Institute of Fundamental Technological Research
Polish Academy of Sciences


W. Chorzępa

Kirchhoff Polska Sp. z o.o. (PL)

Recent publications
1.  Rojek J., Lumelskyj D., Pęcherski R.B., Grosman F., Tkocz M., Chorzępa W., Forming limit curves for complex strain paths, ARCHIVES OF METALLURGY AND MATERIALS, ISSN: 1733-3490, DOI: 10.2478/amm-2013-0042, Vol.58, pp.587-593, 2013

This paper presents results of experimental studies of forming limit curves (FLC) for sheet forming under complex strain paths. The Nakazima-type formability tests have been performed for the as-received steel blank and for the blank pre-strained by13%. Prestraining leads to abrupt change of strain path in the blank deformation influencing the forming limit curve. The experimental FLC of the pre-strained blank has been compared with the FLC constructed by transformation of the as-received FLC. Quite a good agreement has been found out. The concept of strain-path independent FLCs in polar coordinates has been verified. Two types of the polar diagrams have been considered, the first one with the strain-path angle and effective plastic strain as the polar coordinates, and the second one originally proposed in this work in which the thickness strain has been used instead of the effective plastic strain as one of the polar coordinates. The second transformation based on our own concept has given a better agreement between the transformed FLCs, which allows us to propose this type of polar diagrams as a new strain-path in dependent criterion to predict sheet failure in forming processes.

sheet forming, formability, forming limit curve, complex strain-path

Rojek J. - IPPT PAN
Lumelskyj D. - IPPT PAN
Pęcherski R.B. - IPPT PAN
Grosman F. - Silesian University of Technology (PL)
Tkocz M. - Silesian University of Technology (PL)
Chorzępa W. - Kirchhoff Polska Sp. z o.o. (PL)

Conference abstracts
1.  Rojek J., Lumelskyj D., Grosman F., Tkocz M., Pęcherski R.B., Chorzępa W., Graniczne krzywe tłoczności przy zmiennych ścieżkach odkształcenia, PLASMET/2012, VIII Seminarium Naukowe Zintegrowane Studia Podstaw Deformacji Plastycznej Metali, 2012-11-20/11-23, Łańcut (PL), pp.x1-x3, 2012

Category A Plus


logo ippt            Pawińskiego 5B, 02-106 Warsaw
  +48 22 826 12 81 (central)
  +48 22 826 98 15

Find Us

© Institute of Fundamental Technological Research Polish Academy of Sciences 2021