV are purely prognostic values.

It is important to acknowledge that the OBSER-CO study primarily
focuses on seroprevalence, which relies on antibody levels in trial
groups, differing somewhat from the indicator of the sum of recov-
ered and vaccinated cases obtained from the model. Nevertheless,
the significant alignment between the model’s approximation of soci-
etal immunity and OBSER-CO data underscores the model’s reliabil-
ity in forecasting future epidemic waves despite these variations in
indicators.

3.1.3. Fraction of vaccinated detected cases
The third validation involves assessing the fraction of vaccinated

detected cases, which refers to the number of vaccinated individuals
8 
among all infected and detected individuals. The model adopted a
vaccination strategy based on government data, which included the
number of vaccinated agents at specific ages, times, and locations.
However, the dynamics of the fraction of vaccinated detected cases
emerged from the model and could be compared to real-world data
(obtained under a non-disclosure agreement). The comparison between
the model’s outcomes and epidemiological data regarding the fraction
of vaccinated detected cases is presented in Fig. 6.

Generally, the dynamics obtained from the pDyn model align closely
with the epidemiological data. The mean absolute error from January 1,
2021, to October 28, 2021 (forecast date) equals 3.44%; from October
29, 2021, to December 31, 2021, equals 7.23%; and from January 1,
2022, equals 16.34%. The maximal error from January 1, 2021, to
October 28, 2021, equals 14.01%; from October 29, 2021, to December
31, 2021, equals 12.20%; and from January 1, 2022, equals 21.69%.
The larger maximal error before the forecast date may have been due to
data variability when the number of cases was still low, but vaccination
uptake had reached its saturation point (Fig. 5, green line).

The quantitative indices used to validate the Delta wave forecast
were estimated until December 31, 2021, when the Omicron wave
officially began. Considering the whole period (from January 1, 2021,
until May 1, 2022), the maximal error occurred on March 17, 2022,
after the Delta domination period. Given that the Omicron variant
was not considered in the forecast, the most considerable discrepancy
between our simulation and real-world data was expected to occur after
December 31, 2021.

3.2. Prediction of the epidemic dynamics during the delta wave on the
national level

In this section, we evaluate the accuracy of the pDyn forecast by
comparing its results with real-world data for new confirmed cases,
COVID-19-related deaths, hospitalized patients, and ICU patients pub-
lished by the Ministry of Health. Visualizations of the forecast for the
Delta-wave (Fig. 7) and the entire epidemic (Fig. F.12) are presented.
To assess the model’s performance, we conducted a comparative anal-
ysis with real-world data, emphasizing the accuracy of peak timing,
magnitude, and duration, with summarized results in Table 1.

The forecasted peak values tended to be overestimated, with the
most accurate prediction for new cases (a relative difference of ∼7%)
compared to other metrics. As shown in Fig. 7, the predicted number
of hospitalized patients, ICU patients, and COVID-19-related deaths
exceeded the official data provided by the Ministry of Health: hospi-
talizations by approximately 76%, ICU admissions by around 151%,
and COVID-19-related deaths by roughly 101%. Concerning the tim-
ing of peaks, our predictions were most accurate for hospitalized pa-
tients (with a 2-day difference), followed by reported deaths (4 days),
new confirmed cases (6 days), and ICU patients (7 days). The fore-
casted wave length, as measured by the Full-Width Half-Maximum
(FWHM), was the most accurate for ICU patients (approximately 1%)
and hospitalized patients (around 8%), followed by reported deaths
(approximately 10%) and new cases (about 51%). Notably, the relative
difference in FWHM between the modeled and observed new confirmed
cases was likely due to the holiday period in late December 2021,
leading to a lower testing rate and detection ratio than before the
holidays. Given that our model assumes a constant detection ratio,
the real-life decrease in reporting likely contributed to the observed
discrepancy in the confirmed cases’ wave length.

It is important to emphasize that the model’s primary aim was not
to predict the actual (i.e. observable) number of hospitalized and ICU
patients but to estimate the number of people in need for hospital-
ization (i.e. the demand for hospital beds). Therefore, this distinction
should be kept in mind when interpreting the results, as it may explain
the significant differences between the model’s peak value predictions
for hospital and ICU beds and the real-world data. Nonetheless, the
predictions regarding the peak timing of hospitalized and ICU patients
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Fig. 7. Comparison between the output generated from the model (colored lines) and the COVID-19 data from the Polish Ministry of Health (black) and Eurostat (dashed gray) for
the Delta wave of the COVID-19 epidemics in Poland. Top left: new detected cases. Top right: deaths. Bottom left: hospitalized patients. Bottom right: ICU patients. The vertical
dotted line marks the simulation date.
Source: Data source: Eurostat (Eurostat, 2023a).
Table 1
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Poland. All data is reported daily. Real-world numbers
of reported deaths and excess deaths are compared to the same number of COVID-19-related deaths from the simulation.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 25 770 2021–12–05 68
Real-world 24 120 2021–11–29 45
Difference 1659 6 23
Relative difference 6.84% 51.11%

Hospitalized

Simulation 41 315 2021–12–12 66
Real-world 23 520 2021–12–10 61
Difference 17 795 2 5
Relative difference 75.66% 8.20%

ICU patients

Simulation 5311 2021–12–21 66
Real-world 2115 2021–12–14 67
Difference 3196 7 −1
Relative difference 151.11% −1.49%

Reported deaths

Simulation 889 2021–12–21 68
Real-world 443 2021–12–17 62
Difference 446 4 6
Relative difference 100.68% 9.68%

Excess deaths

Simulation 889 2021–12–21 68
Real-world 845 2021–12–10 66
Difference 44 11 2
Relative difference 5.21% 3.03%
demonstrated that our forecast accurately captured the dynamics of
the Delta wave. We relied on occupied beds, rather than hospital
admissions, to assess hospitalizations since the Ministry of Health only
provided data on occupied beds. A similar limitation affected our
assessment of ICU hospitalizations.

Moreover, we found that excess deaths were a more reliable pa-
rameter than officially registered COVID-19 deaths. Consequently, we
present the forecast of COVID-19-related deaths in comparison to es-
timates of excess deaths as defined by Eurostat (Eurostat, 2023b):
9 
‘‘Excess mortality is the rate of additional deaths in a month compared
to the average number of deaths in the same month over a baseline
period (2016–2019).’’ A positive value indicates an increase in deaths
compared to the baseline, while a negative value signifies fewer deaths
compared to the baseline period. For a more accurate quantitative
comparison, we provided data in weekly resolution computed using
Eurostat weekly excess deaths data. The quantitative estimates of peak
timing, peak value, and wave length are presented in the lower panel of
Table 1. Notably, the predicted number of deaths more closely followed
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excess deaths then reported deaths in terms of the peak value (a relative
ifference of approximately 5% vs. approximately 101%) and wave
ength (around 3% vs. approximately 10%).

3.3. Prediction of the epidemic dynamics during delta wave on regional level

Here, we demonstrate the model’s capability to forecast epidemic
dynamics of disease-related states in voivodships while using national-
level epidemic data for calibration. The regional trajectories of pDyn
outputs diverged due to synthetic society’s spatial structure, vaccina-
tion process, regional variation in weight multipliers (accounting for
ifferences in NPIs implemented before the Delta wave), and the loca-

tions of initial infections for each introduced variant in the simulation.
For a comprehensive comparison between the data generated by

he model and real-world data throughout the entire course of the epi-
emic in voivodships (comprising the total number of detected cases,
OVID-19-related hospitalizations, COVID-19-related ICU occupation,
nd COVID-19-related deaths), please refer to Appendix G. Detailed
uantitative comparisons of peak timing, peak value, and wave length
re also included in Tables in Appendix G. In this context, Fig. 8

primarily presents the summary statistics of model accuracy at the
regional level.

