Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Krzysztof Sieczkowski

Military University of Technology (PL)

Recent publications
1.  Sondej T., Jannasz I., Sieczkowski K., Dobrowolski A., Obiała K., Targowski T., Olszewski R., Validation of a new device for photoplethysmographic measurement of multi-site arterial pulse wave velocity, Biocybernetics and Biomedical Engineering, ISSN: 0208-5216, DOI: 10.1016/j.bbe.2021.11.001, Vol.41, No.4, pp.1664-1684, 2021

Abstract:
Pulse wave velocity (PWV) is commonly used for assessing arterial stiffness and it is a useful and accurate cardiovascular mortality predictor. Currently, many techniques and devices for PWV measurement are known, but they are usually expensive and require operator experience. One possible solution for PWV measurement is photoplethysmography (PPG), which is convenient, inexpensive and provides continuous PWV results. The aim of this paper is validation of a new device for PPG sensor-based measurement of multi-site arterial PWV using a SphygmoCor XCEL (as the reference device) according to the recommendations of the Artery Society Guidelines (ASG). In this study, 108 subjects (56 men and 52 women, 20–91 years in 3 required age groups) were enrolled. The multi-site PWV was simultaneous measured by 7 PPG sensors commonly used in pulse oximetry in clinical settings. These sensors were placed on the forehead, and right and left earlobes, fingers and toes. Pulse transit time (PTT) was measured offline as the difference of time delay between two onsets of the pulse wave determined by the intersecting tangent method. The PWV was calculated by dividing the distance between PPG sensors by PTT. During PPG signals measurement, reference carotid to femoral PWV (cfPWV) was performed with a SphygmoCor XCEL system. The Pearson correlation coefficient (r) between the obtained PWV results was calculated. The Bland-Altman method was used to establish the level of agreement between the two devices. Mean difference (md) and standard deviation (SD) were also calculated. The multi-site PWV was highly correlated with accuracy at the ASG-defined level of “Acceptable” (md < 1.0 m/s and SD ≤ 1.5 m/s) with cfPWV: forehead - right toe (r = 0.75, md = 0.20, SD = 0.97), forehead - left toe (r = 0.79, md = 0.18, SD = 0.91), right ear - right toe (r = 0.79, md = 0.11, SD = 0.96), left ear - left toe (r = 0.75, md = 0.43, SD = 0.99), right ear - left toe (r = 0.78, md = 0.40, SD = 0.93), left ear - right toe (r = 0.78, md = 0.11, SD = 0.96), right finger - right toe (r = 0.66, md = 0.95, SD = 1.29), left finger - left toe (r = 0.67, md = 0.68, SD = 1.35). This study showed that PWV measured with the multi-site PPG system, in relation to the obtained numerical values, correlated very well with that measured using the commonly known applanation tonometry method. However, it should be noted, that the measured PWV concerns the central and muscular part of the arterial tree while the cfPWV is only for the central one. The best results were obtained when the proximal PPG sensor was placed on the head (ear or forehead) and the distal PPG sensor on the toe. PPG sensors can be placed in many sites at the same time, which provides greater freedom of their configuration. Multi-site photoplethysmography is an alternative method for PWV measurement and creates new possibilities for the diagnostics of cardiovascular diseases.

Keywords:
photoplethysmography, pulse wave velocity, multi-site pulse wave velocity, pulse transmit time, arterial stiffness, cardiovascular diseases

Affiliations:
Sondej T. - Military University of Technology (PL)
Jannasz I. - other affiliation
Sieczkowski K. - Military University of Technology (PL)
Dobrowolski A. - Military University of Technology (PL)
Obiała K. - National Institute of Geriatrics Rheumatology and Rehabilitation (PL)
Targowski T. - National Institute of Geriatrics, Rheumatology and Rehabilitation (PL)
Olszewski R. - IPPT PAN
2.  Sondej T., Sieczkowski K., Olszewski R., Dobrowolski A., Simultaneous multi-site measurement system for the assessment of pulse wave delays, Biocybernetics and Biomedical Engineering, ISSN: 0208-5216, DOI: 10.1016/j.bbe.2019.01.001, Vol.39, No.2, pp.488-502, 2019

Abstract:
A precise, multi-track system for the simultaneous, real-time measurement of electrocardiographic (ECG) and many photopletysmographic (PPG) signals is described. This system allows the calculation of pulse wave delay parameters such as pulse arrival time (PAT) and pulse transit time (PTT). The measurement system was built on a custom, real-time embedded system with multiple specific analogue-front-end devices. Signals were recorded on-line and data were processed off-line in the Matlab software. Testing of human subjects was carried out on a group of 16 volunteers. The system was capable of taking a measurement of one 24-bit ECG and eight 22-bit PPG tracks with high precision (input-referred noise 1.4 μV for ECG and about 20 pA for PPG). All signals are sampled simultaneously (phase shift between ECG and PPG is only 1.5 ms for 250 Hz frequency sampling). Significant differences in pulse wave delays were found for the 16 subjects studied (e.g. about 100 ms for PAT on a right toe, 40 ms for differential PAT on left-right toes and about 100 ms for PTT calculated for forehead-right toe pulse wave). The proposed system provides a simultaneous and continuous evaluation of pulse wave delays for the entire arterial bed. The proposed measurement methods are comfortable and can be used for a long time. Simultaneous measurements of pulse wave delays at various sites increase the reliability of measurement and create new possibilities for medical diagnosis.

Keywords:
biomedical monitoring, cardiovascular diseases, pulse arrival time, pulse transit time, pulse wave delay, simultaneous measurement

Affiliations:
Sondej T. - Military University of Technology (PL)
Sieczkowski K. - Military University of Technology (PL)
Olszewski R. - IPPT PAN
Dobrowolski A. - Military University of Technology (PL)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024