Institute of Fundamental Technological Research
Polish Academy of Sciences

Partners

Mateusz Homenda

University of Warsaw (PL)

Recent publications
1.  Zdybel P., Homenda M., Chlebicki A., Jakubczyk P., Stability of the Fulde-Ferrell-Larkin-Ovchinnikov states in anisotropic systems and critical behavior at thermal m-axial Lifshitz points, Physical Review A, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.104.063317, Vol.104, No.6, pp.063317-1-12, 2021

Abstract:
We revisit the question concerning the stability of nonuniform superfluid states of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type to thermal and quantum fluctuations. On general grounds, we argue that the mean-field phase diagram hosting a Lifshitz point cannot be stable to fluctuations for isotropic, continuum systems, at any temperature T>0 in any dimensionality d<4. In contrast, in layered unidirectional systems, the lower critical dimension for the onset of FFLO-type long-range order accompanied by a Lifshitz point at T>0 is d=5/2. In consequence, its occurrence is excluded in d=2, but not in d=3. We propose a relatively simple method, based on nonperturbative renormalization group, to compute the critical exponents of the thermal m-axial Lifshitz point continuously varying m, spatial dimensionality d, and the number of order parameter components, N. We point out the possibility of a robust, fine-tuning free occurrence of a quantum Lifshitz point in the phase diagram of imbalanced Fermi mixtures.

Affiliations:
Zdybel P. - IPPT PAN
Homenda M. - University of Warsaw (PL)
Chlebicki A. - University of Warsaw (PL)
Jakubczyk P. - University of Warsaw (PL)

Category A Plus

IPPT PAN

logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15
 

Find Us

mapka
© Institute of Fundamental Technological Research Polish Academy of Sciences 2024