The top panel of Fig. 8 illustrates the distributions of peak values,
eak dates, and FWHM values in voivodships, obtained from both the

model (upward distributions) and real-life data (downward distribu-
tions). For clarity, the bottom panel shows these data as distributions
f absolute differences (for peak date) or relative differences (for peak

value and FWHM) between the model and real-life data.
The medians of the difference distributions, indicated by vertical

black lines in the bottom panel of Fig. 8, broadly align with the
differences reported at the national level. Notably, there are a few
utliers in the graphs depicting relative differences in peak value and
WHM for newly detected cases, hospitalized patients, and deaths.

Upon inspecting the difference distributions (bottom panel in Fig. 8),
articularly the relative peak value difference (left plot) concerning
etected cases, occupied beds, and deaths, one can observe a clear

outlier in each plot, which corresponds to Podkarpackie voivodeship.
The substantial relative differences observed across voivodeships may
be partially attributed to regional behavioral factors, such as varying
levels of willingness to undergo COVID-19 testing or seek hospital
treatment for COVID-19, compared to other regions in the country.

On average, the pDyn model demonstrates convergence with real-
world data and predicts the number of newly detected cases at the
individual voivodeship level with lower accuracy than the predictions
made at the national level.

4. Discussion

Mathematical epidemic models play a crucial role in understand-
ng and informing effective mitigation strategies for disease outbreaks
Brauer, 2008; James et al., 2021; Marshall, 2017; Ferguson et al.,

2020, 2005). This manuscript focuses on validating the epidemic dy-
namics and assessing the forecasting accuracy of pDyn, an agent-based
model specifically designed to capture and predict the dynamics of
COVID-19 in Poland.

The pDyn possesses several key strengths for modeling epidemic
dynamics. Firstly, it excels in capturing intricate social networks and
contact patterns among individuals, factors with a substantial impact
n disease transmission. Consequently, it provides valuable insights
nto the individual-based and network-based mechanisms governing
pidemic spread. Secondly, the model’s versatility allows it to simulate
pidemics at different spatial scales, thanks to its incorporation of
eospatial data such as population demographics and transportation
etworks. These features enable the simulation of various intervention
trategies, such as quarantine and social distancing, and their impact on

pidemic spread. Additionally, pDyn models multiple pathogen variants M

10 
and cross-immunity, shedding light on the role of variant and vaccine
diversity in epidemic dynamics. It also integrates a model for immu-
nity acquisition and waning, enabling the simulation of the effects of
vaccination and natural infection.

In the study presented in this manuscript, we aimed to achieve three
objectives:

1. We first assessed the model’s validity in simulating the dynamics
of pathogen variants succession, immunization processes, and
the proportion of vaccinated individuals among confirmed cases.

2. We then assessed the model’s predictive capabilities by exam-
ining its performance in forecasting the dynamics of confirmed
cases, hospitalizations, ICU admissions, and deaths during the
epidemic wave, focusing on critical metrics like peak timing,
peak magnitude, and wave duration.

3. Lastly, we explored the utility of pDyn in forecasting disease-
related dynamics within Poland’s highest administrative units
using national-level data. This was made possible through the
use of a virtual population representing the social and demo-
graphic structure of Poland.

We summarize our findings and discuss them below.

4.1. Model validation and findings

The first aspect we examined to validate the model was the progres-
ion of variants. This dynamic depends on various factors, including
ariants’ properties like cross-immunity and infectivity, as well as
he spatiotemporal distribution of initial infections for each variant.
t is important to note that pDyn considers cross-immunity, seasonal
luctuations, and regulatory changes based on official data but does
ot incorporate emerging behavioral changes that could influence the
odel.

Our study revealed that the Delta variant reached prevalence mile-
stones of 25%, 50%, and 75% two, three, and four weeks later, respec-
tively, compared to the GISAID genomic data. Our validation aligns
with prior research such as Eales et al. (2022) and Dong et al. (2022),

hich assessed variant succession at the 50% prevalence point. These
tudies reported prediction errors within one to two weeks, indicating a
imilar level of accuracy to pDyn, albeit slightly better. However, the su-
erior performance of other models compared to pDyn may be partially

attributed to their calibration and validation using the same datasets,
whereas pDyn underwent calibration and validation using separate
datasets. Two other studies solely offered visual comparisons (Coutinho
et al., 2021; Campbell et al., 2021). It should also be mentioned that
potential selection bias in GISAID estimates for Poland could contribute
to observed differences. Nevertheless, it can be concluded that our
findings demonstrate that pDyn effectively replicates variant succession.

Next, we compared our modeling outcomes with the OBSER-CO
seroprevalence survey conducted by the National Institute of Public
Health. Our model’s cumulative count of recovered and vaccinated
individuals closely aligned with the seroprevalence study’s estimates
at all four study rounds. However, the estimate for December 2021
was slightly elevated, falling three percentage points outside the 95%
confidence interval. While models akin to ours have been calibrated
against seroprevalence data, they have not, to our knowledge, under-
gone validation against such data (Kemp et al., 2021; Jentsch et al.,
2021).

Some data issues can contribute to the uncertainty of our valida-
tion. OBSER-CO results estimates might be influenced by instability in
detecting cases related to the testing during rising and falling epidemic
waves (Rippinger et al., 2021). Furthermore, the study rounds extended
ver time, with unevenly distributed testing within each round, while
eroprevalence was estimated at specific central time points within
ach round interval, which could have influenced estimate accuracy.
oreover, the sum of recovered and vaccinated cases derived from the
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Fig. 8. Summary results for the model forecast on a regional level. Each data point refers to one voivodeship. Upper panels present smoothed distributions of peak value, peak
date, and FWHM separately for the Ministry of Health data (above horizontal reference lines) and the model forecast data (below the reference lines) for daily new detected
cases, occupied hospital beds, occupied ICU beds, and COVID-19 deaths (compared also to excess deaths based on the Eurostat data (Eurostat, 2023a)). Lower panels present
smoothed distributions of relative peak value difference, peak date difference, and relative FWHM difference between the model forecast and the official data. The data points are
accompanied by median values (vertical black segments).
model does not align perfectly with OBSER-CO seroprevalence statistics
based on antibody levels in the trial groups. Despite these reservations,
pDyn’s representation of immunity in society closely mirrors empirical
OBSER-CO studies. Importantly, pDyn is, to our knowledge, the first
model to faithfully reflect empirical seroprevalence, rendering it a
valuable tool for exploring epidemic dynamics.

The proportion of vaccinated detected cases, considered a simula-
tion variable, was compared with surveillance data from the Ministry of
Health, using mean absolute error (MAE) as the validation metric. The
MAE was smaller for the period before the forecast date (from January
1, 2021, to October 28, 2021) than for the forecast period (from
October 29, 2021, to December 31, 2021,), reflecting the inherent
uncertainty in predictions. Notably, the maximum absolute error (in the
period from January 1, 2021, to December 31, 2021) occurred on Oc-
tober 18, 2021, reaching 14.01 percentage points. This peak coincided
with low case numbers and high vaccination coverage, contributing
to the observed variation. It is noteworthy that while the proportion
of fully vaccinated individuals among detected cases has been used to
assess vaccine effectiveness in empirical studies (Arashiro et al., 2022),
it has not been commonly employed in epidemic modeling validation.

In summary, the pDyn model generated dynamics that generally
aligned with epidemiological data, affirming the validity of the model’s
11 
dynamics of variant succession, immunization, and the emergence of
vaccinated individuals among confirmed cases.

