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Abstract. The Institute of Fundamental Technological Research's Microfluidic Laboratory 

is focused on enhancing the accuracy and practical use of microfluidic methods for chemical 

and biological studies, as well as creating tailored microfluidic instruments to address 

specific biological research needs. In this document, we present a few of our latest projects. 
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1.  Introduction 

Microfluidics has rapidly evolved from its inception, becoming a vital interdisciplinary field 

that spans fluid mechanics at microscales and has myriad uses in biology, chemistry, and 

diagnostics [1]. Its allure lies in the ability to precisely control and manipulate fluid flows, 

achieved through the tiny dimensions of microchannels, the smooth, laminar flow characteristics 

[2], and the significant influence of surface tension in flows involving different phases  [3]. Our 

research focuses on both single and multiphase flows. 

2.  Droplet microfluidics 

Using more than one immiscible phase allows for the controlled formation [4] and manipulation 

of droplets in microfluidic channels. Each droplet can be a miniature reactor containing samples, 

reagents, or biological components.  

Our research delves into the basic principles of two-phase flows within microchannels [4,5]. 

Utilizing the insights gained, we craft innovative microfluidic designs, such as for the passive 

handling of droplets [6,7] and sequential logic devices for meticulous droplet management [7,8]. 

These advancements allow for the execution of complex procedures intricately encoded within 

the layout of our microfluidic systems. 

Additionally, we employ digital algorithms to precisely adjust concentrations by selectively 

merging and equally dividing droplets, enhancing our processes' accuracy, repeatability, and 

adaptability [9]. 
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3.  Applications in biomedical research 

Confined geometry of microfluidic chambers and superior flow control renders this technology suitable 

for mimicking physiological conditions for culturing cells [10]. One of our lab's primary objectives 

is to tailor microfluidic devices to meet specific biological research needs. A notable 

achievement is developing a microfluidic system that precisely controls the generation of 

tension gradients through the deformation of epithelial layers, enabling a detailed study of tissue 

mechanics, including strain and curvature effects on epithelial responses. 

In collaboration with the University Grenoble Alpes in France, this system's application has 

provided insights into how curvature influences the propagation of calcium waves caused by 

folding on short timescales and affects gene expression spatially over more extended periods 

[11]. Our findings reveal that gradients in cell shape and the mechanical stresses they induce 

lead to distinct biochemical responses across the tissue layer, offering new perspectives on cell 

differentiation mechanisms during tissue development. 

Another example is a device developed in collaboration with the University of Oxford, 

designed to study erythrocytes' oxygen release rate [12]. Our microfluidic system with the 

medium exchange chamber was applied for an experimental method to monitor the oxygen flow 

in individual red blood cells, combining ultrarapid solution switching to manipulate gas tension 

with single-cell O2 saturation fluorescence microscopy.  

Recently, this approach has been used to investigate human kidneys perfused with stored 

blood during transplantation; the respiratory rate of the organ was measured [13]. The study 

challenges the conventional definition of oxygen delivery based on blood flow and oxygen 

content, highlighting its inadequate representation of blood efficiency in tissue oxygenation. 

However, the research uncovered a robust correlation between monitored kidney respiration and 

erythrocytes' oxygen release rate. 
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