Our proposed approach to handling uncertainty in generative mod-
els, like pDyn, offers added value to the epidemiological modeling do-
main. ABMs often involve numerous parameters requiring calibration,
and the available data are insufficient for calibrating each parameter
individually. In such cases, part of the model validation process may
involve comparing variables that are not direct model outputs but
can be derived from the model and compared to existing data before
making forecasts—examples include the dynamics of pathogen variant
succession, immunization, and the emergence of vaccinated individuals
among confirmed cases. This approach aids in testing the validity of
processes implemented in the model.

4.2. Predictive capabilities of the model

In the second phase of our study, we assessed the forecast ac-
curacy for the Delta variant wave at the national level. This assess-
ment encompassed new cases, hospitalizations, ICU admissions, and
COVID-19-related deaths, focusing on peak value, peak date, and wave
length.
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The number of new COVID-19 cases, our primary output and ref-
rence for model calibration, provided precise forecasts for the peak

value, with only a slight deviation of 6.84%. However, other aspects
f the forecast exhibited overestimations. Notably, the predicted peak

timing experienced a delay of six days, and the prediction of wave
ength (measured by FWHM) needed to be more accurate for new cases.

This discrepancy can be attributed, in part, to the constant detection
ratio implemented in our model. However, during the holiday season
n December 2021, testing rates and detection ratios likely decreased,
esulting in fewer confirmed cases and contributing to lower forecast
ccuracy.

The model predicted a significantly higher number of COVID-19-
elated general and ICU hospitalizations than the Ministry of Health
eported, with 76% more hospitalizations and 151% more ICU patients.
hen building the model, we focused on required instead of occu-

ied beds, assuming that even if some patients needing hospitalization
tayed home, the health system should be prepared. This assumption
s a primary source of the discrepancy between the model and data.
dditionally, the model assumes constant hospitalization durations of
0 days for general and seven days for ICU admissions instead of using
istributions, and poor data quality related to hospitalization durations
dds uncertainty to estimations.

Our analysis revealed dynamically changing case-to-hospitalization
and case-to-death ratios throughout the waves. These changes can
be attributed to social reluctance towards testing and hospitalization
due to difficult hospital conditions. Factors such as lack of family
ontact, admission challenges, and long queues at testing sites could

contribute to this hesitance (Kołodziej and Pecka, 2021; Grove et al.,
2023; Rewerska-Juśko and Rejdak, 2022; Tran et al., 2020; Wong et al.,
2022; Zheng et al., 2021). However, the model did not account for
sychological and healthcare system overload behavioral effects, which

also affected the accuracy of our predictions.
Despite these caveats, peak time forecasts for hospitalizations were

the most accurate among predicted disease-related states (2 days de-
lay), and the relative wave length difference was best for ICU patients
(−1.5%). In summary, the discrepancy between hospitalization and
ICU patient data and model results refers to wave magnitude rather
than peak or length. This result emphasizes the need to consider the
forecast objectives and factors influencing access and utilization of
health services when interpreting modeling outcomes, along with data
collection challenges, to improve hospitalization nowcasting (Wu et al.,
2021; Wolffram et al., 2023).

In this study, pDyn projected more COVID-19-related deaths than
fficially reported, aligning better with excess deaths, which capture

undetected infections. For instance, Walkowiak and Walkowiak (2022)
ound that combined COVID-19-related deaths accounted for 95% of
xcess deaths among Polish adults over 40. Death forecasts closely
atched excess deaths in peak value (5% relative difference) and wave

ength (3% relative difference). However, the peak date for deaths was
he least accurate among all forecasted states, with an 11-day delay.
he alignment of death modeling results with actual data is notably

nfluenced by data collection issues, primarily attributing deaths to
OVID-19, which is less reliable in Poland than other epidemiological
ata collected during the pandemic. The model’s alignment with excess
ortality data in our study supports COVID-19’s substantial contribu-

ion to overall excess mortality during the pandemic (Msemburi et al.,
2023; Wang et al., 2022; Woolf et al., 2020), particularly in Poland.

4.3. Application in regional forecasting

The pDyn model, grounded in a synthetic society reflecting re-
ional socio-demographic data, explicitly considers regional variations
n vaccination, pre-Delta wave NPIs, and the initial regional spread
f wild-type infections in Poland. However, its calibration relies on
ational epidemic data. Our study aimed to evaluate the precision of

regional forecasts generated by this model on the voivodeships level.
12 
Our findings indicate that, on average, regional forecasts align with
national-level ones, with median differences resembling those at the
national level. However, prediction quality varies among voivodeships,
with Podkarpackie voivodeship emerging as an outlier regarding rela-
tive peak value differences for detected cases, occupied hospital beds,
and deaths. These substantial differences likely stem from localized
variations in social responses to the epidemic and restrictions, under-
scoring the need to consider regional social attitudes for better regional
forecasting.

To improve regional forecasting, incorporating agent features re-
ated to behavioral traits, such as trust in medicine and willingness
o adhere to NPIs and vaccination, is advisable. Additionally, contin-

ual monitoring of local conditions and model adaptation to regional
specifics enables more accurate predictions. Local models with adapt-
able parameterization, focusing on the short or medium-term, generally
outperform global and long-term models (Bracher et al., 2022).

4.4. Limitations of the study

Despite the promising results, our study has limitations common
to complex ABMs like pDyn, including the challenge of calibrating
numerous parameters with limited data. This parameter calibration
issue significantly contributes to forecast uncertainty. We attempted to
address this by validating the model’s parameterization by comparing
model dynamics with real-world data, but these challenges persist,
introducing inherent uncertainty into our forecasts.

Like all epidemiological models, pDyn encounters challenges in pre-
dicting unpredictable phenomena that can arise during an epidemic,
such as pathogen mutations or shifts in social contact patterns, which
an substantially influence the epidemic’s trajectory. Our model does
ot include long-term predictions of pathogen evolution or the model-
ng of socio-behavioral dynamics. Instead, parameters related to these
spects are introduced post-hoc, often with delays, adding to the overall
ncertainty of the model’s predictions.

To enhance forecast accuracy, developing new features in the future
may be necessary. Currently, the model assumes constant durations
for health-related states (e.g., hospitalization), while using parameter
distributions could improve realism. Simplified modeling of transporta-
tion and commuting could be expanded for better representation of
local and long-distance transmission. Agent behavior could be refined
by introducing behavioral attributes, and contact change calibration

ould benefit from using external data, like mobility. However, these
extensions increase the number of parameters to calibrate, computa-
ional complexity and load, as well as introduce inherent uncertainties
e.g., mobility change only proxies contact pattern change).

Data availability remains a fundamental limitation of the pDyn
odel. Several crucial datasets were unavailable at the time of our

forecasting, including contact tracing data, the influx of new cases, the
number of households in quarantine, and estimated transmissions be-
tween household members. Also, much of the data available during the
ata epidemic was biased and would require modeling (like nowcasting

of hospitalization data). In particular, there needed to be more effort
in obtaining current and reliable data quickly. These issues underscore
the importance of robust and timely epidemic surveillance systems for
mathematical modeling of epidemics.

Nonetheless, despite limited data availability, the pDyn model pro-
vided valuable insights into epidemic processes and demonstrated re-
markable forecasting efficiency. It can aid in understanding epidemic

echanisms and inform epidemic policy design by enabling the com-
arison of multiple scenarios.

In summary, our study highlights the pDyn model’s robust capa-
bilities and potential for providing reliable and insightful forecasts
across various aspects of the COVID-19 pandemic. Key findings can be
ummarized as follows:
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1. Model Validation: The generative ABM pDyn employs intricate
internal states to incorporate extensive data, allowing for the
representation of mechanisms beyond the scope of phenomeno-
logical models. We validated the model’s accuracy in simulating
pathogen variant succession, immunization processes, and the
proportion of vaccinated individuals among confirmed cases,
revealing close alignment with real-world data. Additionally,
we introduced an innovative approach to address uncertainty
in generative models. This approach involves comparing model-
generated variables, which were not targeted initially as outputs,
with real-world data, thereby enhancing our ability to analyze
patterns.

2. Predictive Capabilities: The meticulous generative description of
epidemic spread in pDyn results in impressive predictive perfor-
mance, encompassing new cases, hospitalizations, ICU admis-
sions, and deaths. Evaluations within the German and Polish
COVID-19 Forecast Hub and the European COVID-19 Forecast
Hub confirmed these capabilities. In our assessment of predictive
capabilities, we focused on peak timing, peak magnitude, and
wave duration for confirmed cases, hospitalizations, ICU admis-
sions, and deaths. While peak values were often overestimated,
the model consistently captured the dynamics of the Delta wave.
Our findings underscore the importance of aligning forecasting
interpretation with the challenges related to data collection dur-
ing epidemics. This highlights the role of informed nowcasting,
particularly for data related to infection-related hospitalizations
and deaths.

3. Regional Forecasting: pDyn enables detailed epidemic simulations
at both national and regional levels, providing a granular per-
spective on disease dynamics. However, forecasting at the re-
gional level using national data has inherent limitations. Our ex-
amination of regional forecasting within Poland’s administrative
units revealed alignment with real-world data, although vari-
ations were observed, likely influenced by regional behavioral
factors.

In conclusion, the pDyn model possesses numerous strengths, includ-
ing its capacity to model complex social networks, simulate epidemics
cross different spatial scales, and account for pathogen variants and
mmunity dynamics. Our comprehensive evaluation underscores its re-
iability in modeling COVID-19 dynamics in Poland, providing valuable
nsights for informing public health decision-making and mitigation

strategies.

4.5. Recommendations for epidemiological ABMs

Finally, we propose several recommendations for future develop-
ment and application of epidemiological ABMs:

• Extend Validation: ABMs should regularly validate their models by
comparing internal variables with empirical data. This approach
facilitates the validation of emergent epidemiological dynamics
without the need for individual parameter validation, especially
in situations where parameter validation is challenging. Addition-
ally, conducting step-by-step validation for specific phenomena,
such as reinfections and vaccine efficacy, can provide a deeper un-
derstanding of the model’s characteristics and increase confidence
in the accuracy and robustness of its results.

• Monitor Local Changes: Monitoring local changes in epidemics,
including the presence of variants of concern and shifts in sero-
prevalence, along with behavioral effects of mitigation strategies
like vaccination campaigns, lockdowns, and testing, is essential.
This practice allows for the customization of models and parame-
ters to specific country or regional situations, leading to improved
short and medium-term forecasting accuracy.
 a
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Table A.2
Timeline of critical mitigation measures implemented in Poland during the COVID-19
pandemic from March 2020 to December 2022.

Mitigation measure Date first introduced

Quarantine for contacts March 4, 2020
Case detection (testing) March 4, 2020
Work-from-home order March 8, 2020
Ban on mass gatherings March 10, 2020
Online schooling March 12, 2020
Online studying at universities March 12, 2020
Ban on entertainment events March 14, 2020
Closure of sports gyms March 14, 2020
Closure of hotel accommodations March 14, 2020
Limits on the number of people in public spaces March 15, 2020
Closure of public spaces March 15, 2020
Stay-at-home order March 24, 2020
Mandatory mask wearing in closed spaces May 30, 2020
Restrictions on private gatherings April 2, 2020
Mandatory mask wearing in open spaces April 14, 2020
Limits in places of worship April 19, 2020
Limits on sports gyms June 5, 2020
Limits on hotel accommodations October 24, 2020
Vaccination programme December 27, 2020
Availability of booster dose vaccination November 2, 2021

• Enhance Monitoring Systems: There should be a concerted effort
to enhance monitoring systems in two critical dimensions — data
quality and data coverage. Institutions responsible for data collec-
tion and monitoring should gain a deep understanding of the em-
pirical data requirements for complex models like pDyn. Leverag-
ing the fastest and most accessible data streams can significantly
inform and improve modeling efforts.

These recommendations aim to strengthen the reliability and effec-
tiveness of epidemiological ABMs, ultimately aiding in better prepared-
ness and decision-making during disease outbreaks.
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Appendix A. Mitigation measures during the COVID-19 epidemic
n Poland

See Tables A.2 and A.3.

Appendix B. Model parameters

See Tables B.4–B.9 and Fig. B.9.

Appendix C. Data sources

See Table C.10.

Appendix D. Model calibration

See Fig. D.10.
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Appendix E. Determination of peak parameters

Logistic distribution was used to fit the peak data, in order to
determine the peak position, the peak value, and the peak width. Its
mathematical formula reads as follows:

𝑓 (𝑡, 𝑡0, ℎ, 𝑤) = ℎ

cosh2
(

ar ccosh(
√

2) ⋅ 𝑡−𝑡0
𝑤

) , (E.1)

where 𝑡 is time, 𝑡0 is peak position, ℎ is peak value, and 𝑤 is peak width.
Because a factor ar ccosh(

√

2) ≈ 0.8814 is used, the peak width appears
s a full-width at half maximum (FWHM) quantity.

The fitting was done using the non-linear least squares method,
rovided by curve_fit tool from the scipy.optimize package,

yielding the values of 𝑡0, ℎ, and 𝑤, which fit the best for the given
data. In case of two-peaks fitting, a sum 𝑓 (𝑡, 𝑡1, ℎ1, 𝑤1) + 𝑓 (𝑡, 𝑡2, ℎ2, 𝑤2)
was used instead, returning best values of 6 parameters (see Figs. G.13–
G.16).

The examples of two-peaks and one-peak fitting to real-world and
simulation result, respectively, for exemplary data of COVID-19-related
deaths in Poland, are presented in Fig. E.11.

Appendix F. Results for the entire course of the COVID-19 epi-
demics in Poland

See Fig. F.12.

Appendix G. Forecast on regional level

See Figs. G.13–G.16 and Tables G.11–G.26 .
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1127 under Apache License 2.0.
Table A.3
Ranks description for unified restrictions calendar in Poland.

Rank Type of restriction

Public space Workplaces
(services)

Universities Schools Kindergartens

0 No restrictions. No restrictions. No restrictions. No restrictions. No restrictions.
1 Social distancing,

personal protective
equipment,
sanitation stations
in buildings are
required. Gatherings
and some mass
events are permitted
with limits.

Social distancing,
personal protective
equipment,
sanitation stations
in buildings are
required. Indoor
gyms are available
with limits.

Social distancing,
personal protective
equipment,
sanitation stations
in buildings are
required.

Stationary education
with social
distancing, personal
protective
equipment,
sanitation stations
in buildings are
required.

Social distancing,
personal protective
equipment,
sanitation stations
in buildings are
required.

(continued on next page)
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Table A.3 (continued).
Rank Type of restriction

Public space Workplaces
(services)

Universities Schools Kindergartens

2 Public transport
available with
additional safety
rules. Medium
gatherings
(approximately 100
persons) are
permitted with
limits (e.g.,
weddings).

Some capacity limits
in shopping malls.
Hospitality and
wellness industry
are available with
limits. Restaurants
are available with
limits.

Digital
learning/remote
lectures are
default/highly
recommended, but
face-to-face courses
are available.

Different grades are
visiting school
alternately or
hybrid education.

Partial availability
depending on local
regulations,
additional safety
norms, and
maximum kids
capacity limits.

3 Some public spaces
like museums,
libraries are
available. Public
transport limited to
approximately 50%
available seats.
Small gatherings are
permitted with
limits and additional
safety norms (<50
persons).

Capacity limits in
shopping malls.
Hospitality industry,
therapeutic
rehabilitation is
available with strict
limits. Indoor
wellness industry,
swimming pools are
closed or strictly
limited. Restaurants
are strictly limited
or can serve only
takeaway food.

Digital
learning/remote
lectures are default,
and face-to-face
courses are strongly
discouraged.

Face-to-face
teaching is available
only for certain
grades (e.g., I-III),
specialized courses
(e.g., vocational
classes), or final
exam candidates
(e.g., maturity
exam).

Kindergartens are
available only for
kids of medical
service parents.

4 Mobility is
restricted to
commuting or basic
necessities of life.
Public gathering is
forbidden (limit <5
persons). Public
transport limited to
25%–50% available
seats. Underage are
not permitted to
walk alone.

Shopping malls are
closed or strictly
limited. Hospitality
and wellness
industry are fully
suspended. The
number of people in
shops and service
points are strictly
limited to the
number of till points
and surface of the
point. Restaurants
can serve only
takeaway food.

Suspension of
face-to-face teaching
and transition to
digital learning.

Suspension of
face-to-face teaching
and full transition
to digital learning.

Kindergartens are
suspended.
Table B.4
General model parameters.

Parameter name Parameter value

Base virus infectivity (𝛼) 2.047250
Base fraction of symptomatic agents leaving home (𝑓 ) 0.403245
Household contact rate 2.5
School contact rate 1.66
Preschool contact rate 1.66
Workplace contact rate 1.66
University contact rate 1.66
Travel contact rate 1.66
Street contact rate 0.83
Traveler creation rate 0.0005
Asymptomatic agents infectivity multiplier 0.1
Share of asymptomatic agents 0.8
Table B.5
Cross-immunity matrix. Cross-immunity matrix 𝐶 of size (𝑁 +𝑀) ×𝑁 is used to represent a cross-immunity
phenomenon, where 𝑁 is the number of variants and 𝑀 is the number of vaccine types. Level of immunity
against a new infection (columns), generated by infection recovery or a vaccination event (rows), is different
for each variant.

Variant Wild type Alpha Delta

Wild type 1 1 0.975
Alpha 1 1 0.975
Delta 0.975 0.975 1
Vaccine 1 1 0.975
15 
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Table B.6
Parameters of new virus variants introduction.

Variant Introduction date Number of introduced cases

Wild 06.03.2020 1260
Alpha 25.12.2020 20 000
Delta 15.05.2021 5400
Fig. B.9. Immunity multiplier function. 𝑆(𝑡) is an immunity multiplier function, representing immunity decline in time. Immunity is acquired at the moment of recovery or
vaccination. Immunity multiplier for vaccines rises from 0 to 1.0 during first 14 days and is equal to 1.0 until day 30. For infections, it is changed to 1.0 immediately after the
recovery. In both cases, immunity multiplier decreases linearly from 1.0 on day 30 to 0.9 on day 90 (0.0017 per day).
Table B.7
Disease-related states duration.

State name State duration in days

Latent 4
Asymptomatic 7
Symptomatic 5
Hospitalized, pre-ICU 13
Hospitalized, at ICU 7
Hospitalized, not at ICU 10
Recovered 1
Table B.8
State transitions probabilities in different age groups.

State transition Age range (from inclusive, to exclusive)

0–20 20–30 30–40 40–50 50–60 60-70 70+

Latent → Asymptomatic 0.92 0.92 0.84 0.84 0.68 0.63 0.23
Latent → Symptomatic 0.08 0.08 0.16 0.16 0.32 0.37 0.77
Asymptomatic → Recovered 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Symptomatic → Hospitalized, not at ICU 0.02 0.024 0.036 0.07 0.14 0.4 0.5
Symptomatic → Hospitalized, pre-ICU 0.002 0.004 0.006 0.01 0.02 0.1 0.2
Symptomatic → Dead 0.001 0.001 0.002 0.002 0.005 0.02 0.03
Symptomatic → Recovered 0.977 0.971 0.956 0.918 0.835 0.48 0.27
Hospitalized, not at ICU → Dead 0.08 0.08 0.08 0.08 0.08 0.08 0.08
Hospitalized, not at ICU → Recovered 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Hospitalized, pre-ICU → Hospitalized, at ICU 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Hospitalized, at ICU → Dead 0.75 0.75 0.75 0.75 0.75 0.75 0.75
Hospitalized, at ICU → Recovered 0.25 0.25 0.25 0.25 0.25 0.25 0.25
16 
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Table B.9
Contexts multipliers.

Date Household Kindergarten School Workplace University Big
university

Travel Street Fraction of
symptomatic agents
leaving home

Travelers
creation

Max. travel
duration

Max. travel
package

Min. school age Max. school age

06/03/2020 1 1 1 1 1 1 1 1 1 1 7 40 0 20
12/03/2020 1.01 0.2 0.2 0.8 0 0 1 0.7 1 1 7 40 0 20
14/03/2020 1.02 0.01 0.01 0.5 0 0 1 0.55 0.2 1 7 40 0 20
24/03/2020 1.02 0.01 0.01 0.35 0 0 0.25 0.4 0.1 0.75 7 20 0 20
01/04/2020 1.04 0.01 0.01 0.2 0 0 0.25 0.25 0.03 0.5 7 20 0 20
06/04/2020 1.04 0 0 0.2 0 0 0.25 0.25 0.03 0.5 7 20 0 20
11/04/2020 1.04 0 0 0.2 0 0 0.25 0.15 0.03 0.5 7 20 0 20
16/04/2020 1.04 0 0 0.2 0 0 0.25 0.1 0.03 0.5 7 20 0 20
20/04/2020 1.03 0 0 0.2 0 0 0.27 0.12 0.03 0.5 7 20 0 20
06/05/2020 1.02 0.01 0 0.2 0 0 0.27 0.12 0.03 0.5 7 20 0 20
18/05/2020 1.01 0.01 0.01 0.2 0 0 0.27 0.12 0.03 0.55 7 25 0 20
30/05/2020 1 0.01 0.01 0.2 0 0 0.27 0.12 0.03 0.6 7 25 0 20
26/06/2020 0.95 0.01 0 0.25 0 0 0.27 0.15 0.04 0.6 14 30 0 20
10/07/2020 0.95 0.1 0 0.25 0 0 0.3 0.7 0.05 0.75 14 35 0 20
10/08/2020 0.95 0.1 0 0.25 0 0 0.27 0.4 0.05 0.55 10 35 0 20
03/09/2020 1 0.25 0.25 0.35 0 0 0.27 0.55 0.05 0.55 7 35 0 20
15/09/2020 1 0.35 0.35 0.45 0 0 0.27 0.65 0.05 0.55 7 35 0 20
01/10/2020 1 0.35 0.35 0.54 0.2 0.2 0.27 0.64 0.05 0.55 7 35 0 20
10/10/2020 1 0.3 0.28 0.45 0.2 0.2 0.27 0.45 0.04 0.55 7 30 0 20
17/10/2020 1 0.3 0.26 0.31 0.2 0.2 0.25 0.36 0.03 0.5 7 30 0 20
26/10/2020 1.025 0.3 0.3 0.27 0.1 0.1 0.25 0.3 0.03 0.5 7 25 0 9
31/10/2020 1.03 0.3 0.3 0.2 0.08 0.08 0.25 0.2 0.03 0.5 7 22 0 9
07/11/2020 1.03 0.3 0.02 0.06 0 0 0.25 0.09 0.03 0.5 7 20 0 20
28/11/2020 1.04 0.3 0.02 0.23 0 0 0.25 0.28 0.03 0.5 7 20 0 20
06/12/2020 1.04 0.3 0.02 0.26 0 0 0.25 0.3 0.03 0.5 7 20 0 20
24/12/2020 1.05 0.05 0 0.1 0 0 0.35 0.65 0.03 1 10 25 0 20
28/12/2020 1.04 0.3 0.05 0.15 0 0 0.25 0.19 0.03 0.5 7 20 0 20
13/01/2021 1.04 0.3 0.05 0.2 0 0 0.25 0.2 0.03 0.5 7 20 0 20
18/01/2021 1.03 0.3 0.35 0.22 0 0 0.25 0.23 0.03 0.5 7 20 0 9
01/02/2021 1.03 0.3 0.35 0.28 0.05 0.05 0.25 0.28 0.03 1 7 25 0 9
12/02/2021 1.03 0.3 0.35 0.29 0.05 0.05 0.25 0.29 0.03 2 7 25 0 9
27/02/2021a 1.03 0.3 0.15 0.2 0.01 0.01 0.25 0.2 0.03 1 7 20 0 9
08/03/2021 1.03 0.3 0.35 0.18 0.05 0.05 0.25 0.18 0.03 1 7 25 0 9
09/03/2021a 1.03 0.3 0.15 0.16 0.01 0.01 0.25 0.16 0.03 0.5 7 20 0 9
15/03/2021b 1.03 0.3 0.15 0.15 0.01 0.01 0.25 0.15 0.03 0.5 7 20 0 9
20/03/2021 1.04 0.3 0.05 0.12 0.01 0.01 0.25 0.12 0.03 0.5 7 20 0 20
29/03/2021 1.04 0.02 0.02 0.12 0.01 0.01 0.25 0.12 0.03 0.5 7 20 0 20
19/04/2021 1.03 0.3 0.02 0.19 0.01 0.01 0.25 0.2 0.03 0.5 7 20 0 20
25/04/2021 1.03 0.3 0.02 0.2 0.01 0.01 0.25 0.2 0.03 0.5 7 20 0 9
26/04/2021c 1.03 0.3 0.15 0.18 0.01 0.01 0.25 0.18 0.03 0.5 7 20 0 9
01/05/2021 1.02 0.3 0 0.17 0.05 0.05 0.25 0.2 0.03 1.5 7 20 0 9
04/05/2021 1.02 0.3 0.1 0.12 0.05 0.05 0.25 0.12 0.03 1 7 20 0 9
08/05/2021 1.01 0.3 0.1 0.1 0.05 0.05 0.27 0.1 0.04 1 7 20 0 9
15/05/2021 1 0.3 0.05 0.05 0.05 0.05 0.27 0.06 0.04 1 7 20 0 20
21/05/2021 1 0.3 0.05 0.04 0.05 0.05 0.27 0.05 0.04 1 7 20 0 20
29/05/2021 1 0.3 0.1 0.04 0.05 0.05 0.27 0.05 0.04 1 7 20 0 20
06/06/2021 1 0.3 0.1 0.05 0.05 0.05 0.27 0.06 0.04 1 7 20 0 20
13/06/2021 1 0.3 0.07 0.08 0.03 0.03 0.27 0.08 0.04 1 7 20 0 20
26/06/2021 0.98 0.3 0 0.2 0 0 0.27 0.25 0.04 2 14 35 0 20
05/08/2021 0.98 0.3 0 0.22 0 0 0.27 0.26 0.04 2 14 35 0 20
15/08/2021 0.98 0.3 0 0.26 0 0 0.27 0.33 0.04 2 14 35 0 20
01/09/2021 1 0.3 0.2 0.28 0.05 0.05 0.25 0.33 0.03 1 7 25 0 20
01/10/2021 1.02 0.3 0.2 0.35 0.8 0.8 0.25 0.4 0.03 1 7 25 0 20
01/11/2021 1.03 0.3 0.2 0.35 0.8 0.8 0.25 0.4 0.03 1 7 25 0 20

a In Warmińsko-Mazurskie Voivodeship.
b In Lubuskie, Mazowieckie and Pomorskie Voivodeships.
c In Kujawsko-Pomorskie, Lubelskie, Lubuskie, Małopolskie, Mazowieckie, Podkarpackie, Podlaskie, Pomorskie, Świętokrzyskie, Warmińsko-Mazurskie and Zachodniopomorskie Voivodeships.
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Table C.10
Input data sources in detail.

Data type Provider Publicly available Other

Household structure in
Poland

Statistics Poland No Under NDA

Age structure in Poland Statistics Poland Yes https://stat.gov.pl
Workplaces in Poland Statistics Poland Yes https://stat.gov.pl
Schools in Poland Statistics Poland Yes https://stat.gov.pl
Universities in Poland Statistics Poland Yes https://stat.gov.pl
COVID-19 classified
deaths

MichałRogalski, Polish
Ministry of Health

Yes Epidemiological Model Team — ICM UW (2023),
https://gov.pl/web/koronawirus/wykaz-zarazen-
koronawirusem-sars-cov-2

COVID-19 detected
cases

MichałRogalski, Polish
Ministry of Health

Yes Epidemiological Model Team — ICM UW (2023),
https://gov.pl/web/koronawirus/wykaz-zarazen-
koronawirusem-sars-cov-2

COVID-19 hospitalized
patients

MichałRogalski, Polish
Ministry of Health

Yes Epidemiological Model Team — ICM UW (2023),
https://twitter.com/MZ_GOV_PL

COVID-19 severeness of
illness (ICU demand)

MichałRogalski, Polish
Ministry of Health

Yes Epidemiological Model Team — ICM UW (2023),
https://twitter.com/MZ_GOV_PL

COVID-19 time to onset
of symptoms

Publications Yes ?

COVID-19 time of
sickness

The National Institute
of Public Health

No Under NDA

COVID-19 time of
hospitalization

The National Institute
of Public Health

No Under NDA

Geographically spanned
information about
COVID-19 detected
cases

Polish Ministry of
Health

Yes https://gov.pl/web/koronawirus/wykaz-zarazen-
koronawirusem-sars-cov-2

Number of people in
quarantine

Polish Ministry of
Health

Yes https://gov.pl/web/koronawirus/wykaz-zarazen-
koronawirusem-sars-cov-2

Non-pharmaceutical
interventions

Polish Ministry of
Health

Yes https://gov.pl/web/koronawirus

Contact tracing data The National Institute
of Public Health

No Under NDA

COVID-19
seroprevalence in
Poland

The National Institute
of Publish Health

Yes https://pzh.gov.pl/projekty-i-
programy/obserco/raporty

Initial contacting rates citation Yes –
COVID-19
cross-immunity
parameters estimation

Scobie et al. (2021) Yes –
Fig. D.10. Optimistic and pessimistic forecast scenarios. Confidence interval produced by running simulation with multiple seeds is too small to be visible.
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Fig. E.11. Example of fitting the peaks with the logistic distribution, for delta (and omicron) wave(s) of COVID-19-related deaths in Poland: (a) two-peaks fit to real-world data,
(b) one-peak fit to the simulation result. Filled red and blue area in (a) show two contributing peaks. Dashed lines in both panels represent the determined parameters of the
peaks: the location of the vertical line for the peak position, its length for the peak value, the length of the horizontal line for the peak width. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. F.12. Comparison between the pDyn model-generated output (colored lines) and the epidemiological data published by the Polish Ministry of Health (black) and
Eurostat (Eurostat, 2023a) (dashed gray) for the entire course of the COVID-19 epidemics in Poland. Top left: new confirmed cases. Top right: COVID-19-related deaths. Bottom
left: hospitalized patients. Bottom right: ICU patients. The vertical dotted line indicates the simulation date. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. G.13. The full course of the COVID-19 detected cases in voivodships: comparison between the dynamics generated from the model (red lines) and the epidemiological data
(black lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. G.14. The full course of the COVID-19-related hospitalizations in voivodships: comparison between the dynamics generated from the model (green lines) and the epidemiological
data (black lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Epidemics 49 (2024) 100801 

20 



K. Niedzielewski et al.

Fig. G.15. The full course of the COVID-19-related ICU occupation in voivodships: comparison between the dynamics generated from the model (blue lines) and the epidemiological
data (black lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. G.16. The full course of the COVID-19-related deaths in voivodships: comparison between the dynamics generated from the model (purple lines) and the epidemiological
data (black lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table G.11
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Dolnośląskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 2092 2021–12–10 62
Real-world 2076 2021–12–03 40
Difference 16 7 22
Relative difference 0.77% 55.0%

Hospitalized

Simulation 3270 2021–12–21 59
Real-world 1836 2021–12–15 55
Difference 1434 6 4
Relative difference 78.1% 7.27%

ICU patients

Simulation 410 2021–12–30 58
Real-world 160 2021–12–20 60
Difference 250 10 −2
Relative difference 156.25% −3.33%

Reported deaths

Simulation 70 2021–12–27 60
Real-world 29 2021–12–24 55
Difference 41 3 5
Relative difference 141.38% 9.09%

Excess deaths

Simulation 70 2021–12–27 60
Real-world 66 2021–12–16 60
Difference 4 11 0
Relative difference 6.06% 0.0%
Table G.12
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Kujawsko-Pomorskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 1048 2021–12–11 79
Real-world 1318 2021–12–01 41
Difference −270 10 38
Relative difference −20.49% 92.68%

Hospitalized

Simulation 1426 2021–12–20 74
Real-world 1179 2021–12–15 66
Difference 247 5 8
Relative difference 20.95% 12.12%

ICU patients

Simulation 177 2021–12–28 73
Real-world 107 2021–12–18 64
Difference 70 10 9
Relative difference 65.42% 14.06%

Reported deaths

Simulation 31 2021–12–28 74
Real-world 27 2021–12–19 58
Difference 4 9 16
Relative difference 14.81% 27.59%

Excess deaths

Simulation 31 2021–12–28 74
Real-world 45 2021–12–13 60
Difference −14 15 14
Relative difference −31.11% 23.33%
Table G.13
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Lubelskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 1824 2021–11–22 55
Real-world 1550 2021–11–10 49
Difference 274 12 6
Relative difference 17.68% 12.24%

Hospitalized

Simulation 3663 2021–11–30 53
Real-world 1938 2021–11–22 59
Difference 1725 8 −6
Relative difference 89.01% −10.17%

(continued on next page)
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Table G.13 (continued).
Output Comparison Peak value Peak timing Width (FWHM)

ICU patients

Simulation 486 2021–12–11 52
Real-world 157 2021–11–24 56
Difference 329 17 −4
Relative difference 209.55% −7.14%

Reported deaths

Simulation 79 2021–12–10 55
Real-world 45 2021–11–26 52
Difference 34 14 3
Relative difference 75.56% 5.77%

Excess deaths

Simulation 79 2021–12–10 55
Real-world 68 2021–11–18 61
Difference 11 22 −6
Relative difference 16.18% −9.84%
Table G.14
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Lubuskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 535 2021–12–07 77
Real-world 683 2021–12–04 37
Difference −148 3 40
Relative difference −21.67% 108.11%

Hospitalized

Simulation 752 2021–12–16 71
Real-world 616 2021–12–16 56
Difference 136 0 15
Relative difference 22.08% 26.79%

ICU patients

Simulation 94 2021–12–27 71
Real-world 42 2021–12–19 66
Difference 52 8 5
Relative difference 123.81% 7.58%

Reported deaths

Simulation 16 2021–12–22 73
Real-world 13 2021–12–27 55
Difference 3 −5 18
Relative difference 23.08% 32.73%

Excess deaths

Simulation 16 2021–12–22 73
Real-world 24 2021–12–13 48
Difference −8 9 25
Relative difference −33.33% 52.08%
Table G.15
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Łódzkie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 1804 2021–12–14 58
Real-world 1413 2021–11–30 49
Difference 391 14 9
Relative difference 27.67% 18.37%

Hospitalized

Simulation 3153 2021–12–21 55
Real-world 1968 2021–12–13 62
Difference 1185 8 −7
Relative difference 60.21% −11.29%

ICU patients

Simulation 402 2022–01–01 55
Real-world 130 2021–12–18 80
Difference 272 14 −25
Relative difference 209.23% −31.25%

Reported deaths

Simulation 67 2021–12–29 58
Real-world 30 2021–12–20 66
Difference 37 9 −8
Relative difference 123.33% −12.12%

Excess deaths

Simulation 67 2021–12–29 58
Real-world 58 2021–12–12 62
Difference 9 17 −4
Relative difference 15.52% −6.45%
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Table G.16
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Małopolskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 2579 2021–11–30 61
Real-world 2020 2021–12–03 42
Difference 559 −3 19
Relative difference 27.67% 45.24%

Hospitalized

Simulation 4499 2021–12–05 58
Real-world 2165 2021–12–10 51
Difference 2334 −5 7
Relative difference 107.81% 13.73%

ICU patients

Simulation 611 2021–12–15 56
Real-world 225 2021–12–14 54
Difference 386 1 2
Relative difference 171.56% 3.7%

Reported deaths

Simulation 98 2021–12–14 60
Real-world 42 2021–12–18 54
Difference 56 −4 6
Relative difference 133.33% 11.11%

Excess deaths

Simulation 98 2021–12–14 60
Real-world 74 2021–12–13 63
Difference 24 1 −3
Relative difference 32.43% −4.76%
Table G.17
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Mazowieckie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 4059 2021–12–17 59
Real-world 4289 2021–11–24 44
Difference −230 23 15
Relative difference −5.36% 34.09%

Hospitalized

Simulation 5687 2021–12–25 58
Real-world 3307 2021–12–06 57
Difference 2380 19 1
Relative difference 71.97% 1.75%

ICU patients

Simulation 730 2022–01–04 58
Real-world 359 2021–12–10 65
Difference 371 25 −7
Relative difference 103.34% −10.77%

Reported deaths

Simulation 120 2022–01–02 60
Real-world 57 2021–12–12 60
Difference 63 21 0
Relative difference 110.53% 0.0%

Excess deaths

Simulation 120 2022–01–02 60
Real-world 121 2021–12–04 62
Difference −1 29 −2
Relative difference −0.83% −3.23%
Table G.18
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Opolskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 838 2021–11–28 54
Real-world 786 2021–12–05 40
Difference 52 −7 14
Relative difference 6.62% 35.0%

Hospitalized

Simulation 1595 2021–12–06 51
Real-world 697 2021–12–18 51
Difference 898 −12 0
Relative difference 128.84% 0.0%

ICU patients

Simulation 204 2021–12–16 50
Real-world 72 2021–12–21 60
Difference 132 −5 −10
Relative difference 183.33% −16.67%

(continued on next page)
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Table G.18 (continued).
Output Comparison Peak value Peak timing Width (FWHM)

Reported deaths

Simulation 33 2021–12–17 53
Real-world 17 2021–12–17 52
Difference 16 0 1
Relative difference 94.12% 1.92%

Excess deaths

Simulation 33 2021–12–17 53
Real-world 30 2021–12–13 46
Difference 3 4 7
Relative difference 10.0% 15.22%
Table G.19
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Podkarpackie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 2428 2021–11–03 44
Real-world 915 2021–11–27 49
Difference 1513 −24 −5
Relative difference 165.36% −10.2%

Hospitalized

Simulation 5479 2021–11–12 43
Real-world 1584 2021–12–07 59
Difference 3895 −25 −16
Relative difference 245.9% −27.12%

ICU patients

Simulation 751 2021–11–23 42
Real-world 182 2021–12–12 63
Difference 569 −19 −21
Relative difference 312.64% −33.33%

Reported deaths

Simulation 116 2021–11–23 46
Real-world 31 2021–12–13 54
Difference 85 −20 −8
Relative difference 274.19% −14.81%

Excess deaths

Simulation 116 2021–11–23 46
Real-world 54 2021–12–08 68
Difference 62 −15 −22
Relative difference 114.81% −32.35%
Table G.20
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Podlaskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 938 2021–12–08 61
Real-world 754 2021–11–11 48
Difference 184 27 13
Relative difference 24.4% 27.08%

Hospitalized

Simulation 1998 2021–12–12 60
Real-world 1238 2021–11–21 56
Difference 760 21 4
Relative difference 61.39% 7.14%

ICU patients

Simulation 261 2021–12–23 59
Real-world 95 2021–11–26 62
Difference 166 27 −3
Relative difference 174.74% −4.84%

Reported deaths

Simulation 43 2021–12–20 62
Real-world 21 2021–11–28 47
Difference 22 22 15
Relative difference 104.76% 31.91%

Excess deaths

Simulation 43 2021–12–20 62
Real-world 41 2021–11–22 58
Difference 2 28 4
Relative difference 4.88% 6.9%
25 



K. Niedzielewski et al. Epidemics 49 (2024) 100801 
Table G.21
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Pomorskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 1626 2021–12–23 62
Real-world 1472 2021–12–02 46
Difference 154 21 16
Relative difference 10.46% 34.78%

Hospitalized

Simulation 2038 2021–12–31 56
Real-world 1105 2021–12–17 59
Difference 933 14 −3
Relative difference 84.43% −5.08%

ICU patients

Simulation 260 2022–01–11 54
Real-world 76 2021–12–16 59
Difference 184 26 −5
Relative difference 242.11% −8.47%

Reported deaths

Simulation 43 2022–01–11 58
Real-world 19 2021–12–21 55
Difference 24 21 3
Relative difference 126.32% 5.45%

Excess deaths

Simulation 43 2022–01–11 58
Real-world 43 2021–12–18 71
Difference 0 24 −13
Relative difference 0.0% −18.31%
Table G.22
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Śląskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 3340 2021–12–21 58
Real-world 3207 2021–12–04 40
Difference 133 17 18
Relative difference 4.15% 45.0%

Hospitalized

Simulation 5536 2021–12–30 55
Real-world 2624 2021–12–17 54
Difference 2912 13 1
Relative difference 110.98% 1.85%

ICU patients

Simulation 689 2022–01–10 55
Real-world 264 2021–12–20 55
Difference 425 21 0
Relative difference 160.98% 0.0%

Reported deaths

Simulation 115 2022–01–07 58
Real-world 56 2021–12–22 52
Difference 59 16 6
Relative difference 105.36% 11.54%

Excess deaths

Simulation 115 2022–01–07 58
Real-world 116 2021–12–15 54
Difference −1 23 4
Relative difference −0.86% 7.41%
Table G.23
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Świętokrzyskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 974 2021–11–20 57
Real-world 526 2021–12–01 42
Difference 448 −11 15
Relative difference 85.17% 35.71%

Hospitalized

Simulation 1866 2021–12–01 55
Real-world 812 2021–12–13 61
Difference 1054 −12 −6
Relative difference 129.8% −9.84%

ICU patients

Simulation 249 2021–12–12 55
Real-world 74 2021–12–16 71
Difference 175 −4 −16
Relative difference 236.49% −22.54%

(continued on next page)
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Table G.23 (continued).
Output Comparison Peak value Peak timing Width (FWHM)

Reported deaths

Simulation 40 2021–12–08 59
Real-world 15 2021–12–20 64
Difference 25 −12 −5
Relative difference 166.67% −7.81%

Excess deaths

Simulation 40 2021–12–08 59
Real-world 25 2021–12–13 81
Difference 15 −5 −22
Relative difference 60.0% −27.16%
Table G.24
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Warmińsko-Mazurskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 1278 2021–11–11 54
Real-world 877 2021–11–28 43
Difference 401 −17 11
Relative difference 45.72% 25.58%

Hospitalized

Simulation 2029 2021–11–21 52
Real-world 803 2021–12–12 57
Difference 1226 −21 −5
Relative difference 152.68% −8.77%

ICU patients

Simulation 263 2021–12–01 51
Real-world 70 2021–12–16 77
Difference 193 −15 −26
Relative difference 275.71% −33.77%

Reported deaths

Simulation 42 2021–12–02 56
Real-world 18 2021–12–17 58
Difference 24 −15 −2
Relative difference 133.33% −3.45%

Excess deaths

Simulation 42 2021–12–02 56
Real-world 31 2021–12–13 61
Difference 11 −11 −5
Relative difference 35.48% −8.2%
Table G.25
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Wielkopolskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 3053 2021–11–28 54
Real-world 2330 2021–12–03 38
Difference 723 −5 16
Relative difference 31.03% 42.11%

Hospitalized

Simulation 4075 2021–12–08 53
Real-world 1900 2021–12–15 54
Difference 2175 −7 −1
Relative difference 114.47% −1.85%

ICU patients

Simulation 522 2021–12–19 52
Real-world 129 2021–12–22 56
Difference 393 −3 −4
Relative difference 304.65% −7.14%

Reported deaths

Simulation 84 2021–12–19 56
Real-world 38 2021–12–23 50
Difference 46 −4 6
Relative difference 121.05% 12.0%

Excess deaths

Simulation 84 2021–12–19 56
Real-world 67 2021–12–15 62
Difference 17 4 −6
Relative difference 25.37% −9.68%
27 
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Table G.26
The comparison between pDyn simulation results and epidemiological data (see text) for disease-related states regarding the peak value, peak
date, and width in terms of the Full-Width Half-Maximum (FWHM) of the Delta wave in Zachodniopomorskie voivodship.

Output Comparison Peak value Peak timing Width (FWHM)

New confirmed cases

Simulation 1328 2021–11–26 57
Real-world 1255 2021–11–28 43
Difference 73 −2 14
Relative difference 5.82% 32.56%

Hospitalized

Simulation 2068 2021–12–05 54
Real-world 971 2021–12–13 65
Difference 1097 −8 −11
Relative difference 112.98% −16.92%

ICU patients

Simulation 260 2021–12–15 52
Real-world 67 2021–12–13 66
Difference 193 2 −14
Relative difference 288.06% −21.21%

Reported deaths

Simulation 44 2021–12–16 55
Real-world 18 2021–12–18 60
Difference 26 −2 −5
Relative difference 144.44% −8.33%

Excess deaths

Simulation 44 2021–12–16 55
Real-world 36 2021–12–13 71
Difference 8 3 −16
Relative difference 22.22% −22.54%
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